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Abstract—Low-latency data access is an important challenge
for data center networks. Proper placement of the data items can
reduce the data travel time in the distributed storage systems,
which contributes significantly to the latency reduction. Most
existing data placement approaches have often assumed the prior
distribution of data requests or discovered so through trace
analysis. However, the traditional static model-based solutions
are less effective to handle the system uncertainties in a dynamic
environment. We present DataBot, a reinforcement learning-
based adaptive framework, to learn the optimal data placement
policies faced with the dynamic network conditions and time-
varying request patterns. DataBot utilizes a neural network,
trained with a variant of Q-learning, whose input is the real-
time data flow measurements and whose output is a value
function estimating the near-future latency. For rapid decision
making, DataBot is divided into two decoupled production and
training components, ensuring that the convergence time of the
training will not introduce more overheads to serve the read/write
requests. Evaluation results demonstrate that the average write
and read latency of the whole system can be lowered by about
35% and 40%, respectively.

I. INTRODUCTION

Data-intensive applications driven by web search, social
networks, e-commerce and other data sources have recently
generated explosive growth of workloads for the cloud data
centers [1]. A defining characteristic of data analytical work-
loads is the low latency [2]. Major cloud providers, e.g.,
Amazon, Microsoft and Google, have observed that a slight
increase in the overall data access latency may lead to ob-
servable fewer user accesses and thus a significant potential
revenue loss [2].

In the process of data analytics, data items need to be moved
frequently between computing or storage nodes, because data
items are not always stored at the nodes where the computation
happens. It has been witnessed that the data storage locations
can affect the finish time of the distributed computation tasks,
since the data movement delay is the main bottleneck when
data items are intensively moved to fulfill a task [3]. Various
data placement frameworks have been proposed to find the
optimal data storage locations for latency reduction. Most
existing research efforts focus on the hand-crafted design
of optimization models by analyzing the factors that may
affect the network latency [4]–[8]. However, different factors
contribute to the latency, which could be time-variant. The
sources include network latency, disk latency and other types

of latency (e.g., RAM, CPU, etc.) [9]. Some of them are
even of different proportions in different application scenarios.
Hence, the traditional solutions based on static models are not
flexible enough to deal with a dynamic environment with many
uncertainties, such as unreliable network links, variable user
request patterns and evolving system configurations.

Different from existing methods, we propose a generic
framework, named DataBot, which learns to optimize the data
placement policy with no future information about the system
environments. Note that data placement problem can be treated
as a finite Markov Decision Process (FMDP) as (1) the number
of storage nodes at which the data can be placed is finite;
(2) each action of the data placement is independent without
storage constraints and the performance of such placement
only depends on the current states and decisions. Therefore,
the model-free Q-learning, which can find an optimal action-
selection policy for any given FMDP [10], is utilized in this
paper. DataBot acts as an agent interacting with the system,
treated as a complex environment. This agent makes actions
of choosing the storage location for each data item when
writing or updating data items, and collects the feedback
from the environment, including the current state of request
patterns and network conditions, and the resultant end-to-end
performance metrics (e.g., the read/write latency) due to these
actions. Through trials and feedbacks, the DataBot can learn
the optimal locations for storing data items or their replicas.

Although Q-learning is a promising approach, it may suffer
from the curse of dimensionality and the consequently slow
convergence with the increasing number of states/actions.
Therefore, we propose to integrate a neural network (NN) into
the Q-learning framework, achieving a quick approximation
to the optimal solution with high accuracy. Given the current
state as an input, NN can learn to calculate an output (i.e.,
the actions of choosing the storage locations). The resultant
read/write latency is then used as a reward signal to train the
NN model so that it gives better policies over time.

Furthermore, as the main objective is to make instant data
placement decisions, we must ensure that the recurrent training
process of the NN will not introduce extra overheads to the
data read/write requests. The learning system is then decoupled
into two asynchronous components, i.e., the production and
training system, in the implementation of our design. The
online decision making and offline training methods change
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the traditional workflow of reinforcement learning (RL), which
requires updating the model after each decision. As a result,
our proposed framework makes instant decisions only with the
newly trained NN for the requests of querying write locations,
which manifests the ability to reduce the data placement delay
without introducing extra overheads. The main contributions
of this paper are summarized as follows:

1) We present a generic and adaptive data placement frame-
work to learn the optimal data placement policy from the
environment, without assuming the prior distribution of
data requests or the future information about the system
dynamics.

2) NN and RL are utilized to reduce the data read/write la-
tency for data center networks. With the increasing num-
ber of states/actions, NN achieves a quick approximation
when combined with RL. Moreover, the online decision
making and offline training overcome the deficiency of
the framework in delaying the request handling.

3) Furthermore, large-scale evaluations driven by real-
world I/O traces demonstrate that DataBot can lower
the average write and read latency of the whole system
by about 35% and 40%, respectively.

The remainder of this paper is outlined as follows. Section II
surveys the related work. Section III provides the system
model and problem statement. Section IV presents the design
detail of the learning-based data placement framework named
DataBot. Section V evaluates the performance of DataBot.
Section VI draws the conclusion and lists the future work.

II. RELATED WORK

Many researchers have pointed out that data placement
improves the data locality to ensure a better data read/write
performance in data-intensive systems. Given the assump-
tion that queries from clients are known beforehand, Ren et
al. [5] formulated the data placement as an integer linear
programming problem, and proposed a near-optimal solution
to jointly optimize the service cost and latency. Assuming
the prior distribution of data requests, Yu et al. [6] designed
a general hypergraph-based framework for data placement
among geo-distributed storage nodes. Using characteristics of
future workloads, Jalaparti et al. [11] presented an offline
scheduling framework that jointly places data and tasks to
significantly improve the network locality. By analyzing cloud-
service traces, Agarwal et al. [12] presented an automated data
placement framework for geo-distributed services where the
geographical distribution of requests would determine the final
data locations. However, all these previous studies investigated
the data placement problem in an offline way.

Considering the online data placement problem, Steiner et
al. [13] placed the data items used in the same job to the
storage nodes of the same rack to ensure the inter-rack traffic
can be largely reduced and therefore the job finish time is
shortened. Chowdhury et al. [14] proposed that the data write
flow could always choose the node with low occupancy links
in the writing path as the destination to lower the job finish
time. However, the ignorance of the read operations in this

Data center networks
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Fig. 1. Data storage system: storage servers, data center networks and
metadata server.

work may adversely affect the future read-related performance.
Different from existing methods, the proposed framework
DataBot takes both the read and write latency into account,
and uses RL to adaptively learn and adjust the data placement
strategy without future data request information.

Our study is related to the idea of combining NN and RL for
joint optimization [15], [16], but we focus on the data place-
ment in data centers. Mao et al. [17] investigated the resource
management problems with policy gradients. Nevertheless,
they optimized the expected value of a manually designed
objective function on the basis of the reward. Unlike this work,
Mirhoseini et al. [18] directly utilized the application execution
time as the reward of RL to optimize the device placement with
no need of designing intermediate cost models. Motivated by
previous studies, we directly use the end-to-end performance
metric, i.e., the observed read/write latencies as the reward, to
reduce the data access latency in distributed storage systems.
Furthermore, our asynchronous implementation ensures the
training process will not introduce extra overheads to the
request handling.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we present the system model of the data
storage system, and discuss how to dynamically optimize the
storage locations of data items with intensive data flows.

A. System Model

Fig. 1 illustrates the model of the data storage system. We
consider a distributed storage system consisting of a set of
machines or servers N (with size N = |N |). Each server in
the system has both the storage and computation functions.
For the storage function, data items are distributed among
various servers. For the computation function, applications
running on multiple servers may require the data movement
among servers. All servers are connected through a data center
network (DCN). As our objective is to design a generic data
placement solution, we do not focus on any specific topology
of the DCN. Owing to the fact that our design is only based
on the measurement of the end-to-end network performance,
it can support any arbitrary DCN topologies, e.g., the tree-
based Clos and Fat-tree, the recursive DCell and BCube, or
the flexible Helios and cThrough architectures [19].

A centralized metadata server is deployed to manage the
storage locations of data items. Let M denote the set of data
items stored in the system (with size M = |M|). The data
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items could be files, tables or blocks in practice. Each data
item is assigned with a unique hashtag, i.e., the hash output
using the index of the data item as the input. When a data item
is written into the system, the metadata server maintains the
mapping between the hashtag and its storage server. When an
application on an ordinary server needs to retrieve a data item,
it first asks the metadata server where the storage server is by
using the hashtag. Under this framework, the storage location
of a data item is flexible and can be changed, whenever the
data item is to be written or updated. By this design, no data
movement overhead is introduced even though the proposed
framework occasionally changes data storage locations.

The metadata server captures the logs of the read/write
requests from each storage server through the state monitor
module. The format of log entries is defined as

(TS,R/W, Src,Dst,Lat), (1)

where TS is the timestamp, R/W represents the operation type
(read or write), Src and Dst are the source and destination
location of the requests, and Lat is the end-to-end latency of
the operations. It is worth noting that the metadata server has
all the information by itself except Lat. Therefore, it is only
necessary to report Lat from the storage servers in the system.

B. Problem Statement
Currently, data storage systems need to serve a variety of

applications, e.g., the mostly read-only analytical workloads
and the high-throughput transactional workloads that both
need low latencies [20]. As mentioned before, the data storage
locations can affect the finish time of distributed workloads.
Therefore, for the purpose of low-latency services, the opti-
mization problem is defined as follows: when a data item and
its replicas are to be written or updated, how to choose the
optimal storage locations among all available servers?

Within the data center, the end-to-end latency is the sum
of a number of components, including transmission latency,
propagation latency, processing latency and queuing latency.
Therefore, it is difficult to model the system accurately faced
with the dynamic environment, i.e., the rapidly changing
network conditions and request patterns. Therefore, we utilize
a generic method RL to address the formulated problem.
RL is inspired by the behaviorist psychology, addressing
hard optimization problems through a learning process. In
RL, an agent interacts with the environment and then learns
the underlying model utilizing the feedback of its actions.
Different from the traditional methods aiming at obtaining the
analytical models of the physical environments, the adopted
RL chooses an alternative, which is to purely fit with the
statistical patterns of the environment.

IV. RL-BASED DATA PLACEMENT

We adopt Q-learning, a typical RL algorithm, to address
the data placement problem, which is model-free and can be
demonstrated to find an optimal policy for any given FMDP.
The design overview is presented at first, followed by the
design details.

Dynamic environments

Request patterns

Network conditions

Request patterns

Read/write 
latency

Update data 
placement

Neural networks

𝑄-learning

State

Action Reward

Fig. 2. An overview of the RL-based data placement.

A. Design Overview
Fig. 2 illustrates the design overview of the Q-learning-

based data placement. The fundamental principle of Q-
learning is captured by the maintained reward function or
called Q-function:

Q : State(S)⇥Action(A)! Reward(R).

The dynamic information of environments (State S) can
be learned from a series of data flows to understand which
data item should be placed on which server (Action A) so
that the corresponding read/write latencies are reduced. These
read/write latencies are then used as Reward R to train the
recurrent model and thus the DataBot outputs better data
placement decisions over time in the long-term.

When a specific data item m is going to be written in the
system at time t, we first choose the location based on the
current state s and then execute the write operation to that
location as an action a, m 2M, s 2 S , a 2 A. Until we start
to overwrite or update the same data m at t0, we can gather
the effect or performance metrics of the last written m at t and
the following reads of m between t and t

0. The weighted sum
of the read and write latencies is used as the immediate reward
value r for the action a. Since the write operation occurs at t0,
the system jumps to another state s0. For the immediate reward
r at t in Q-learning, it is assumed to still have an impact on the
future, and discounted under a discount factor � for the future
moments. According to [21], the optimal solution Q

⇤(s, a)
that maximizes the expected long-term reward satisfies the
condition as follows

Q
⇤(s, a) = Es0 [r + �max

a0
Q

⇤(s0, a0)|s, a], (2)

and through value iterations,

Qt+1(s, a) = Es0 [r + �max
a0

Qt(s
0
, a

0)|s, a]. (3)

As future rewards are influenced by many factors, such as
dynamic network conditions and request patterns, the tradi-
tional RL based on temporal differences [22] fails to guarantee
a fast convergence to the optimal solution. To address this
critical issue, the NN is employed to approximate the Q-
function with a high accuracy in our system.

B. Q-Function Design
1) States: The feature of our design is that the decisions

are only made on the basis of end-to-end measurements from
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data flows. The state s consists of three categories of the state
information, which can be derived from the stored logs of the
read/write requests. They help make a decision on the storage
location when serving a write request of data item m from
server i, m 2M, i 2 N .

Network Conditions: The first category is about the net-
work conditions

n
L
[R]
ij , L

[W]
ij , 8i, j 2 N

o
, (4)

which includes: 1) average latency of read operations on each
pair of servers in the network, L

[R]
ij , where i, j 2 N are

the source and destination, respectively; 2) average latency of
write operations on each pair of servers in the network, L[W]

ij .
We measure the information mentioned above, considering that
the network performance has a large impact on the objective
of improving read/write latency. In our design, the link-
based metrics are ignored since the discussed data placement
happens on the application layer, where the flow destination,
not the path or links, is chosen. Thus our decisions on storage
locations can coexist with any underlying link-based or path-
based flow scheduling. Note that the measurement of the
link-related metrics would introduce a large overhead when
compared with the end-to-end ones.

Then, we show how to reconstruct the real-time network
condition information from the logs in (1). Let l denote the
time for each data movement. Based on the Lat l, the Expo-
nential Weighted Moving Average (EWMA) mechanism [23]
is utilized to estimate the average read/write latency L

[R/W]
ij .

Specifically, after finishing a data read/write operation, L[R/W]
ij

is updated by

L
[R/W]
ij = ↵ll + (1� ↵l)L

[R/W]
ij , (5)

where ↵l is the discount factor to lower the importance of the
previous requests. In this way, we only need O(1) space to
maintain the estimated latency for each pair of servers in the
network.

Request Patterns: The second category is about the request
patterns n

F
[R]
i,m, F

[W]
i,m , eF [R]

i , eF [W]
i , 8i 2 N

o
, (6)

which includes: 1) read rate or frequency to data m from
source server i, denoted by F

[R]
i,m; 2) write rate to data m

from source server i, denoted by F
[W]
i,m ; 3) read rate to all data

from source server i, denoted by eF [R]
i ; 4) write rate to all data

from source server i, denoted by eF [W]
i . With both the request

patterns towards all data and the specific requested data, the
framework would be able to make a better choice on storage
locations, because such information indicates how applications
are generating workloads to the system, which is the root cause
of the network traffic.

In order to derive the request pattern information from the
logs in (1), the Discounting Rate Estimator method [24] is
applied here. We maintain a counter for each item in (6),
which increases with every read/write operation on each pair
of servers in the network, and decreases periodically (every Tr)

…
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Fig. 3. NN structure for data placement.

with a ratio factor ↵r 2 (0, 1). The benefits of this method are
that: (i) it reacts quickly to the changes of the request patterns;
(ii) it meets the O(1) requirement of both the space and the
update time for each maintained counter.

Source location: The third category is a 0-1 vector, repre-
senting whether each server i 2 N is the source location of
the current write operation or not. We assume that the number
of replicas for each data item is the same1, which is denoted
as k. Therefore, there are k servers being 1 in the 0-1 vector.
This category is necessary because the source locations of the
data flow would make a difference to the latency of the write
operation on a specific server.

In our design, given the server number N , the size of state
s will be

|s| = 2N2 +N + 4N = O(N2). (7)

According to (7), the number of data items in the system
will not affect the deployment complexity of the learning-
based system.

2) Actions: The action set is also a 0-1 vector, which
determines the destination locations of the requested data for
the write operation. Similarly, we have k servers being 1 in
the 0-1 vector for each data item.

3) Rewards: Our objective is to achieve a low-latency data
placement. As the read/write latency can be affected by time-
variant factors, the measured read/write latencies are directly
used to calculate the immediate reward rt. It is defined as the
weighted sum of the transmission rates measured during time
[t, t0), where t is the timestamp of writing a data item m and
t
0 is the timestamp of writing the same data item for the next

time. Thus, rt is calculated by

rt = ! · 1

l[W]
+ (1� !)

1

|P|
X

p2P

1

l
[R]
p

, (8)

where l[W] is the write latency measured at time t, P represents
the set of read operations in [t, t0), and l

[R]
p is the latency for

the read operation p 2 P . Considering the relative importance
between read and write may be different in various scenarios,
the parameter ! 2 (0, 1) is introduced to make the tradeoff.

1In this paper, we will not differentiate the data item itself and its replicas,
so both of them are treated as replicas below.
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Fig. 4. Production and training system of DataBot.

C. Asynchronous NN Implementation
Then, NN techniques are introduced to approximate the

action-value function of the Q-learning framework. As shown
in Fig. 3, an example NN has three kinds of layers, i.e., input
layer, hidden layers and output layer. Each layer contains
a number of computing items called neurons. Each neuron
receives values from all neurons in its previous layer, and
conducts the calculation with the weights of connections ✓
between neurons in the adjacent two layers. The weight vector
✓ of the NN should be updated periodically to improve the
accuracy of the approximation.

It is worth noting that traditional RL is designed as updating
the model after each decision [15], [22], which is in serial and
therefore will delay the next request handling. Unlike previous
work, the objective of DataBot is that the proposed system
could make instant decisions for the requests of querying write
locations, so that the learning process will not introduce extra
delays to the read/write latencies. As shown in Fig. 4, we
design the DataBot framework with two components, i.e., the
production and training system. They work asynchronously to
ensure the training process will not affect the running of the
production system.

1) Production System: Here we clarify the design details
of the production system. As illustrated in Fig. 4, the main
purpose of the production system is to serve the requests of
querying write locations through the deployed NN. Given a
state st, an action at, and the current weight vector ✓ of
the maintained NN, we can calculate the output of the NN,
denoted by F(st, at,✓), which is a vector with the length
of the number of storage servers N in the system. Each
value in F(st, at,✓) represents the expected reward of the
corresponding action, or equivalently, the expected reward of
writing the data item to the corresponding server.

The pseudo code of the production algorithm is shown in
Algorithm 1. Whenever there is a request to the metadata
server which queries the write destination for a specific data

item at time t, we generate a random number ⌘ 2 [0, 1] that
obeys the uniform distribution. If ⌘ < ✏, we select the action
a
⇤
t that maximizes the output of function F(st, at,✓) to obtain

a lower read/write latency. Otherwise, a random action will be
selected to search the unexplored portion of the solution space.
After applying the action a

⇤
t , we can observe the reward rt and

system state st+1 at the end of time interval t. A tuple

⌧ = (st, at, st+1, rt) (9)

is stored for each request. The tuples for a certain period
constitute the replay memory R, which can be used by the
training system 2.

Algorithm 1 Production Algorithm
Input: NN weight vector ✓, state st, ✏.
Output: Data placement action a

⇤
t , reward rt, state st+1.

1: while A request queries the write destination at t do
2: Generate a random number ⌘ 2 [0, 1];
3: if ⌘ < ✏ then
4: a

⇤
t  argmax

at2A
F(st, at,✓);

5: else
6: Randomly select action a

⇤
t 2 A;

7: end if
8: if Replay memory R is full, |R| = R then
9: Discard the earliest tuple in R;

10: end if
11: Store the tuple (st, at, st+1, rt) in replay memory R;
12: end while

Algorithm 2 Training Algorithm
Input: NN weight vector ✓, replay memory R.
Output: Updated weight vector ✓+.

1: if Replay memory R is full, |R| = R then
2: Shuffle all tuples ⌧ 2 R to generate mini-batches B;
3: for epoch i = {1, 2, ..., I} do
4: for each tuple ⌧ 2 R do
5: yt  rt + �max

at+1

F(st+1, at+1,✓);
6: end for
7: for each mini-batch b 2 B do
8: Update ✓+ to minimize (11);
9: end for

10: ✓  ✓+;
11: end for
12: end if

2) Training System: The training system periodically ob-
tains the tuples in the relay memory R of the production
system, and replays them to train an updated weight vector
✓+ for the future data placement.

2We define R as the maximum size of the replay memory. If the pool of
the replay memory R is full, i.e., the number of tuples |R| = R, the earliest
tuple in R will be discarded. This ensures only the latest tuples will be stored
to reflect the current network conditions and request patterns.
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Traces [25]. The distribution is biased among storage servers.

The pseudo code of the training algorithm is shown in Al-
gorithm 2. Fundamentally, the mini-batch stochastic gradient
descent (SGD) method [20] is utilized, which updates the
weight vector ✓ in order to minimize the difference between
the output of the NN and the target value. Based on the
observed reward rt as in (8), the target value is defined by

yt = rt + �max
at+1

F(st+1, at+1,✓), (10)

Then, all tuples in R are partitioned into subsets, or termed
as mini-batches B. For each mini-batch b 2 B, we can update
the weight vector ✓+ with the gradient method, in order to
minimize

E(s,a)⇠B

h�
y � F

�
s, a,✓+

��2i
. (11)

In the training method, we have multiple iterations, or
termed as epochs, on all mini-batches to converge faster. The
number of epochs is denoted by I . We keep the weight vector
✓ of the decision NN stable before all records in R have
been processed. Then after a complete round of processing,
the weight vector ✓+ of the training NN is transferred to ✓.
This variant in training makes the optimization objective more
stable and therefore avoids fluctuations to some extent.

V. PERFORMANCE EVALUATION

In this section, we perform extensive evaluations driven by
large volumes of real-world I/O traces, i.e., MSR Cambridge
Traces [25], to evaluate the performance of DataBot.

A. Trace Description and Experiment Settings
MSR Cambridge Traces: These are the I/O traces of

an enterprise data center at Microsoft Research Cambridge,
where data read/write requests are captured from 36 storage
volumes for one week. Fig. 5 illustrates the arrival rates of the
read/write requests eF [R/W]

i of all data items. The distribution is
biased among storage servers due to real applications. For each
request, the hostname, request type (read/write), and times-
tamp are given. However, for the reason of confidentiality,
most publicly available traces, including the utilized MSR

Cambridge Traces, do not specify the detailed data item for
each read/write request. We assume that the total number of
data items is M = 10, 000 in the system. The request rates of
data items in server i F

[R/W]
i,m follow a Zipf distribution with

eF [R/W]
i =

PM
m=1 F

[R/W]
i,m as in Fig. 5, just similar to [5], [6].

Experiment Settings: Mininet is used to emulate the data
center network, which can create a virtual network running real
Linux-based applications [26]. All servers are in a representa-
tive Fat-Tree topology with 3 levels of switches. The capacity
of links is set to 1 Gbps. The client program is implemented
at each server, which initiates the data read and write requests
according to the traces. In order to improve the efficiency of
intensive data access, Memcached [27] is used as the end of
data flows and caches data items in RAM. Simply speaking,
each storage server has a client being the source of requests
and a Memcached process being the destination of requests.
The default data block size is set to 64 MB, just similar to the
widely used Hadoop Distributed File System (HDFS) [28].
A metadata server program is also implemented to handle
control flows, whose functions include state monitoring, write
destination decision and NN training. Multilayer perceptron
(MLP) [30] with one kernel is adopted as the structure of the
NN used in our system.

Performance Baselines: In the experiments, two other data
placement frameworks are introduced for a fair performance
comparison. The first is commonIP [12]—places data as close
as possible to the IP address that most commonly accesses it.
The second is HASH—hashes data to servers so as to optimize
for load-balancing, which has been adopted in most distributed
storage systems today, such as HDFS [28] and Cassandra [29].

B. Experiment Results
We start by showing the experiment results of weight

! = 0.2 without replica k = 1 scenario in the 3,000 s
running time of the system. Note that the time of 3,000 s
is long enough to reach a steady performance improvement
ratio. For each round of training, the system obtains the last
R = 2, 000 samples from the replay memory and processes
them with I = 6 epochs and |b| = 300 batch size, which
averagely takes 60 s until the new weight vector ✓+ takes
effect in the production system. Fig. 6(a) shows the average
reward per action of data placement as defined in (8). At the
beginning of the data service, the data read/write latencies
reduce as Memcached needs to be warmed up with data items.
Therefore, the average rewards with commonIP and HASH

increase for the first hundreds of seconds, and keep fairly
stable then. When compared with the hand-crafted heuristics
above, DataBot continuously learns better data placement
policies through trials and feedbacks over time. As shown in
Fig. 6(a), the average reward is in an increasing trend with the
learning process of DataBot. After multiple rounds of training
for convergence, the improvement ratio through DataBot will
become stable after 1,000 s.

As shown in Fig. 6(b), we also measure the average read
latencies in every 200 s of the experiment duration. HASH
can be intuitively understood as random placement without
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considering the network conditions or request patterns, and
thus achieves the highest average read/write latencies 218.8
ms and 239.6 ms for the last 1,000 s, respectively. commonIP
places the data item on the server that has the largest request
rate. However, with the biased distribution of data items among
servers as shown in Fig. 5, the queuing latency will inevitably
increase with the average read/write latencies 174.5 ms and
185.6 ms, respectively. For the last 1,000 s with the optimized
placement policy, DataBot achieves the lowest read latencies
147.4 ms with the write latency 187.1 ms. Moreover, as shown
in Fig. 6(a) and (b), the performance shows some variance
because of the fluctuations of the request patterns.

We also show how the read/write latencies of data requests
are distributed for the last 1,000 s in Fig. 6(c). The latency
distribution could reveal how the performance is changed for
a certain percentage of requests after introducing DataBot. It
can be observed that more than 40% of the write requests are
finished in less than 128.1 ms by the proposed scheme while
being 163.6 ms and 198.6 ms for commonIP and HASH. This
confirms that DataBot is effective in ensuring more requests
with lower read latencies in this scenario.

C. Parameter Impacts
In order to fully evaluate the performance of the proposed

DataBot framework, several factors, including the weight !

and the number of replicas k, which may affect the data
placement process, are also considered.

Weight !: As ! is the tradeoff parameter between the
importance of write and read, larger ! indicates a higher

priority of write requests but with a less concern of read
requests. From Fig. 7, we can see that when ! increases from 0
to 1.0, the average write latency is decreased by 28.26% (from
199.06 ms to 147.56 ms), while the read latency is increased
by 39.40% (from 142.80 ms to 199.06 ms). For the read-
optimized scenario (! = 0), compared with commonIP and
HASH, the read latency can be reduced by 20.1% and 34.73%,
respectively. Furthermore, for the write-optimized scenario
(! = 1.0), the write latency can be reduced by 22.61% and
38.42%, respectively. As shown in Fig. 7, balanced read/write
latencies can be achieved when ! is between 0.4 and 0.5.

Number of Replicas k: Data replicas can improve the re-
liability, fault-tolerance and accessibility of the system. When
the number of replicas increases from 1 to 7 with ! = 0.2,
computing servers have more choices to access needed data
items. Therefore, the network congestion of read requests can
be eased. The read latency can be reduced from 147.41 ms to
113.40 ms. Nevertheless, as the data item needs to be written
to k different storage servers, the overall network congestion
will be inevitably increased with more data flows. The write
latency is increased from 187.13 ms to 213.72 ms. Fig. 8
demonstrates that DataBot can effectively choose the nodes
with lower read/write latencies under the replication setting.

Number of Training Epochs I: Note that the number
of training epochs I affects the training process of the NN
and the resultant data placement performance. As shown in
Fig. 9, with the increase of I from 2 to 6, the accumulated
reward increases as more rounds of training tend to reduce
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the difference between the expected reward and the output
given by the NN. However, when I is further increased to 8,
a degradation of reward can be observed due to over-fitting.
It means that even though the return of the loss function in
the NN training can be further decreased with more training
rounds, the obtained model may not be effective for the future
samples, and thus we let I = 6 in the performance evaluation.

Batch Size |b|: Then, the batch size, which represents how
frequently the weight vector ✓

+ is updated in the training
process, is also numerically tested. As shown in Fig. 10, when
the batch size is 300, the highest reward can be achieved
compared with the other settings. Fig. 9 and 10 suggest that a
careful selection of the training parameters can help to improve
the performance of the learning-based system. With these
discoveries, we are interested in finding a more systematic
way to properly set and fine tune the parameters and to avoid
over-fitting in the follow-on work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a Q-learning-based data placement
framework, DataBot, to automatically learn the optimal data
placement policies in order to handle the uncertainties of
the dynamic system. The NN is utilized to estimate the
near-future latency by training the weight vector with the
Q-values, thus speeding up the convergence to the optimal
solution. Moreover, two asynchronous components, i.e., the
online decision making and offline training, are integrated
seamlessly to ensure that no extra overheads are introduced
to the data request handling. Evaluation results show that the
average write and read latencies are reduced when compared
with the existing, often-used solutions. For the scalability in
the future work, the distributed RL solutions can be further
explored to speed up the convergence of the learning process
in the data placement problem, with no need of aggregating
raw data to a centralized metadata server for training.
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