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Abstract—In decentralized machine learning over a network
of workers, each worker updates its local model as a weighted
average of its local model and all models received from its
neighbors. Efficient consensus weight matrix design and commu-
nication resource allocation can increase the training convergence
rate and reduce the wall-clock training time. In this paper, we
jointly consider these two factors and propose a novel algorithm
termed Communication-Efficient Network Topology (CENT),
which reduces the latency in each training iteration by removing
unnecessary communication links. CENT preserves the training
convergence rate while enforcing communication graph sparsity
and avoiding selecting poor communication links. Numerical
study with real-world machine learning data demonstrates the
efficacy of the proposed solution and its performance advantage
over state-of-the-art algorithms.

I. INTRODUCTION

Large-scale machine learning (ML) often requires dis-
tributed storage and computing. While most well-known dis-
tributed ML algorithms and systems are built in a centralized
fashion (e.g., with a dedicated parameter server) [1]–[3], recent
works have demonstrated the efficacy of decentralized ML. In
decentralized ML, a network of workers cooperate to train
ML models by communicating with their neighbors. This
can alleviate the problem of computation and communication
bottleneck at a central parameter server.

The training performance of decentralized ML is affected by
how the model information is exchanged among neighboring
workers. Specifically, in each training iteration, each worker
takes a weighted average of the models that are aggregated
from its neighbors. Those weights can be stacked into a matrix
called the consensus weight matrix. It has been shown that the
convergence speed of decentralized ML is governed by the
second-largest singular value of the consensus weight matrix
[4]. The smaller this value is, the higher the convergence rate
is, i.e., the fewer iterations are required to achieve the same
level of training accuracy in decentralized ML.

The optimal consensus weight matrix that leads to the fastest
convergence rate can be obtained by the Fastest Distributed
Linear Averaging (FDLA) algorithm, which minimizes the
second-largest singular value of the consensus weight matrix
[4]. Other variations of FDLA have also been proposed in the
literature [5]–[13]. In addition to optimization-based solutions,
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some heuristics based on the Laplacian matrix of the commu-
nication graph have been widely used to design the consensus
weight matrix, e.g., best constant weight, maximum-degree
weight, and Metropolis weight [14].

In the above methods, all physical links of the underlying
network are used in model training. However, this can lead to
inefficient communication among the workers, especially in
scenarios where limited network bandwidth is shared among
them. Although a more connected network may result in
fewer iterations in model training, it also introduces higher
communication costs in each iteration [15]. Training ML
models over a sparse communication graph could outperform
a fully-connected network in terms of the wall-clock training
time. This suggested that a properly designed sparse consensus
weight matrix could accelerate the training process, which is
achieved by removing low-quality communication links and
by alleviating the impact of straggling workers.

A general design of the consensus weight matrix involves
network topology design, since the non-zero elements reflect
the chosen topology. Deploying decentralized ML over some
standard sparse network topologies, e.g., a ring, has been
investigated to reduce the communication complexity [15]–
[19]. However, such an approach is suboptimal because of
the inflexibility of the prescribed topology. Further studies
have considered finding an optimal network topology with
the fastest convergence rate subject to some prescribed com-
munication cost [20]–[25], or finding an optimal network
topology that minimizes the communication cost subject to
a prescribed convergence rate [4], [26], or a connected graph
[27]. However, the total wall-clock training time is not only
determined by the convergence rate but also by the latency in
each training iteration, which is dominated by the stragglers
and the slowest communication links. Furthermore, efficient
communication resource allocation is also of importance to
speed up the training process. It is coupled with the choice
of the consensus weight matrix and could compensate for the
latency introduced by those important but poor-quality links.

In this paper, we aim to accelerate the training process of
decentralized ML via joint sparse consensus weight matrix
design and communication resource allocation. We propose
a novel algorithm named Communication-Efficient Network
Topology (CENT), which reduces the latency in each training
iteration by enforcing the sparsity of the communication graph
while retaining a comparable convergence rate as FDLA. Our
main contributions are summarized as follows:ISBN 978-3-903176-48-5©2022 IFIP



• We formulate the problem of joint consensus weight
matrix design and communication resource allocation in
decentralized ML, which minimizes the total wall-clock
training time subject to a limited communication resource
budget. The wall-clock training time is characterized both
by the computation and communication latency in each
training iteration and by the number of iterations needed
to reach convergence.

• We propose a novel CENT algorithm for joint consensus
weight matrix design and communication resource alloca-
tion. It iteratively enforces graph sparsity while retaining
the convergence rate. When enforcing graph sparsity, we
weigh each link with additional coefficients based on the
link quality in order to avoid selecting bad links.

• We show the convergence of CENT. We further analyze
the convergence of decentralized ML while applying the
output of CENT. We show that CENT can terminate
after a finite number of steps while still guaranteeing
that its output leads to convergent in decentralized ML.
Experimental results on decentralized training of neural
networks further demonstrate the performance advantage
of CENT over state-of-the-art algorithms, in terms of
significantly faster wall-clock training time.

II. RELATED WORK

A. Consensus Weight Matrix Design without Considering
Communication

To find the optimal consensus weight matrix that leads to
the fastest convergence rate in terms of the training iterations,
Xiao and Boyd [4] proposed FDLA that minimizes the spectral
norm of the consensus weight matrix. Further studies on the
variations of FDLA have been investigated [5]–[13] Some
heuristics to construct the consensus weight matrix have also
been proposed to guarantee the convergence of decentralized
ML. A naive idea is to treat each link equally and design
a constant edge weight based on the Laplacian matrix of
the graph, e.g., the best constant weight and the maximum
degree weight. The consensus weight matrix can also be
designed locally by selecting the maximum degree of the two
adjacent workers, called Metropolis weights [14]. A common
disadvantage of the above methods is that they use all physical
links of a given underlying network.

B. Communication-Efficient Consensus Weight Matrix Design

Although a fully connected network leads to the fastest
convergence rate, recent works suggested that a sparse network
can lead to faster convergence in terms of the wall-clock
training time. Some previous works have examined certain
common sparse graphs to facilitate communication-efficient
decentralized ML, e.g., ring [15], [16], path [17], regular
expander graphs [18], [19]. However, such sparse graphs are
sub-optimal in general.

Existing optimization-based solutions can be grouped into
the following two approaches:

1) Maximizing the convergence rate subject to limited com-
munication budget: Dai and Mesbahi [20] proposed to find
the optimal network topology that maximizes the algebraic
connectivity subject to a prescribed number of edges, noting
that the convergence rate is determined by the algebraic con-
nectivity of the topology, i.e., the second smallest eigenvalue
of the Laplacian matrix. Delvenne et al. [21] and Kempton et
al. [22] optimized the consensus weight matrix by maximizing
the algebraic connectivity of the network subject to upper
bounds on the degrees of workers, i.e., the diagonal entries of
the weighted Laplacian matrix. Ogiwara et al. [23] maximized
the algebraic connectivity subject to constraints on the number
of workers and communication links. Similarly, Gusrialdi et
al. [24] proposed to remove a prescribed number of links such
that the largest eigenvalue of the adjacency matrix is mini-
mized. Meng et al. [25] solved the link selection problem with
reinforcement learning subject to communication resource and
energy consumption constraints.

2) Minimizing the communication cost subject to a required
convergence rate: Given the underlying connected graph, Xiao
and Boyd [4] extended FDLA to sparse graph design by
zeroing out the elements in the consensus weight matrix, sub-
ject to a prescribed convergence rate. Rafiee and Bayen [26]
minimized the number of communication links subject to
the constraint that the algebraic connectivity is larger than a
prescribed positive value. Marfoq et al. [27] proposed to find
a strongly connected directed graph such that the time per
communication round is minimized.

All of these prior works overlook the impact of consen-
sus weight matrix design on the total wall-clock training
time, which is determined by both the convergence rate and
the computation and communication latency in each train-
ing iteration. The design of the consensus weight matrix
should consider the trade-off between the convergence rate
and communication latency. Furthermore, since the latency in
each training iteration is dominated by the straggling workers
and the slowest communication links, efficient communication
resource allocation is also essential.

C. Other Communication-Efficient ML Techniques

There are many recent works on developing ML techniques
with improved communication efficiency, which do not involve
network topology design. Examples include compression and
coding [28]–[30], gossip and push-sum algorithms [31], [32],
and efficient scheduling [33]–[36]. Most of these techniques
are orthogonal to our work and can be combined with the
proposed solution.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model for decentral-
ized ML. We further formulate the problem of joint consensus
weight matrix design and communication resource allocation.

A. Decentralized ML

As shown in Fig. 1, we consider a network of workers
N = {1, 2, ..., N} that cooperatively train a shared model.
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Fig. 1. CENT for decentralized ML.

The physical network topology is represented by an undirected
graph G = (N , E), where E is the edge set. We have (i, j) ∈ E
if there exists a link between worker i and worker j and i 6= j.
We use A = [Ai,j ] to denote the adjacency matrix of G.
Without loss of generality, we assume that G is connected,
i.e., there exists a path between any two workers.

Let Fi(x) =
∑
π∈ξi f(x;π) denote the local training loss

function of worker i with model parameter x, which is the
sum of training losses on the set of local data samples ξi.
Let F (x) = 1

N

∑
i∈N Fi(x) denote the global training loss

over all workers. Typically, decentralized ML can be posed as
minimizing the training loss as follows:

min F (x), (1)
s.t. x ∈ X , (2)

where X denotes the feasible set of the training model.
Each worker i stores a local estimate xi of the global model

x. In each training iteration t, each worker i updates its local
model with local gradients gi(t) taken at xi(t) and transmits
the updated model to its neighbors. Each worker then further
updates its local model as a weighted average of its local
model and all received models. Specifically, let Wi,j denote the
weight from worker i to worker j for weighted aggregation,
and let W = [Wi,j ]. The model update rule is

X(t+ 1) = PX ((X(t)− β(t)G(t))W ) , (3)

where X(t) = [x1(t), ..., xi(t), ..., xN (t)], PX (·) is a projection
onto X , β(t) is the step size at iteration t, and G(t) =
[g1(t), ..., gi(t), ..., gN (t)]. The training process repeats until
the convergence of the ML model or until some pre-defined
maximum number of training iterations is reached. Afterward,
the training model can be finalized by selecting either one of
the local estimates or the average of all local models [3].

B. Communication Model

As shown in Fig. 1, the N workers form a decentralized ML
network, while a coordinator, e.g., edge server, assists with the
design of W and network resource allocation. The workers are
connected to the edge server via an access network, e.g., LTE
or 5G access. To facilitate local communication, the workers
use orthogonal channels to communicate with neighbors. The
edge server communicates with the workers via a dedicated
control channel.

Let Bi,j denote the bandwidth allocated to the link from
worker i to worker j, and let B = [Bi,j ]. The communication
latency from i to j is

lCi,j(Bi,j) =
Di

Bi,jηi,j
,∀i 6= j, (4)

where Di is the size of the packet sent by worker i and
ηi,j is the spectrum efficiency of the link from worker i
to j. In Section IV, we will use the Shannon bound for
illustration, such that ηi,j = log2(1 +

pih
2
i,j(di,j)

σ2
i,j

), where pi
is the transmission power of worker i, di,j is the distance
between workers i and worker j, h2

i,j(di,j) is the wireless
channel power gain, and σ2

i,j is the white noise power. We
further define lCi,i = 0,∀i ∈ N . The latency corresponding to
the link from worker i to worker j is

Li,j(Bi,j) = lPi + lCi,j(Bi,j), (5)

where lPi denotes the processing latency of worker i for
gradient calculation. The latency in each training latency is
determined by the straggler, which is given by

g(W,B) = max
i,j∈N

{
Li,j(Bi,j)1{Wi,j 6=0}

}
, (6)

where 1{·} is the indicator function. Note that 1{Wi,j 6=0} = 0
indicates that there is no information exchange from worker i
to worker j.

We note that in decentralized ML, (6) is determined by
the model we select to train as well as the computation
capacities of the workers. Once we specify the training model,
the coefficients in the latency function can be obtained. We
assume that the processing time of the workers lPi ,∀i, and
channel information ηi,j ,∀i, j, are known and constant over
the training iterations.

C. Problem Formulation

We first characterize the impact of the consensus weight
matrix on the training process. Let ρ(W ) = ||W − 11>

N ||2,
where || · ||2 denotes the spectral norm of a matrix and 1 is the
all-one column vector. Let Tε denote the number of training
iterations required to approximate the ideal training model by
a desired error ε. It is known that Tε is inversely proportional
to 1− ρ(W ) [37], i.e.,

Tε ∈ O
(

1

ε2(1− ρ(W ))

)
. (7)

Smaller ρ(W ) suggests faster network consensus. We note that
ρ(W ) < 1 guarantees the convergence of decentralized ML.

The wall-clock time for training Tε iterations is Tεg(W,B).
Therefore, to reduce the total training time, we should min-
imize 1

1−ρ(W )g(W,B). We formulate the problem of joint
consensus weight matrix design and communication resource
allocation as follows:

min
W,B

1

1− ρ(W )
g(W,B), (8)

s.t.
∑
i,j∈N

Bi,j ≤ B̄, (9)



Bi,j ≥ 0,∀i, j ∈ N , (10)
ρ(W ) < 1, (11)
W1 = 1, (12)

W = W>, (13)
W ∈ SA, (14)

where B̄ is the resource budget and

SA = {W ∈ RN×N |Wi,j = 0 if Ai,j = 0 and i 6= j}.

Constraints (9)-(10) state that the total allocated resource
should not exceed the resource budget. Constraint (11) guaran-
tees the convergence of decentralized ML. We set constraints
(12) and (13) so that W is a symmetrical doubly-stochastic
matrix, since using symmetric weights leads to only small
decrease in the convergence rate but substantial reduction in
computation [4]. Constraint (14) indicates the selected links
are restricted by the physical network topology.

The joint design of W and B in problem (8) brings new
challenges when compared with optimizing them separately.
The choices of consensus matrix and communication resource
allocation are coupled and restricted by the physical network
topology. Moreover, due to the existence of the indicator
function, the objective function of problem (8) is non-smooth
and non-convex with respect to W . Finally, due to the vast
search space, exhaustive search is computationally expensive.

Remark 1. Existing solutions to the minimization of a mul-
tivariable non-convex function cannot be directly applied to
problem (8). Since the indicator function is non-differentiable,
common gradient-based solutions to non-convex optimization,
e.g., successive convex approximation and majorization mini-
mization, are inapplicable to this problem. Another naive solu-
tion could be the coordinate descent method, which minimizes
the objective function with respect to one decision variable at
a time. In our case, if we optimize B with some given W , we
will obtain an optimal solution to bandwidth allocation such
that the latency is equal for all links. Then, when we optimize
W with this B, since at least one link needs to be selected
to satisfy constraint (11), the value of g(W,B) in problem
(8) stays constant for all feasible W and thus the problem is
reduced to FDLA, which means that the non-zero elements
of W remain the same as in the previous cycle. As a result,
the solutions to bandwidth allocation will not change and the
coordinate descent method becomes stuck after the above two
iterations.

IV. JOINT CONSENSUS WEIGHT MATRIX DESIGN AND
BANDWIDTH ALLOCATION

In this section, we present the design of CENT, which ex-
tracts a sparser subgraph of the physical network topology and
jointly calculates the consensus weight matrix and bandwidth
allocation. We observe from problem (8) that there exists a
trade-off between the convergence factor ρ(W ) and the latency
in each training iteration g(W,B). A more connected network
results in a higher convergence rate, but since the network
bandwidth is shared among workers, it also leads to a higher

communication latency in each training iteration. This inspires
us to reduce the communication cost by removing certain
communication links, while guaranteeing the convergence of
decentralized ML.

A. Communication-Efficient Network Topology Design
In this work, we introduce a trade-off factor to balance

the convergence rate and the sparsity of the consensus weight
matrix. We design this trade-off factor through iterative calcu-
lation. Moreover, when enforcing sparsity, we distinguish the
links based on the computation time of the workers and the
channel conditions of the links.

At step k, we maintain a graph represented by the adjacency
matrix A(k). To differentiate links when enforcing graph spar-
sity, we weigh each link with its latency under equal resource
allocation. Thus, we first calculate the number of links in the
current graph, i.e., ||A(k)||1, and hypothetically allocate equal
resource to each link, i.e., setting B

(k)
i,j = B̄

||A(k)||1
, for all

i and j such that A(k)
i,j = 1. We consider an estimated latency

matrix, L(k) = [L
(k)
i,j ], which indicates the goodness of the

links as follows:

L
(k)
i,j =

{
Li,j(B

(k)
i,j ), if i 6= j,

0, if i = j.
(15)

Remark 2. The rationale behind equal resource allocation
here is to capture the inherent goodness of the links. Oth-
erwise, suppose we apply min-max resource allocation to
optimize the bandwidth allocation and obtain the latency
matrix. Then the latency would be equal for all links and
that would defeat the purpose of L(k) to differential the
links. We emphasize that equal resource allocation here is
only for calculating L(k). The proposed solution will include
optimization of resource allocation.

To enforce graph sparsity and avoid selecting bad links,
we consider a trade-off factor, denoted by λ(k), between
the convergence factor ρ(W ) and a weighted graph sparsity
||L(k)⊗W ||1 at step k, which will be updated over time. We
solve the following optimization problem:

min
W

λ(k)ρ(W ) + ||L(k) ⊗W ||1, (16)

s.t. W ∈ SA(k) ,

(12)− (13),

where ⊗ denotes the Hadamard product of matrices and
||L(k) ⊗ W ||1 =

∑
i,j∈N |Li,jWi,j |. Since W ∈ SA(k) , we

further have ||L(k)⊗W ||1 =
∑
{(i,j)|A(k)

i,j =1} |Li,jWi,j |. Plac-
ing this L1 norm in the objective encourages graph sparsity.
Furthermore, since L(k) reflects the quality of the links, a
link that corresponds to the stragglers and poor channels is
penalized with a large coefficient L(k)

i,j . We note that constraint
(11) is not considered in problem (16) but will be naturally
guaranteed by our design, as shown in the next section.

Problem (16) can be efficiently solved through semidefinite
programming as follows:

min
W,s1,s2

λ(k)s1 + s2,



s.t. − s1I �W − 11>

N
� s1I,∑

{(i,j)|A(k)
i,j =1}

|Li,jWi,j | ≤ s2,

W ∈ SA(k) ,

(12)− (13),

where � denotes matrix inequality. Let W (k) = [W
(k)
i,j ] be the

solution.
Then, the adjacency matrix is updated by replacing nonzero

elements of the weight matrix with ones, i.e.,

A
(k+1)
i,j =

{
1{W (k)

i,j 6=0}, if i 6= j,

0, if i = j.
(17)

If the adjacency matrix changes, we will run the same process
to further extract a sparser graph with the current trade-off
factor λ(k). If the adjacency matrix does not change, we will
enforce consensus by increasing the weight of ρ(W ) with
λ(k+1) = λ(k) + ∆λ, where ∆λ is a positive step size.

The above procedure is repeated for K iterations. As shown
in the next section, there exists some positive integer k0, such
that for all K > k0, we have ρ(W (K)) < 1, i.e., constraint (11)
is satisfied. Furthermore, we will show in the next section that
larger K leads to better performance in terms of our objective.

With the extracted sparse topology A(K), the corresponding
optimal consensus weight matrix design Ŵ and bandwidth
allocation B̂ can be obtained by solving the spectral norm
minimization problem

min
W

ρ(W ), (18)

s.t. W ∈ SA(K) ,

(12)− (13),

and the Min-Max-RA problem

min
B

max
i,j∈N

{
Li,j(Bi,j)1{A(K)

i,j 6=0}

}
, (19)

s.t. (9)− (10).

Both are convex problems with known solutions, e.g., FDLA
[4] and the primal-dual Lagrangian approach [38].

The pseudocode of CENT is given in Algorithm 1, where
lines 2-13 extract a sparse graph A(K) and lines 14-15
compute the solution of consensus weight matrix design Ŵ
and bandwidth allocation B̂ based on the extracted graph.

B. Convergence Analysis

We will prove the following two properties: 1) the con-
vergence of CENT, and 2) the convergence of decentralized
ML that uses the output of CENT. To show the convergence of
CENT, we argue that there exists a positive integer k0 such that
{ρ(W (k))}k>k0 is a decreasing sequence and bounded below.
To guarantee the convergence of decentralized ML, we will
first show that ρ(W (k0+1)) < 1 and then with the decreasing
sequence {ρ(W (k))}k>k0 , we conclude that ρ(Ŵ ) < 1.

Algorithm 1 Communication-Efficient Network Topology
(CENT)
Input: Number of rounds K, set of workers N , physical
network topology A, global network conditions lPi , ηi,j ,∀i, j,
bandwidth budget B̄, and step size ∆λ > 0.
Output: consensus weight matrix Ŵ , bandwidth allocation B̂.

1: λ(0) ← 0, A(0) ← A;
2: for k = 0, ...,K − 1 do
3: A(k) ← A if A(k) = 0;
4: B

(k)
i,j ← B̄

||A(k)||1
,∀(i, j);

. Equal allocation among edges
5: Compute matrix L(k) with (15);

. Capture the inherent goodness of the links
6: Compute W (k) with (16);

. Enforce sparsity and avoid bad links
7: Update the adjacency matrix A(k+1) with (17);

. Update adjacency matrix
8: if A(k+1) = A(k) then
9: λ(k+1) ← λ(k) + ∆λ; . Enforce consensus

10: else
11: λ(k+1) ← λ(k);
12: end if
13: end for
14: Ŵ ← FDLA(A(K));
15: B̂ ← Min-Max-RA(A(K));
16: return Ŵ , B̂K

Let W(k) = {W |W1 = 1,W = W>,W ∈ SA(k)},∀k.
This is the feasible set at step k of CENT. We partition W(k)

into two subsets, i.e.,

W(k)
1 = {W |W ∈ W(k), ρ(W ) ≥ 1},
W(k)

2 = {W |W ∈ W(k), ρ(W ) < 1}.

Since for any connected graph G, we can always design
some W such that ρ(W ) < 1 by treating each link equally,
e.g., a constant edge weight based on the Laplacian matrix of
the graph [4], we have the following lemma. The proof details
are omitted due to the page limit.

Lemma 1. For connected graph G, W(0)
2 6= ∅.

Furthermore, we make the following observation:

Lemma 2. For any W ∈ W(k),∀k, we have ||L(k)⊗W ||1 = 0
if and only if W is the identity matrix I .

Proof. If W = I , we have ||L(k)⊗W ||1 =
∑
i,j |L

(k)
i,jWi,j | =∑

i=j |0 ·Wi,j |+
∑
i 6=j |L

(k)
i,j · 0| = 0.

If there exists a pair (i, j) such that Wi,j 6= 0 and i 6= j,
we have

||L(k) ⊗W ||1 =
∑

{(i,j)|A(k)
i,j =1}

|L(k)
i,jWi,j |

(a)
> 0,

where (a) holds since L
(k)
i,j 6= 0 for all i and j such that

A
(k)
i,j = 1. Therefore, if ||L(k) ⊗ W ||1 = 0, we must have



Wi,j = 0 for all i and j such that A(k)
i,j = 1. Since W ∈ W(k),

we further have W = I .

To facilitate the rest of our analysis, we define

λ0 = min
W∈W(0)

2

||L(0) ⊗W ||1
1− ρ(W )

.

Lemma 3. λ0 is positive and finite.

Proof. Since ρ(I) = 1, we know that I /∈ W(0)
2 . Then, from

Lemma 2, we know that for any W ∈ W(0)
2 , ||L(0) ⊗W ||1 >

0. Further combining the fact that for any W ∈ W(0)
2 , 1 −

ρ(W ) > 0, we have λ0 > 0. Finally, λ0 is finite since 1 −
ρ(W ) 6= 0.

Let k0 = b λ0

∆λ
c, i.e., k0∆λ ≤ λ0 and (k0 +1)∆λ > λ0. The

following lemma reveals important properties of the proposed
algorithm with respect to k0.

Lemma 4. For 0 ≤ k < k0, the identity matrix I is the unique
minimizer to problem (16), so ρ(W (k)) = 1. For k = k0,
ρ(W (k)) ≤ 1. For k > k0, ρ(W (k)) < 1.

Proof. Let f (k)(W ) = λ(k)ρ(W ) + ||L(k) ⊗W ||1.
For k < k0, we have λ(k) ≤ k∆λ < k0∆λ ≤ λ0. We start

with k = 0. For any W ∈ W(0), we have

f (0)(I)− f (0)(W )

= λ(0) − (λ(0)ρ(W ) + ||L(0) ⊗W ||1)

= λ(0)(1− ρ(W ))− ||L(0) ⊗W ||1.

If W ∈ W(0)
1 \I , from Lemma 2, we know that ||L(0)⊗W ||1 >

0. Since ρ(W ) ≥ 1, we further have f (0)(I)−f (0)(W ) < 0. If
W ∈ W(0)

2 , we have ρ(W ) < 1. Combining this with λ(0) <
λ0, we have

f (0)(I)− f (0)(W ) < λ0(1− ρ(W ))− ||L(0) ⊗W ||1.

Since by definition λ0 ≤ ||L(0)⊗W ||1
1−ρ(W ) ,∀W ∈ W(0)

2 , we have
λ0(1 − ρ(W )) − ||L(0) ⊗ W ||1 ≤ 0. Therefore, f (0)(I) −
f (0)(W ) < 0 and the identity matrix I is the unique mini-
mizer, i.e., W (0) = I and ρ(W (0)) = 1. This further implies
that W(1) = W(0), L(1) = L(0), and λ(1) = λ(0) + ∆λ. The
case of 0 < k < k0 can be proved in the same way since
λ(k) < λ0. We conclude that in this case, the identity matrix
I is the unique minimizer, i.e., W (k) = I and ρ(W (k)) = 1.
Note that this further implies that W(k0) = W(0), L(k0) =
L(0), and λ(k0) = k0∆λ.

For k = k0, we have two cases depending on λ(k0). If
λ(k0) < λ0, we can prove W (k0) = I and ρ(W (k0)) = 1 in
the same way as above. If λ(k0) = λ0, for W ∈ W(k0)

1 \ I ,
from analysis similar to the above, we still have f (k0)(I) −
f (k0)(W ) < 0. Now we inspect the setW(k0)

2 . Let W̄ ∈ W(0)
2

denote the consensus weight matrix such that

||L(0) ⊗ W̄ ||1
1− ρ(W̄ )

= λ0.

Since W(k0) =W(0), we have W(k0)
2 =W(0)

2 and thus W̄ ∈
W(k0)

2 . Since ρ(W̄ ) < 1, L(k0) = L(0), and λ(k0) = λ0, we
have

f (k0)(I)− f (k0)(W̄ )

= λ0(1− ρ(W̄ ))− ||L(0) ⊗ W̄ ||1 = 0.

We conclude that W̄ is no worse than any solution in W(k0)
1 ,

so a minimizer must exist inW(k0)
2 . Therefore, ρ(W (k0)) ≤ 1.

For k = k0 + 1, we have two cases depending on W (k0).
i) If W (k0) = I , we have W(k0+1) = W(k0) = W(0),
L(k0+1) = L(k0) = L(0), and λ(k0+1) = (k0 + 1)∆λ >

λ0. Therefore, for W ∈ W(k0+1)
1 \ I , we still have

f (k0+1)(I)−f (k0+1)(W ) < 0. Now we consider the other
part of the feasible region W(k0+1). Let W̄ be as defined
above. In this case, we also have W̄ ∈ W(k0+1)

2 . We
observe that

f (k0+1)(I)− f (k0+1)(W̄ )

= λ(k0+1)(1− ρ(W̄ ))− ||L(k0+1) ⊗ W̄ ||1
= λ(k0+1)(1− ρ(W̄ ))− ||L(0) ⊗ W̄ ||1
> λ0(1− ρ(W̄ ))− ||L(0) ⊗ W̄ ||1
= 0.

Therefore, any minimizer must be in W(k0+1)
2 and thus

ρ(W (k0+1)) < 1.
ii) If W (k0) 6= I , from the analysis of the case k = k0, we

must have W (k0) ∈ W(k0)
2 . We further have two cases

depending on A(k0+1) (lines 8-12 of Algorithm 1).
If A(k0+1) = A(k0), then we have W(k0+1)

1 = W(k0)
1 =

W(0)
1 , L(k0+1) = L(k0) = L(0), and λ(k0+1) = (k0 +

1)∆λ > λ0. This is identical to the previous case and
thus ρ(W (k0+1)) < 1.
If A(k0+1) 6= A(k0), then we have λ(k0+1) = λ(k0) and
W(k0+1) ⊂ W(k0). Therefore, ||A(k0+1)||1 < ||A(k0)||1.
By equally allocating resource to each link, we have
B

(k0+1)
i,j > B

(k0)
i,j ,∀i, j (line 4 of Algorithm 1). Since

Li,j is strictly decreasing with Bi,j , we further have
L

(k0)
i,j > L

(k0+1)
i,j ,∀i, j. This implies that

f (k0+1)(I)− f (k0+1)(W (k0))

= λ(k0+1)(1− ρ(W (k0)))− ||L(k0+1) ⊗W (k0)||1
= λ(k0)(1− ρ(W (k0)))− ||L(k0+1) ⊗W (k0)||1
> λ(k0)(1− ρ(W (k0)))− ||L(k0) ⊗W (k0)||1.

Since W (k0) is a minimizer at step k0, the last line
above, which equals f (k0)(I) − f (k0)(W (k0)) ≥ 0, is
non-negative. From (17), we also know that W (k0) ∈
W(k0+1). Therefore, I is not a minimizer at step k0 +
1. From analysis similar to the above, we still have
f (k0+1)(I) − f (k0+1)(W ) < 0,∀W ∈ W(k0+1)

1 \ I , so
the minimizer at step k0 + 1 must be in W(k0+1)

2 and
thus ρ(W (k0+1)) < 1.

For k > k0 + 1, we can apply induction using the same
analysis as in case ii) above to conclude that ρ(W (k)) < 1.



We can further show that {ρ(W (k))}k>k0 is a decreasing
sequence, as stated in the next lemma.

Lemma 5. ρ(W (k)) ≥ ρ(W (k+1)),∀k > k0.

Proof. For k > k0, depending on whether we increase λ(k)

at step k of CENT (lines 8-12 of Algorithm 1), we have the
following two cases.

If A(k+1) = A(k), then L(k+1) = L(k) and λ(k) < λ(k+1).
In this case, we have W (k+1) ∈ W(k+1) = W(k), and from
(17), we also have W (k) ∈ W(k+1). Let η(k) = ||L(k) ⊗
W (k)||1. Since W (k) and W (k+1) are minimizers of problem
(16) in steps k and k + 1, respectively, we have

λ(k)ρ(W (k)) + η(k) ≤ λ(k)ρ(W (k+1)) + η(k+1),

λ(k+1)ρ(W (k+1)) + η(k+1) ≤ λ(k+1)ρ(W (k)) + η(k).

Summing the above inequalities yields

(λ(k+1) − λ(k))(ρ(W (k+1))− ρ(W (k))) ≤ 0.

Since λ(k) < λ(k+1), we must have ρ(W (k)) ≥ ρ(W (k+1)).
If A(k+1) 6= A(k), we have λ(k+1) = λ(k). Let ψ(k)(W )

denote the ratio between ||L(k+1)⊗W ||1 and ||L(k)⊗W ||1. As
explained in the proof of Lemma 4, in this case we also have
L

(k)
i,j > L

(k+1)
i,j ,∀i, j, so ψ(k)(W ) ≤ 1,∀W ∈ W(k+1). From

Lemma 4, we see that, for k > k0, the identity matrix I is not
a minimizer, so ψ(k)(W ) 6= 0,∀W ∈ W(k+1). Therefore, the
objective of problem (16) in step k + 1 can be equivalently
written as

min
W∈W(k+1)

λ(k)

ψ(k)(W )
ρ(W ) + ||L(k) ⊗W ||1.

This has exactly the same form as the previous case, except
with λ(k) ≤ λ(k)

ψ(k)(W )
instead of λ(k) < λ(k+1). Using a similar

argument, we have ρ(W (k)) ≥ ρ(W (k+1)).

Theorem 6. CENT converges as k approaches infinity.
Furthermore, the objective 1

1−ρ(W (k))
g(W (k), B(k)) is non-

increasing in k for k > k0.

Proof. From Lemma 5, we see that, regardless of whether we
increase λ(k) at step k of CENT, {ρ(W (k))}k>k0 is a non-
increasing sequence. Furthermore, this sequence is bounded
below by arg minW∈W(0) ρ(W ). Therefore, the Monotone
Convergence Theorem implies that CENT converges.

As explained in the proof of Lemma 4, L
(k)
i,j ≥

L
(k+1)
i,j ,∀i, j, k. Since W(k+1) ⊆ W(k), we have

g(W (k), B(k)) = max
i,j∈N

{
L

(k)
i,j 1{W (k)

i,j 6=0}

}
(20)

≥ max
i,j∈N

{
L

(k+1)
i,j 1{W (k+1)

i,j 6=0}

}
= g(W (k+1), B(k+1)), ∀k.

For k > k0, since we also have ρ(W (k)) < 1,
1

1−ρ(W (k))
g(W (k), B(k)) is non-increasing.

Theorem 7. If K > k0, decentralized ML converges.

Proof. From Lemma 4, we have ρ(W (k)) < 1 for k > k0.
Therefore, ρ(W (K)) < 1. By solving problem (18), we further

have ρ(Ŵ ) ≤ ρ(W (K)). We conclude that ρ(Ŵ ) < 1.
Furthermore, from (19), if there exists a link (i, j) such that
A

(K)
i,j 6= 0 and B̂i,j = 0, the objective function goes to

infinity, which is obviously not optimal. Therefore, we have
B̂i,j 6= 0 for all i and j such that A(K)

i,j 6= 0. This means that
the communication latency in each training iteration is finite,
which concludes the proof.

V. NUMERICAL PERFORMANCE EVALUATION

In this section, we evaluate the performance of CENT on
decentralized convolutional neural network (CNN) training
over a decentralized network. Unless otherwise specified, we
place N = 50 workers randomly in a 100 m × 100 m area. We
generate the network topology in a similar way as [4], with
200 edges among the workers. Two workers are connected
by an edge if the distance between them is within a specified
threshold, and we increase the threshold until the total number
of edges reaches 200. This procedure is repeated until a
connected graph is generated. The total bandwidth budget B̄ is
20 MHz. The transmission power of each worker is 1 W. The
channel power gain hi,j(di,j) = γ0( d̂

di,j
)4 , where γ0 = −40

dB is the path loss at the reference distance d̂ = 1 m [39].
The 50 workers collectively train a CNN for handwritten-

digit recognition on the MNIST dataset [40]. The MNIST
dataset consists of 60,000 training images and 10,000 testing
images, each of which has 28 × 28 pixels and is labeled
between 0 and 9. The training set is evenly divided among
the workers at random. We consider LeNet [41] as a rep-
resentative of CNN, which is implemented with PyTorch. It
is composed of two convolutional layers, followed by two
fully connected layers and a softmax classifier. It has 61,706
trainable parameters and the size in memory is 0.35 MB. It is
trained with the cross-entropy loss and Adam optimizer. The
learning rate is set to 0.001. The minibatch size is set to 256.
In each training iteration, each worker processes a minibatch
of the local dataset and then communicates with the adjacent
neighbors.

To represent the heterogeneous computation capacities
among workers, we model the processing time of the workers
as lPi = l̄Pi ((1 − v) + vφ),∀i, where φ follows the uniform
distribution over [0, 2] and v = 0.8 [18], and the average
processing time l̄Pi = 5.231 s is measured from processing
a minibatch of data samples on a 2.9 GHz Intel Core i5
processor and 8 GB of memory.

We compare the performance of CENT with that of the
following benchmarks:
• FDLA [4]: The weights are calculated by solving the

spectral norm minimization problem. It gives the fastest
convergence rate in terms of the number of training
iterations.

• Max-degree [5]: Assign all edges the same weight based
on the maximum degree of the graph.

• Metropolis [6]: Assign each edge a weight based on the
maximum degree of its two adjacent workers.
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• Best-constant [7]: Assign all edges the same optimal
constant weight based on the eigenvalues of the Laplacian
matrix of the graph.

We do not compare with the methods in [15]–[27], since they
are incompatible with the wall-clock training time and thus
do not solve our problem. For the above four benchmarks, the
corresponding bandwidth allocation is calculated by solving
Min-Max-RA subject to the physical network topology. For
CENT, by default, ∆λ is set to 2000.

A. Impact of L(k) and λ(k) in CENT

Figs. 2 and 3 illustrate the impact of using L(k) and
λ(k) in the design of CENT. We compare CENT with two
naive variants: CENT w/o L(k) refers to eliminating L(k) in
Algorithm 1, i.e., L(k) is substituted by an all-ones matrix;
CENT with fixed λ(k) refers to fixing λ(k) = 2000 over all
K steps. We observe that both variants result in an increase
in the training time when compared with CENT. This is
because the weights L(k) in CENT help reveal the links
that dominate the latency in each training iteration, while the
increasing sequence of λ(k) searches for an appropriate weight
on the convergence factor ρ(W ) to improve the consensus
among workers. By jointly considering the design of L(k)

and λ(k), CENT accelerates the wall-clock training time by
removing congested communication links while retaining a
high convergence rate.

B. Convergence Factor ρ(W ) and Wall-Clock Training Time

Figs. 4 and 5 show the convergence factor ρ(W ) and upper
bound of wall-clock training time with 95% confidence inter-
vals, over 100 realizations of the physical network topology.
CENT requires significantly shorter wall-clock training time
than the other methods, while retaining ρ(W ) as FDLA. Note

that FDLA by design gives the minimum possible ρ(W ).
Furthermore, when compared with the benchmarks, CENT
reduces the wall-clock training time by 88%, 78.7%, 78.6%,
and 54%.

C. Training and Test Accuracy over Wall-clock Time

Fig. 6 shows the training and test accuracy over wall-
clock time. We observe that even though FDLA optimizes the
convergence factor, it does not lead to the fastest convergence
speed in terms of the wall-clock time. With fewer edges
selected for communications and reduced latency in each
training iteration, CENT spends less time achieving the same
level of training accuracy.

D. Impact of the Network Scale

We investigate the performance of CENT over different net-
work sizes N . We generate the network topology in a similar
way as mentioned above, with 200N

50 edges among N workers.
The minibatch size is set to 256×50

N . Fig. 7 shows the wall-
clock training time to achieve the same 60% training accuracy
with the same 20 MHz bandwidth. For both FDLA and CENT,
the wall-clock training time has a significant drop when N
grows from 10 to 20 due to the reduced computational work-
load at each worker. However, when N is further increased,
the wall-clock training time increases considerably due to the
scarcity of the network bandwidth. With more workers sharing
limited bandwidth, the communication latency in each training
iteration increases and gradually overweighs the computation
cost. Thus, we observe a tradeoff between computation and
communication under different network scales. With limited
bandwidth, blindly increasing the number of workers and the
edges among them aggravates network congestion, canceling



out the benefits of parallel computing. However, when com-
pared with FDLA, CENT excels in robustness to accelerate
the wall-clock training time with efficient sparse graph design
and bandwidth allocation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have explored communication design
for decentralized ML with bandwidth constraints and het-
erogeneous workers. By jointly considering the consensus
matrix and bandwidth allocation, we have proposed a novel
algorithm, termed CENT, aiming to speed up the training
process by eliminating unnecessary communication links for
more efficient bandwidth allocation. Numerical studies on real-
world decentralized CNN training show the efficacy of the
proposed solution, in terms of significantly faster wall-clock
training time. For future work, efficient consensus weight ma-
trix design for dynamic networks can be explored when further
considering worker mobility and heterogeneous resources.
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