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Abstract—Low-latency data service is an increasingly critical challenge for data center applications. In the modern distributed storage
systems, proper data placement helps reduce the data movement delay, which can contribute to the service latency reduction
tremendously. Existing data placement solutions have often assumed the prior distribution of data requests or discovered it via trace
analysis. However, data placement is a difficult online decision-making problem faced with dynamic network conditions and
time-varying user request patterns. The conventional static model-based solutions are less effective to handle the dynamic system.
With an overall consideration of data movement and analytical latency, we develop a reinforcement learning-based framework
DataBot+, automatically learning the optimal placement policies. DataBot+ adopts neural networks, trained with a variant of Q-learning,
whose input is the real-time data flow measurements and whose output is a value function estimating the near-future latency. For
instantaneous decision making, DataBot+ is decoupled into two asynchronous production and training components, ensuring that the
training delay will not introduce extra overheads to handle the data flows. Evaluation results driven by real-world traces demonstrate

the effectiveness of our design.

Index Terms—Data center network, data placement, reinforcement learning, neural networks.

1 INTRODUCTION

URRENTLY, we have witnessed the explosive growth

of workloads driven by data-intensive applications,
e.g., web search, social networks, and e-commerce [2]. The
key challenge is to perform low-latency services with real-
time workloads. Cloud service providers, e.g., Amazon and
Google, have reported that a slight increase in the overall
service latency may cause observable fewer user accesses
and thus a considerable revenue loss [3].

The user-experienced service latency mainly consists
of the data movement (for both read and write) and
analytical latencies. In order to perform data analytics,
data items should be moved intensively among computing
or storage nodes, as they are not always stored at the
locations where the execution happens. It has been reported
that the storage locations of data items can influence the
completion duration of distributed analytics, because the
movement latency could be the major bottleneck when data
are frequently moved among storage nodes [4]. Various data
placement solutions have been proposed to find the optimal
data storage locations for data movement latency reduction.

Many previous works focus on analyzing various factors
that may influence the data movement latency with the
hand-crafted design of optimization models [5]-[7], [9],
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[10]. However, time-variant factors contribute to the latency,
including network latency, disk latency and other types of
latency (e.g., RAM, CPU, etc.) [11]. Therefore, these static
optimization model-based methods are not flexible enough
to handle a dynamic system with many uncertainties, such
as unreliable network links, changing user request patterns,
and evolving system configurations.

Moreover, all research efforts above only consider the
data movement latency for the storage location selection.
However, the user-experienced service latency is jointly
determined by data movement and the follow-on da-
ta analytics. Data analytics is the process of inspecting,
cleansing, transforming, and modeling raw data to discov-
er useful information for decision-making. Different data
analytics frameworks (e.g.,, MapReduce [12], Dremel [13],
and Spark [14]) have been proposed to analyze large
volumes of data. For a particular analytical task at a
certain scale, the analytical latencies could be different with
various frameworks, e.g., tens of minutes for MapReduce,
several seconds for Dremel, and sub-seconds for Spark.
The analytical latency influences the overall service latency,
which should be considered in the data placement problem.

Unlike previous solutions, a generic learning-based
framework DataBot+ is proposed, which automatically
optimizes the data placement policy with no need for future
dynamic information. The investigated data placement
problem can be considered as a finite Markov Decision
Process (FMDP) as (1) the number of nodes for data storage
is limited; (2) each data placement action is independent,
and the performance only depends on the current states
and placement decisions. Hence, the model-free ()-learning,
which is proven to find the optimal action-selection policy
for any given FMDP [15], is used in this work. DataBot+
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can be considered as an agent interacting with the complex
environment. This agent selects the storage locations of
data items and collects the feedback from the environment,
including the current state of request patterns, network
conditions, and the resultant end-to-end performance
metrics (e.g., the read /write and analytical latencies) due to
these actions. Data items with short task execution duration
are assigned with higher priorities to optimize the data
movement latency, such that the user-experienced latency
can be reduced. Through trials and feedbacks, DataBot+
learns the optimal storage locations of data items.

Although as a promising technique, -learning may suf-
fer from the curse of dimensionality and the consequently
slow convergence with the increasing scale of state/action
space. Therefore, a neural network (NN) is maintained
in the learning-based framework, approximating to the
optimal results with high efficiency and accuracy. Given the
current state information as input, NN learns to output the
expected rewards of data placement actions. The resultant
data read /write and analytical latencies are then utilized as
rewards to train the recurrent model, outputting better data
placement policies over time.

As the major purpose of our design is to make instan-
taneous decisions, it must be ensured that the recurrent
NN training will not incur extra latency to handle the data
flows. The learning-based framework is then decoupled
into two asynchronous components, i.e., the production and
training system, in the implementation. The online decision
making and offline training in parallel change the traditional
workflow of reinforcement learning (RL), which requires
updating the model after each decision. Therefore, DataBot+
makes instantaneous decisions to query write locations
only with the newly trained NN, without introducing
extra overheads. The main contributions of this paper are
summarized as follows:

1) A generic framework is proposed to learn the
optimal data placement policy without assuming
the prior request distribution or future dynamic
information.

2) Both data read/write and analytical latencies are
considered in the storage location selection. Data
items with short analytical latency are with higher
priorities to optimize the data movement latency.

3) With the increasing number of states/actions, RL
is integrated with NN to achieve a quick ap-
proximation. Moreover, the online decision making
and offline training overcome the deficiency of the
framework in delaying the request handling.

4) Driven by real-world I/0O traces, large-scale evalua-
tions demonstrate that DataBot+ can lower the user-
experienced latency of data service by about 24%.

The rest of this work is organized as follows. Section 2
surveys the related work. Section 3 presents the system ar-
chitecture of the data placement problem. Section 4 provides
the design details of the learning-based data placement
framework DataBot+. Section 5 evaluates the performance.
Section 6 draws the conclusion and lists future work.

2 RELATED WORK

Existing research efforts have indicated that data placement
can enhance the data locality to provide better read/write
performances in data-intensive systems. Assuming that the
data requests can be predicted accurately, Ren et al. [6]
formulated the data purchasing and placement as an in-
teger linear programming problem and designed a close-
to-optimal solution to jointly reduce the service cost and
latency. By analyzing the workload features, Jalaparti et
al. [16] proposed an offline scheduling scheme to jointly
places data and tasks to significantly improve the network
locality. Through trace analysis, Agarwal et al. [19] proposed
Volley, an automated data placement scheme to place
data items near end users. Cui et al. [20] constructed a
tripartite graph to formulate the data placement problem
and proposed a genetic solution to reduce data traffic
and latency in clouds. Assuming data request traffic is
fairly steady for a certain time, Yu et al. [7] proposed
a hypergraph-based data placement scheme among geo-
distributed data centers. As a follow-up work, Yu et al. [8]
proposed a sketch-based solution for hypergraph sparsi-
fication, reducing the algorithm running time. However,
all listed previous studies are offline solutions without
considering the dynamic information of the system.

As an online scheme, Steiner et al. [17] placed the data
items used in the same task to the same location, reducing
the inter-rack traffic and task completion time. Chowdhury
et al. [18] selected the server with low occupancy links
as the storage location of data write flows to lower the
task completion time. However, the neglect of the following
data read requests may detrimentally influence future read-
related performance. Unlike existing solutions, DataBot+
considers both the read/write and data analytical latencies,
and uses RL to adaptively learn a better data placement
policy with no future assumption about the user requests.

Our work is related to the idea of combining RL and
NN to solve complex online decision-making problems [21],
[22], but we focus on the data placement problem in the
data center network (DCN). Mao et al. [23] used deep
reinforcement learning to solve the resource management
problem. However, they optimized the expected value of a
manually designed objective function on the basis of the
reward. Different from this study, Mirhoseini et al. [24]
directly used the application execution time as the reward
of RL to optimize the device placement with no need
of designing intermediate cost models. By collecting the
flow level performance metrics in real time, Nie et al. [25]
proposed to use group-based RL method to reduce the TCP
response latency. Chen et al. [26] developed a two-level
deep reinforcement learning system to handle the flow-
level traffic optimization. Motivated by previous studies, the
early version of our work [1] used end-to-end performance
metric as the reward to reduce the overall service latency in
the DCN. Metrics such as measured read/write latencies
are easier to obtain at lower costs when compared with
link-related metrics. DataBot+ extends the scenario in [1]
by addressing the considerable influence of data analytics
on data placement.
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3 SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we describe the architecture of the storage
system and identify the major challenges of the data
placement problem.

3.1 System Architecture

The architecture of the storage system is shown in Fig. 1.
A set of storage servers or nodes N (with size |[N| = N)
is deployed in the distributed storage system. All data
items are distributed among storage servers. Each storage
server also has computational functions for data analytics.
Analytical applications involving multiple data items may
require the data movement among storage servers. All
servers are connected via a DCN. In order to design a
generic data placement solution, we do not rely on any
specific DCN topology. Note that our design is only on the
basis of the end-to-end measurements of data flows. Our
design can support any arbitrary DCN topologies, e.g., the
tree-based Clos and Fat-tree, the recursive DCell and BCube,
or the flexible Helios and cThrough [27].

Just as in existing systems [28], a centralized metadata
server is employed to handle the data storage locations. Let
M represent the set of all data items (with size |M| = M),
which can be files, blocks or tables in the system. Let x,,
denote the file size of data item m, m € M. Each data item
is assigned with a unique hashtag, i.e., the hash output using
the index of the data item as the input. When a data item
is written into the system, the metadata server maintains
the mapping between the hashtag and its storage locations.
When an application on a storage server needs to retrieve a
data item, it first asks the metadata server where the storage
location is through the hashtag. This design ensures that the
data storage location is flexible and can be changed with no
extra data movement overhead.

As shown in Fig. 1, the metadata server also captures the
service logs of the data requests through the state monitor
module. As the data request could be read or write, the
format of log entries is defined as

)

W]
’ lij,m

{ (TS, Src, Dst (R gA ), if Request type = Read,

1 Ygg,mo Y jm
(TS, Src, Dst ), if Request type = Write,

where TS is the timestamp. Src and Dst are the source and
destination nodes of the requests. If the request tﬂae is Read
for data analytics, the end-to-end read latency Rl and the

follow-up analytical latency l]@n are included, where 7, j are
the source and destination server, respectively, 7,7 € N.

Otherwise, if the request type is Write, the write latency [ W)
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Dynamic environments Service latency

Update data [ Network conditions } Write
placement [ Request patterns } Read/analytics

[ State
. J Reward

[ Q-learning
T Q-function approximation

Action [ Neural networks H

Fig. 2. An overview of the RL-based data placement.

is recorded. The metadata server has all the information by
itself except the latencies. Therefore, it is only necessary to
report ll[?}m, ZJ[A,],L and lz[\]Nln from the storage servers.

The storage system updates the data storage locations
when users generate data write requests. For the data-
intensive system where the data items are frequently fetched
and updated, the proposed learning system is adaptive to
the network dynamics. However, for some read-intensive
data items with rare writes, hotspots may occur due to
the fluctuation of user request patterns. In order to further
reduce the data read latency, the storage system can period-
ically issue “pseudo” write request (i.e., the request issued
by the system, not users) to mitigate hotspots. In each time
interval with length ¢, if the data item has not been updated
by users, a “pseudo” write operation is executed to update
the storage locations. Note that issuing a “pseudo” write
request is not an actual data write operation. It triggers
the system to recalculate the storage locations of read-
intensive data items with rare writes. In this design, extra
system overheads introduced by periodical “pseudo” write
operations are limited.

3.2 Problem Statement

Due to the non-negligible data movement latency, the
storage locations of data items can influence the finish time
of distributed analytical tasks. In order to perform low-
latency analytical services, the data placement problem can
be clarified as follows: how to select the optimal storage
locations among all available servers when a data item is to
be written or updated?

In the DCN, the service latency includes the data move-
ment latency and the data analytical latency for computing.
Moreover, the data movement latency is the sum of a
number of components, including the transmission, prop-
agation, processing and queuing latency in the network.
It is hard to obtain a precise latency model of the entire
system faced with the dynamic scenario, e.g., the changing
network conditions and user request patterns. Hence, a
generic solution RL is adopted to solve the data placement
problem. With RL, the placement of data items can be
considered as an agent interacting with the environment
and learning the underlying model through the feedback.
Unlike the traditional solutions aiming at formulating the
mathematical latency models, the used RL chooses an
alternative, which is to purely fit with the statistical patterns
of the dynamic environment.
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4 ()-LEARNING-BASED DATA PLACEMENT

In this section, DataBot+ is presented, which is basically
a ()-learning-based solution, to solve the data placement
problem. @-learning is a classic model-free RL technique,
which has been demonstrated to find an optimal policy for
any given FMDP. The design overview of DataBot+ is first
presented, followed by the design details.

4.1 Design Overview

The design overview of DataBot+ is shown in Fig. 2. The
main principle of the ()-learning-based data placement can
be described by the maintained Q-function:

Q : State(S) x Action(A) — Reward(R).

The dynamic information of the storage system (State S)
can be learned through intensive data flows to understand
which data item should be placed on which node (Action .A)
so that the corresponding service latencies can be reduced.
The observed read/write and analytical latencies are then
used as Reward R to train the recurrent model. In this way,
DataBot+ outputs better data placement policies over time
in the long term.

More specifically, before a data item m is written into
the storage system at time ¢, its storage locations are chosen
according to the current state s and the data placement
policy m, s € S. Then, the action a is executed to place data
m to that location, a € A. Until data item m is updated at t,
the latencies of the last written at ¢ and the following read
and analytical operations between ¢ and ¢’ can be measured.
The weighted sum of the read /write and analytical latencies
is used as the immediate reward r; of the action a. After the
update operation at ¢/, the system jumps to another state s’.
According to [29], the immediate reward r; at time ¢ still
has an impact on the future moments. The optimal Q-value
function Q*(s, a) is the maximum expectation of the long-
term reward:

N _ t _ _
Q (s,a)—m;:tXE ;)'y ri|so =s,a0 =a,7|, (2

where v € (0,1) is a discount factor. Q*(s,a) can be
achieved through the Bellman equation as follows

@(s.0) =B r 4y Qs sa] . O

As shown in Fig. 2, future rewards may be affected by
many factors in a dynamic environment, such as network
conditions and request patterns. The classical RL methods
based on temporal differences [30] fail to guarantee a fast
convergence to the optimal solution. To solve this challenge,
the NN is deployed to approximate the Q-function with
high efficiency and accuracy.

4.2 ()-Function Design
4.2.1 States

The key feature of DataBot+ is that the data placement deci-
sions are made only based on the end-to-end measurements
of data flows, i.e., the measured read/write latencies. Five
categories of state information are included in s, which can
be derived from the service logs.

4

Network Conditions: The first category is the network
condition, which drastically affects the objective of reducing
the read /write latencies:

{ R Wi

ij 0 ig

ZJGN} 4)

where LE?] and LE\JN] are the average latencies of read/write
operations on each pair of servers. The link-based metrics,
e.g., bit error rates, are not considered as data placement
happens on the application layer. The source/destination
of the data flow, not the path or links, is chosen in this
paper. Note that the measurement of the link-related metrics
would introduce an extra overhead when compared with
the end-to-end method. Furthermore, unlike the link-related
measurements, the end-to-end method can support any
arbitrary data center network topologies. However, our
design can coexist with any underlying link-based or path-
based flow scheduling.

Then, the real-time network condition is constructed
from the logs in (1). Using lt . TXV] and data size x,,, the Expo-
nentially Weighted Moving Average (EWMA) method [31]
is adopted to estimate the average read/write latency per

unit size of data LE ]/ ] . Specifically, after a data read /write

operation, LE j/ Vis updated by
R/W i w
LM = a2y (1 ) LM, 6)

where o, is the discount factor to lower the importance of
the previous data requests. The advantage of EWMA is that
it only needs O(1) space to maintain the prediction for each
pair of storage servers.

Data Analytical Latency: The second category is the data
analytical latency

{Lh.ient, ©6)

where L[ ] is the estimated analytical latency of data m on
the destmatlon server j. The analytical latency is determined
by the task type. Computation-intensive tasks generally
need more analytical time. Moreover, the analytical latency
is also affected by the assigned task priority and the
computing workload level of the server. Based on the I
in (1), EWMA is also used to estimate the analytical latency
of data m on each server

L = ol + (1 =o)L ?)

Note that the storage location i of data item m does
not influence the analytical latency on the computing
server j. This means the analytical latency cannot be
directly optimized with the data placement scheme. How to
reduce analytical latency is beyond the scope of this paper.
However, the analytical latency should also be considered in
the data placement problem as it has non-negligible impacts
on the overall user-experienced service latency.

Request Patterns: The third category is the patterns of
data requests

(S, P N EM i e N}, ®)

which contains: 1) read rate to data item m from source
server i, F, p 2) write rate to m from ¢, F (W 3) read rate to

1,m’ zm/
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Fig. 3. An example of the weight function f(lLR] , l][DA]).

all data items from ¢, ﬁi[R] ; 4) write rate to all data items from
1, E[W]. The request patterns reveal how analytical tasks
are generating workloads to the storage system, which are
the primary cause of the network traffic. With the request
information to all data items and the specific data, our
design can make a better decision to select storage locations.

The Discounting Rate Estimator (DRE) method [32] is
used to construct real-time request pattern information. A
counter is maintained for each item in (8), which increases
with every read/write operation on each pair of servers,
and decreases periodically with a ratio factor a,. € (0,1).
The benefits of DRE are as follows: (1) it reacts quickly to
the changes of the request patterns; (2) it also only requires
O(1) space and update time to maintain the prediction for
each counter.

Data size: The fourth category is the data size x,, as it
affects the read /write latencies of data m.

Source locations: A 0-1 vector is introduced in state s
to indicate whether each storage server is the source of the
data write operation or not. The number of data replicas
is denoted by k . So we have k servers being 1 in this 0-
1 vector. This category should be included as the source
locations of the data flow will influence the latency of the
write operation.

Each data item has a state with the same size. Given the
server number NN, the size of state space is

|s| = 2N? + 6N + 1 = O(N?). )

From (9), the number of data items M will not influence
the complexity of the learning-based storage system.

4.2.2 Actions

The action set a is also a 0-1 vector, which decides the
destination locations of the write operation, a € A. Similar
to the source locations, we have k servers being 1 in the
action set for each data item.

4.2.3 Rewards

The main purpose of DataBot+ is to achieve a low-latency
service with proper data placement. The read /write and an-
alytical latencies are influenced by time-varying factors. The
measured latencies, which include these factors, are directly

1. Similar to the widely used Hadoop Distributed File System
(HDFS) [33], the replica number is assumed to be the same for each
data item. The data item itself and its replicas are not differentiated in
this work, so all of them are considered as data replicas then.

Read latency

Analytical latency

[A] _
li’m = 200ms

Data item m i tee J

Storage server

wi_ . S Rl _
lim = 200ms [ji,m = 200ms
w] _ ;
lim = 100ms Write latency

Fig. 4. An example of the storage location selection between server ¢
and j for a data item m when the data read/write and analytical latencies
are considered.

utilized to derive the immediate reward. The reward r; is
defined as the weighted sum of latencies measured during
time period [t,t"), where t is the time of writing data m and
t’ is the time of updating the same data for the next time:

1 1 1
re= w (1w = 3 e R, (10)
where [V is the write latency at time ¢, and o is a pre-

defined positive number 2. P represents the set of all read
operations to data m in [t, '), and l,[)R] is the latency of the
read operation p € P 3. As the importance between read and
write may be different in various scenarios, the parameter
w € (0,1) is introduced to make the tradeoff. Moreover,
f (l,[,R],l][gA]) is also a weight function which is defined as
follows:

Rl JIAly — ¢
f(li)]vl;])*m7 (11)
where c is also a pre-defined positive integer, and ZLA] is
the analytical latency *. Fig. 3 illustrates an example of the
weight function with the variation of c. Assuming the data

read latency lj[,R] is 200 ms, the value of the weight function

decreases with the increase of analytical latency ZI[,A]. This
means that the data item with a lower analytical latency
has a higher priority to minimize the user-experienced
service latency of data read. In contrast, the data item with
longer analytical latency is more focussed on the data write

operation. In the extreme case when l,[)A] > l,[,R], according
to (10), only the data write will be considered. A server with
fewer data requests may be selected as the write location to
minimize the write latency. In this way, the overall network
congestion can be eased to benefit the latency reduction of
other data items with short analytical latencies.

Moreover, Fig. 4 illustrates an example of the storage
location selection for a data item m. With no data repli-
cation, m can be written into storage node ¢ or j with
the write latency of 200 ms and 100 ms, respectively. The
read latencies are assumed to be 200 ms if m needs to

2. The positive number o is introduced to prevent Z[R% — oo when
1IR/WI = 0.

3.1f no data read happens in [¢,¢'), i.e, P = &, only data write is
considered, r¢ = w - l[LW]

4. Please note that not all user-generated requests will incur data

analytics after data movement, e.g., pre-processed data access. If no

analytics is incurred, i.e., lLA] = 0, the weight function f (lLR] , l[pA]) =1

According to (10), only data read/write latencies will be considered
and optimized in this case. Therefore, the proposed DataBot+ can be
applied to various scenarios with or without data analytics.
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be fetched from the storage node (¢ or j). The follow-
up analytical latencies of m at node ¢ and j are 200 ms
and 5,000 ms, respectively. For the read-optimized scenario
w = 0.2, without considering the data analytical latency,
node j will be selected as the storage location to maximize
the reward (with ¢ = 50 and ¢ = 0.1). The overall service
latencies of the analytical tasks at node ¢ and j are 400 ms
and 5,000 ms, respectively. In contrast, by considering the
analytical latency in the reward function, our design tends
to reduce the data movement latency of the task with short
analytical latency. Therefore, node ¢ is selected as the storage
location. The service latencies will be 200 ms and 5,200 ms,
respectively. This means that the service latency of the long
analytical task is only increased by 4%. In return, the service
latency of the short analytical task can be reduced by 50%.
This example shows the benefits of the reward function
design.

4.3 Asynchronous Implementation

Then, we show how to reduce the size of state space caused
by the number of servers IN. For Q-function approximation,
an NN is maintained in the Q-learning-based system. Fig. 5
illustrates the structure of NN, which contains three kinds
of layers, i.e., the input layer, hidden layers, and the output
layer. Each layer has a number of computing neurons. Given
the current state s as input and the reward of ()-learning
ry as output, the NN updates the weights of connections
0 between layers of neurons. With the training process
of approximation, the NN learns the weights to output
the expected rewards of data placement actions with high
efficiency and accuracy.

The traditional workflow of RL requires updating the
model after each decision [21], [30]. The recurrent training
process will introduce extra latencies to handle the requests,
which are undesirable for data center applications. Unlike
previous studies, the design objective is that DataBot+ can
make instantaneous decisions for the requests of querying
write locations. As illustrated in Fig. 6, the learning system
is decoupled into two components, i.e., the production
and training system, in the implementation. They work
asynchronously to ensure that the training process of NN
will not introduce extra overheads to handle the data
requests in the production system.

Algorithm 1 Production Algorithm

Input: NN weight vector 6, state s, €.

Output: Data placement action a;, reward ry, state s;.
1: while A request queries the write destination at ¢ do
2:  Generate a random number 7 € [0, 1];

3:  if n < e then
4 ay < argmax F (s, at, 0);
at€A
else

5

6: Randomly select action a} € A;

7. end if

8. if Replay memory R is full, |[R| = R then

9: Discard the earliest tuple in R;

10:  end if

11:  Store the tuple (s, at, 8141, ) in replay memory R;
12: end while

4.3.1 Production System

As shown in Fig. 6, the production system serves the
requests for updating the storage locations via the decision
NN. Given a state s; as input and the current weight
vector 6, the maintained NN can output a vector F(s;, at, 0)
(with size |F(s¢,at,0)| = N). Each element in F(s¢, at, 0)
represents the estimated reward of writing the data item to
the corresponding servers.

Algorithm 1 lists the pseudo code of the production
system. When a data write/update request is submitted to
the metadata server at time ¢, the e-greedy method is applied
here to select the action. Following the uniform distribution,
a random variable i € [0, 1] is generated. If < ¢, the action
ay that maximizes the output value of F (s, at, 0) is selected
to obtain a lower read/write latency. Otherwise, a random
action will be selected to search for the unexplored solution
space. When the storage locations are updated with action
at, the system is transitioned into a new state s;y;. The
reward r; can be observed at the end of time interval ¢. A
tuple

T = (3,5,&,5,8,54.1,7}) (12)

is stored for each update of the data storage location. All
tuples in a certain period constitute the replay memory R,
which can be used for NN training in the training system °.

4.3.2 Training System

The training system replays the tuples in the relay memory
R periodically to train an updated weight vector % for
the future decisions in the production system. Algorithm 2
lists the pseudo code of the training system. The mini-batch
stochastic gradient descent (SGD) method [29] is adopted
to update the weight vector, minimizing the difference
between the NN output and the target value. According to
the observed reward r; in (10), the target value is calculated
as follows

Y =1+ Wrgliicf(stﬂ,atﬂ, 0). (13)

5. Denote R as the maximum size of the replay memory. If the pool
of the replay memory is full, i.e., |R| = R, the earliest tuple in R will be
discarded. This ensures only the latest tuples will be stored to reflect the
current network conditions, analytical latencies and request patterns.
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Fig. 6. Production and training system of DataBot+.

Algorithm 2 Training Algorithm

Input: NN weight vector 8, replay memory R.
Output: Updated weight vector 8.
1: if Replay memory R is full, |R| = R then
2:  Shuffle all tuples 7 € R to generate mini-batches 5;
3: forepochi €7 do
4 for each tuple 7 € R do
5: Yp T + Y glii( -7:(3t+17 iy, 0),
6 end for
7 for each mini-batch b € B do
8 Update 87 to minimize (14);
9: end for
10: 0+ 07t;
11:  end for
12: end if

With SGD, all tuples in R are split into several subsets,
i.e., mini-batches B. For each mini-batch b € B, the weight
vector 8% is updated by the gradient method to minimize
the difference between the expected reward and the output
of NN

E(s,0)~B [(y — ]—'(s,a,@"‘))ﬂ . (14)

In the training process, all mini-batches are trained with
multiple iterations to converge faster. The iteration is termed
as epoch i, ¢ € Z. The weight vector 0 of the decision NN
keeps stable before all records in R have been processed.
Then, after a complete round of processing, the weight
vector @7 of the training NN is transferred to the weight of
decision NN 6. This variation of the training process makes
the optimization objective more stable and therefore avoids
fluctuations to some degree.

Using the SGD training method, [34] proved that the
NN can converge to the global optimum at a linear rate
if the initial weights of NN are approximately balanced and
the initial end-to-end matrix has positive deficiency margin.
This ensures that the maintained NN can approximate to
the optimal results with high accuracy and efficiency.
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Fig. 7. The read/write request arrival rates of data items based on the
MSR Cambridge Traces are shown. The request distribution is biased
among 36 storage servers.

5 PERFORMANCE EVALUATION

Extensive evaluations driven by real-world I/0O traces, i.e.,
MSR Cambridge Traces [35], are conducted to evaluate the
performance of the proposed DataBot+.

5.1 Data Trace Description and Experiment Settings

MSR Cambridge Traces: These traces are gathered from
an enterprise data center at Microsoft Research Cambridge,
where data read /write requests are recorded from 36 servers
for a week. The arrival rates of the read/write requests
to all data items ﬁ',i[R/ Wl are shown in Fig. 7. The request
distribution is biased among 36 servers due to real applica-
tions. The hostname, request type (read/write), transferred
traffic size, and timestamp information are provided for
each request. For the reason of confidentiality, most publicly
available traces, including MSR Cambridge Traces, do not
specify the detailed data items for each request. The total
number of data items is assumed to be M = 10,000 in the
storage system. Similar to the previous studies [6], [7], the
request rates of data items Fi[R"{W] in server i follow a Zipf

distribution with ﬁ'i[R/ W= M FZ-[%W].

Furthermore, the short-lived tasks occupy most of the
tasks in the cloud analytical system [36]. An experimental
study of response time on Amazon EC2 illustrated that the
latency distribution has long tails [37]. A workload analysis
at Microsoft Bing also demonstrated that data analytical
latencies have long tail features [38]. Therefore, the data
analytical latencies are generated following the long tail
power-law distribution, which ranges widely from 50 ms
to 300 s [39].

Experiment Settings: The experiments are conducted on
a Dell XPS 15 9560 with an Intel(R) Core i7-7700 processor
running at 2.8 GHz. This machine features 16 GB of RAM
and an NVIDIA GeForce GTX 1050 graphics card. Mininet
is adopted to emulate the DCN, which can create a high
fidelity network running Linux-based applications [40]. All
nodes are implemented in a typical Fat-Tree topology with
3 layers of network switches. All link capacities in the
topology are set to 1 Gbps. At each storage node, a client
program is deployed to initiate the read/write requests
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TABLE 1
Average data read latencies in different analytical latency intervals (ms)

[ Interval of analytical Iatency [[ 50 ~ 200 [ 200 ~ 400 [ 400 ~ 800 | 800 ~ 1400 [ 1400 ~ oo |

[ Average analytical latency [[ 956 [ 2773 [ 5345 | 10593 [ 156283 |
HASH 200.2 199.0 200.5 202.5 202.5
commonlP 175.6 172.5 175.4 179.0 175.3
Sinbad 172.2 173.1 172.9 173.8 171.4
DataBot 155.2 154.3 156.9 157.3 155.4
DataBot+ 129.8 141.8 143.6 144.2 149.6
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(a) Average reward per action r¢

Fig. 8. Read-optimized scenario w = 0.2 with replica k = 3.

based on the MSR Cambridge Traces. To enhance the access
efficiency for intensive data flows, Memcached [41] module
is adopted as the end of data flows and caches data
items in RAM. In brief, each node has a client being the
request source and a Memcached being the destination. A
metadata server program is also implemented to handle
the control flows, whose modules include state monitoring,
write destination decision and NN training.

TensorFlow-GPU [42] is used as the learning platform to
deploy DataBot+. Keras [43] is used as the framework for
NN implementation. Multilayer perceptron (MLP) [44] with
one kernel is used as the structure of NN. Determined by (9),
the NN has 2,809 features in the input layer and 36 features
in the output layer. The NN is initialized based on [34] to
ensure the training convergence at a linear rate. Firstly, the
dimensions of hidden layers should be at least the minimum
dimension of the input and output layers. Therefore, three
hidden layers are deployed, which have 2,000, 1,000 and
400 neutrons, respectively. Then, the weight matrices are
initialized following the random Gaussian distribution with
zero means. In order to mitigate hotspots with “pseudo”
write, the time length ¢ is set to 30 s.

Performance Baselines: In order to evaluate the per-
formance of DataBot+, four baselines HASH, commonlIP,
Sinbad, and DataBot are investigated. HASH hashes data
items to storage nodes for load-balancing, which has been
widely used in the current distributed storage systems, such
as HDFS [33] and Cassandra [45]. commonIP [19] places
data items to the IP address that requests them the most.
As an online solution, Sinbad [18] leverages the network
flexibility to avoid congested links. Therefore, the network
hotspots can be eased in replica placement during data
writes. DataBot [1] was proposed in the conference version
of our paper without considering the influence of data
analytical latency.

(b) Average read latency

(c) Average write latency
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Fig. 9. Percentage of user-experienced latency reduction when
compared with the worst performance obtained by HASH in different
analytical latency intervals.

5.2 Experiment Results

To start with, the read-optimized scenario (weight w = 0.2
and replica k 3) is evaluated with the running time
of 3,000 s. According to the evaluation results, 3,000 s
is a long enough period to obtain a steady performance
improvement ratio. The constant c in the reward function
is set to 5. The latest R = 2,000 tuples are captured
in the replay memory and trained with |Z| = 6 epochs
and |B| = 300 batch size. Each round of training needs
8.498 s on average before the updated weight vector 6©
is transferred to the decision NN in the production system.
This means that without the asynchronous implementation,
the NN training will introduce extra 8.498 s of latency
to the data write requests, which is undesirable for data
center applications. This demonstrates the benefits of the
asynchronous implementation.

Fig. 8(a) illustrates the average reward per data place-
ment decision. In the beginning, the read/write latencies
decrease as Memcached should be warmed up with data
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items. Hence, the average rewards of Sinbad, commonIP
and HASH increase for the first hundreds of seconds, and
remain fairly stable then. In comparison with the heuristic
solution, DataBot+ and DataBot learn better data place-
ment policies through trials and feedbacks continuously.
The average reward is in an increasing trend with the
learning-based process. After multiple rounds of training
for convergence, the performance improvement ratio with
DataBot+ and DataBot becomes stable after 1,000 s.

Fig. 8(b) and (c) show the average read/write latencies
measured in every 200 s of the experimental period. HASH
can be intuitively treated as random storage location se-
lection regardless of the user request patterns or network
conditions. Therefore, for the last 1,000 s, HASH incurs
the highest read/write latencies at about 201.0 ms and
249.9 ms, respectively. commonlIP places the data to the
storage servers which request them the most. However, with
the more queuing delay caused by the biased distribution
of data requests among servers, the average read/write
latencies are 175.6 ms and 226.2 ms, respectively. Sinbad
places the data to the server with low occupancy links with
the lowest write latency 179.6 ms. However, the following
data read is neglected with the read latency 172.4 ms.

With the learning process for a better placement policy,
DataBot+ and DataBot achieve lower read latencies than
HASH, commonlP, and Sinbad. As our previous work,
DataBot treats all data items equally to reduce the average
read /write latencies to 156.8 ms and 211.3 ms, respectively.
In contrast, as shown in Table 1, DataBot+ tends to reduce
the data movement latency of the data item with a short

analytical latency. All data items are divided into 5 different
groups according to the data analytical latencies. Without
considering the analytical latency, the average read/write
latencies achieved by HASH, commonlIP, and DataBot are
barely the same for all data groups. According to (10), with
DataBot+, data items with shorter analytical durations are
assigned with higher priorities to reduce the read latency.
Data items with long analytical latencies pay more attention
to reduce the write latency by selecting a server with
fewer data requests as the write location. In this way, the
overall network congestion can be eased, which also benefits
the read/write latency reduction of other data items with
short analytical latency. Specifically, as shown in Fig. 9,
for data items with analytical latency ranging from 50 ms
to 200 ms, the user-experienced latency of data read and
analytics can be reduced the most with DataBot+ (up to
23.8%). Furthermore, compared with DataBot, DataBot+
periodically issues “pseudo” write operations to mitigate
hotspots. The average read/write latencies of all data items
can be reduced to 141.5 ms and 193.9 ms, respectively.

Furthermore, as shown in Fig. 8, the performance shows
some variance due to 1) the fluctuations of the user request
patterns, and 2) the needed exploration with the e-greedy
method. The current data placement decisions may not
always yield the optimal data read/write latencies due to
the dynamic user requests and the exploration process. The
zigzag range becomes smaller with the learning process,
showing its converging adaptivity.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



Transactions on Cloud Computing

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2940953, IEEE

IEEE TRANSACTIONS ON CLOUD COMPUTING 10
'g 240 —m— Read latency . 5251 Epoch =2 5251 Batch = 30
= N -#- Write latency rile S Epoch = 4 S Batch = 100
z N ini > S —— Epoch =6 S —— Batch = 300
2 ] Training latency %) S 204 p S 201
g 220 S - —.— Epoch =8 - —.— Batch = 500
kS o105 z x
£ 200 R e ) E1s4 T1s
= Seeg---fmT [ 2 £ ES g
2 lg < o o
2 1804 £ 510 © 10
o o = 2
s s 8 E
& lg © ] |
S 1601 g 357 s °
g < o 9
Z u\././' < <
L 04 0] —
140 - . : . -7
1000 1500 2000 2500 300 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Replay memory size Time (s) Time (s)
Fig. 12. Impact of replay memory size |R]|. Fig. 13. Impact of epoch number |Z|. Fig. 14. Impact of batch size |3|.

5.3 Parameter Impacts

In order to fully evaluate the performance of DataBot+,
several factors which may affect the data placement process
are also considered. Compared with the worst performance
obtained by HASH, Fig. 10 and 11 show the percentage of
latency reduction for data items with short analytical latency
(ranging from 50 ms to 200 ms).

Write weight w: Fig. 10(a) and 11(a) illustrate the impact
of write weight w. The average read/write latencies with
HASH, commonlP, and Sinbad remain roughly stable as
w is not considered in the heuristic solutions. When w
increases from 0 to 1.0, the priority of write requests with
becomes higher and higher for DataBot+ and DataBot. With
DataBot+, the average write latency is decreased by 6.72%
(from 202.3 ms to 188.7 ms), while the read latency is
increased by 37.42% (from 126.4 ms to 173.7 ms). For the
read-optimized scenario (w = 0), compared with HASH,
the user-experienced latency of data read and analytics with
DataBot+, DataBot, Sinbad, and commonlIP can be reduced
by 24.94%, 16.9%, 9.4%, and 8.32%, respectively. For the
write-optimized scenario (w = 1.0), compared with HASH,
the write latency can be reduced by 24.5%, 23.79%, 28.13%,
and 9.48% for DataBot+, DataBot, Sinbad, and commonlIP,
respectively.

Number of Replicas k: Data replication can enhance
the reliability, accessibility, and fault-tolerance of the data
service. When the replica number is increased from 1 to 7,
the network congestion due to read requests can be eased
with more options to access needed data. The average read
latency of DataBot+ is decreased from 151.2 ms to 103.6 ms.

Data writes are synchronous to provide strong consis-
tency in this work. Once a data item is updated, its storage
node acts as the source to synchronize the updated data
with all nodes having data replicas. The write latency is
increased from 195.3 ms to 218.9 ms as the data item must be
written into k different locations with more data write flows.
In the future work, the asynchronous writing model will be
investigated to choose the relay nodes among all storage
nodes, reducing the data write latency. Fig. 10(b) and 11(b)
illustrates that under the replication setting, DataBot+ can
choose better storage locations than other schemes with
lower data service latencies.

Constant c: As shown in Fig. 3, for a data item with
the same analytical latency, the importance of read request
in (11) goes up with the increase of c. This means that
a larger c indicates a higher priority of read requests but

with less concern for write requests. When c is increased
from 1 to 50, the average read latency with DataBot+
is decreased from 145.5 ms to 123.5 ms, while the write
latency is increased from 191.2 ms to 201.9 ms. In contrast,
the read/write latencies with DataBot, Sinbad, commonlIP,
and HASH keep stable without considering c. As shown
in Fig. 10(c), with the increase of ¢, DataBot+ achieves
more and more user-experienced latency reduction for the
data read and analytical operation. At the same time, the
reduction of data write latency will be decreased.

Replay Memory Size |R|: Fig. 12 illustrates the impact
of replay memory size |R|. When |R| is increased from
1,000 to 2,000, the learning system can approximate the
optimal solution more precisely with more tuples. The
average read/write latencies are decreased by 25% and
16.6%, respectively. In the meantime, the training latency
is increased from 7.117 s to 8.498 s.

When |R| is further increased from 2,000 to 3,000,
the training latency is increased rapidly from 8.498 s to
11.533 s. The adaptability of the learning system to network
dynamics decreases accordingly. The average read/write
latencies are increased by 7.2% and 6.4%, respectively.

Number of Training Epochs |Z|: The NN training and
the resultant performance of data placement are influenced
by the number of training epochs. Fig. 13 illustrates the
change of the accumulated reward with the variation of |Z|.
When |Z| is increased from 2 to 6, the accumulated reward
increases because more rounds of training processes lower
the difference between the expected reward of learning
and the output of NN. Nevertheless, when |Z| is set to
8, performance degradation can be observed due to over-
fitting. During the training process, even though the loss
function can be further reduced with more training rounds,
the obtained model may lose its generalization capability
for the future samples. Therefore, |Z| is set to 6 in the
experiments.

Batch Size | B|: The batch size determines how frequently
the weight vector 6 is updated during the training process.
As can be seen in Fig. 14, when |B] is set to 300, the highest
accumulated reward can be achieved due to the same reason
above. Fig. 13 and 14 suggest that a careful selection of the
training parameters can help to improve the performance
of the learning-based system. With these discoveries, we are
interested in finding a more systematic way to properly set
and fine-tune the parameters and to avoid over-fitting in the
follow-on work.
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6 CONCLUSION AND FUTURE WORK

In order to handle the uncertainties of the dynamic system,
this paper proposes a novel learning-based data placement
framework DataBot+, to automatically learn the optimal
data placement policies. The NN is utilized to estimate the
near-future latency by training the weight vector with the
QQ-values, thus avoiding the complexity of the huge state
space and speeding up the convergence to the solution.
Data items with short analytical latencies are more sensitive
to the variation of the data movement latency. They are
assigned with higher priorities to maximize the reduction
of the user-experienced service latency. Furthermore, two
asynchronous components, i.e., the online decision making
and offline training, are integrated seamlessly to ensure
that no extra delays will be introduced to handle the
intensive data flows. Performance evaluation demonstrates
that the user-experienced service latencies are reduced
when compared with the state-of-the-art solutions. For the
scalability in the future work, the distributed RL solutions
can be explored to further speed up the convergence of
the learning process in the data placement problem, with
no need of aggregating raw data to a centralized metadata
server for training.
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