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Abstract—Erasure codes have beenwidely used to enhance data resiliency with low storage overheads. However, in geo-distributed

cloud storage systems, erasure codesmay incur high service latencyas they require end users to access remote storage nodes to retrieve

data. An elegant solution to achieving low latency is to deploy caching services at the edge servers close to end users. In this paper, we

propose adaptive and scalable caching schemes to achieve low latency in the cloud-edge storage system. Based on themeasured data

popularity and network latencies in real time, an adaptive content replacement scheme is proposed to update caching decisions upon the

arrival of requests. Theoretical analysis shows that the reduced data access latency of the replacement scheme is at least 50% of the

maximum reducible latency.With the low computation complexity of our design, nearly no extra overheadswill be introducedwhen

handling intensive data flows. For further performance improvementswithout sacrificing its efficiency, an adaptive content adjustment

scheme is presented to replace the subset of cached contents that incur the aforementioned performance loss. Driven by real-world data

traces, extensive experiments based on AmazonSimple Storage Service demonstrate the effectiveness and efficiency of our design.

Index Terms—Cloud-edge storage systems, erasure codes, caching

Ç

1 INTRODUCTION

IN the current era of big data, we have witnessed the
explosive growth of workloads driven by the increas-

ing demand for data-intensive applications, e.g., social net-
works, artificial intelligence, and Internet of Things (IoT).
For example, IDC predicts that the amount of data gener-
ated by IoT devices will reach 73.1 zettabytes by 2025, grow-
ing from 18.3 zettabytes in 2019 [1]. Such applications
require scalable, highly available, and cost-effective storage
systems. Modern distributed cloud storage systems, such as

Amazon Simple Storage Service (Amazon S3) [2], Hadoop
Distributed File System (HDFS) [3], and Microsoft Azure [4],
use data replication and erasure codes to improve data reli-
ability and availability.

Erasure codes, e.g., ðK;RÞ Reed-Solomon (RS) code,
encode the data item into K data chunks and R parity
chunks for redundancy. The coded chunks are placed at
various storage nodes to achieve R-fault tolerance as the
original data item can be reconstructed from any K out of
K þR chunks. Compared with traditional data replication
schemes which entail a minimum of 2� storage redun-
dancy, erasure codes can significantly reduce storage over-
heads while retaining the same level of reliability [6], [7].
However, erasure codes may incur high access latency,
especially in geo-distributed storage systems as end users
need to contact remote storage nodes to reconstruct the
data [8], [9]. As the neededK chunks are requested in paral-
lel, the access latency is determined by the chunk placed at
the farthest storage node. The latency dramatically affects
user satisfaction. Amazon has reported that 100 ms of addi-
tional latency can decrease its revenue by 1% [10].

With the development of the geo-distributed cloud storage
system, major content providers, e.g., Amazon, Akamai, and
Google, deploy edge servers to achieve low latency [9]. End
users issue requests to their nearest edge servers, which have
cached a pool of popular data items. Compared with tradi-
tional caching services inside remote storage nodes or data
centers [8], [11], [12], the resources of the edge server, e.g.,
computational capability and cache capacity, are typically
limited [13]. Note that caching at the edge servers also has
unique benefits: 1) the edge servers can be flexibly deployed
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at the network edges in an on-demand manner, and 2) the
data access traffic and latency can be further reduced.

Without considering erasure codes, existing caching poli-
cies need to decide which data items should be cached (i.e.,
working “at the data item level”) for cache hit ratio maximi-
zation [11], [14], [15], service latency minimization [12], or
load balancing [16], [17]. However, the application of cach-
ing to coded storage systems faces practical challenges. Due
to the presence of data and parity chunks, the caching
scheme needs to decide 1) which data items to cache, and 2)
how many chunks to cache for each selected data item? To
serve end users across the globe, spreading the coded
chunks of each data item across more storage nodes can
reduce the latencies of geographically dispersed requests [9].
Therefore, the network latency of fetching different chunks
varies as they are placed at geographically diverse sites.
Since the data request latency is determined by the slowest
chunk retrieval when they are requested in parallel, the
data chunk with higher access latency should be cached
first. However, preliminary experiment results in Section 3.2
show that caching more chunks may not proportionally
reduce the overall data access latency. Traditional caching
schemes at the data item level are not space-efficient to
achieve the lowest latency [19].

As the storage locations of coded chunks are not identi-
cal, the caching performance in terms of latency reduction
could be different for various data items. For a dynamic net-
work scenario, the network conditions and user request
rates may keep changing over time [5]. It is hard to obtain a
precise analytical latency model for the coded storage sys-
tems [18]. More importantly, in the big data era, existing
caching solutions, e.g., iterative optimization [8], [19], [20]
and graph-based schemes [21], may face the challenges of
long running time and large overheads to handle the
increasing scale of datasets. How to adaptively and effi-
ciently optimize the caching decisions for low latency in the
coded storage system that spans multiple geographical sites
is an important and challenging problem.

In this paper, we propose adaptive and scalable caching
schemes that are specifically designed for the coded storage
system. Based on the measured data popularity and net-
work latencies in real time, online caching schemes are
designed to determine which data chunks to cache upon the
arrival of data requests. The computation complexity being
sublinear to the size of the cache capacity ensures the scal-
ability of our design to handle intensive data flows. The
main contributions in this paper include:

� A novel adaptive content replacement scheme with
adaptivity and scalability is designed for the distrib-
uted coded storage system. The worst-case perfor-
mance guarantee of the proposed scheme is
provided via theoretical analysis.

� We obtain the subset of cached contents that incur
the performance loss in the replacement scheme.
Without sacrificing the efficiency, an adaptive con-
tent adjustment scheme is developed, replacing this
subset for further performance improvements.

� We deploy the experiment platform based on Ama-
zon S3. Extensive experiment results demonstrate
the high efficiency of the proposed caching schemes.

Compared with traditional caching schemes that
work at the data item level, caching at the data chunk
level can reduce the average data access latency by
up to 35.7%. Compared with the state-of-the-art
caching scheme for the coded storage system, our
design can reduce the computation overhead by up
to 84.57% while only incurring a performance loss
of 1.12%.

The rest of this paper is organized as follows. Section 2
summarizes the related work. Section 3 presents the model
of the distributed coded storage system and states the cach-
ing problem. In Section 4, the design of adaptive and effi-
cient caching is provided along with theoretical analysis. In
Section 5, the efficiency and performance of our design are
evaluated and substantiated with extensive experiments.
Section 6 concludes this paper and lists future work.

2 RELATED WORK

Data Replication and Erasure Codes. The key challenge
of distributed storage systems is to provide low-latency
services. Recent research efforts have suggested that data
replication can enhance data locality to reduce latency.
Chowdhury et al. [22] proposed Sinbad, a data replica
placement scheme that chose the storage nodes with
lightly loaded links as the data write locations, reducing
the end-to-end completion times of data-intensive tasks.
DataBot [5] adopted reinforcement learning to optimize
the data replica placement decisions in an online manner,
reducing the data access latency in a dynamic network sce-
nario. However, data replication inevitably incurs high
bandwidth and storage overheads.

Erasure codes have been extensively investigated in dis-
tributed storage systems as they can provide space-optimal
data redundancy. However, it is still an open problem to
quantify the accurate service latency for coded storage sys-
tems [19]. Therefore, recent studies have attempted to ana-
lyze the latency bounds based on queuing theory [18], [19],
[23]. These studies are under the assumption of a stable
request arrival process and exponential service time distri-
bution, which may not be suitable for a dynamic network
scenario.

Furthermore, prior work also focused on the design of
data request scheduling schemes to achieve load balancing
in coded storage systems [6], [7], [24]. Then, the data access
latency is reduced by the avoidance of congestion. These
scheduling schemes are suitable for intra-data center stor-
age systems as the network congestion dominates the
overall data access latency. Instead, we consider reducing
the data access latency through caching at the edge server
in the geo-distributed coded storage system. To be more
specific, this work minimizes the high latency of data
retrieval from remote storage nodes to edge servers (which
are deployed near end users) over Wide Area Networks
(WAN).

Caching in Coded Storage Systems. In geo-distributed
coded storage systems, caching for low latency has received
significant attention in recent years. Aggarwal et al. [19]
pointed out that caching partial data chunks had more
scheduling flexibility when compared with caching the
entire data items. Assuming the future data request rates
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are known beforehand, a heuristic algorithm was proposed
to reduce the latency with the performance no worse than
caching the entire data item. Al-Abbasi et al. [25] designed a
Time-To-Live Cache (TTLCache) policy to quantify and
jointly optimize the mean and tail data access latency in
coded storage systems. TTLCache can converge to a station-
ary point which may not be the global optimal solution.
Halalai et al. [8] designed Agar, a dynamic programming-
based caching scheme to achieve low latency in coded stor-
age systems. Agar was a static policy that pre-computed a
cache configuration for a certain time period without any
worst-case performance guarantees. As the caching configu-
ration is iteratively optimized for all data items, the scalabil-
ity of Agar is limited. In [20], we were the first to investigate
the optimal scheme to determine which coded chunks
should be cached at the edge servers for low data access
latency. Guided by the offline optimal scheme, an online
near-optimal scheme was also designed with the approxi-
mation ratio 1� 2K�1

C . However, the scalability of the online
near-optimal scheme is limited as its computation complex-
ity grows exponentially with the increase ofK.

Unlike previous studies, our design mainly considers the
adaptivity and scalability of caching schemes for the coded
storage systems. Compared with the state-of-the-art online
scheme in [20], the computation overhead of the proposed
caching scheme is reduced by 84.57% while only incurring a
performance loss of 1.12%.

3 SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we introduce the model of the geo-distrib-
uted cloud storage system with erasure codes, and then dis-
cuss how to reduce the data access latency with caching
services at the edge servers. The major notations used in
this paper are summarized in Table 1.

3.1 Geo-Distributed Storage System and
Erasure Codes

Fig. 1 illustrates the model of the geo-distributed cloud stor-
age system, which consists of a set of storage nodes N dis-
tributed across different geographical locations (with size
N ¼ jN j). Each storage node could be a data center in prac-
tice, which may consist of multiple storage servers. LetM
denote the set of data items stored in the system (with size
M ¼ jMj). The data items could be files, tables, or blocks in
practice. Similar to Hadoop [3] and Cassandra [27], all data
items have a default block size. Reed-Solomon (RS) codes
split each data item into K equal-sized fragments, i.e., data
chunks, create linear combinations of these fragments to
generate same-sized R parity chunks, and store them at dif-

ferent storage servers.1 The storage locations of data and
parity chunks are denoted by

mk ! i; k 2 f1; . . . ; Kg; i 2 N ;

mr ! j; r 2 f1; . . . ; Rg; j 2 N ;

�
(1)

which means data chunkmk and parity chunkmr are stored
at node i and j, respectively.2 The coded chunks should not
be placed at a single storage node since this will increase
the data access latency of end users far from that node.

In the presence of storage server failures, the data avail-
ability can be ensured by decoding the original data item
from any K out of K þR chunks. The decoding with parity
chunks will inherently incur considerable computation
overheads to the storage system. In the distributed storage
system with erasure codes, a read request is first served by
obtaining K data chunks to reconstruct the original data
item with low overheads [6]. The actions of fetching parity
chunks and decoding for data reconstruction are defined as
degraded read. The degraded read will be passively triggered
1) when the storage server storing the data chunks is
momentarily unavailable for read requests, or 2) to restore a
failed storage server. In this paper, the data write/update

TABLE 1
Notations

Symbol Definition

N Set of geo-distributed storage nodes, andN ¼ jN j
M Set of data items, andM ¼ jMj
K;R Number of coded data and parity chunks
mk,mr Coded data chunk and parity chunk of data

itemm
C Cache capacity at the edge server
T Period of data services
G Set of data requests in period T
gt
m Request to data itemm at time t, gtm 2 G

�t
m Number of cached chunks for data itemm at

time t
ft
mð�t

mÞ Discrete access latency function for data itemm
rtm Request rate for data itemm from end users
Q Total amount of reduced latency
ltmk

Average latency of accessing data chunkmk from
remote storage nodes

tm;k Reduced latency when k data chunks are cached
for data itemm

M̂ Set of cached data items
M̂0 Set of cache replacement candidates
Mi Unavailable data chunks when a server at node i

fails

Fig. 1. An illustration of the geo-distributed storage system with erasure
codes is shown. The coded storage system is deployed over N ¼ 6
Amazon Web Services (AWS) regions. For low latency data access,
edge servers are deployed to cache coded data chunks near end users
across the globe. The average data access latencies from remote stor-
age nodes to the edge server deployed at Victoria, Canada are labeled.

1. Other erasure coding schemes, e.g., Local Reconstruction Codes
(LRC) [28] with a low recovery cost, can also be applied in our solution.

2. To achieve low latency without increasing the storage costs, data
replication at the remote storage nodes is not adopted for coded chunks
in this paper. Our design is applicable to the scenario with data replica-
tion. The data request is served by fetching K data chunks from the
nearest storage nodes. Section 5.3 evaluates the impact of data
replication.
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process is not considered. This is because today many stor-
age systems are append-only where the data items are
immutable [6]. Data items with any changes are treated as
separate objects with new timestamps.

Erasure codes may incur high data access latency, espe-
cially in a geo-distributed storage system. The requested
chunks are obtained by accessing multiple remote storage
nodes. The high latency impedes the extensive application
of erasure codes. Existing storage systems, e.g., Windows
Azure, adopt erasure codes to archive rarely accessed
data [28].

3.2 Caching for Low Latency

Caching has been considered as a promising solution to
achieve low latency services [8]. As shown in Fig. 1, multiple
edge servers are deployed, each with an in-memory caching
layer to cache popular data items near end users. Due to the
scarcity of memory, the cache capacityC at the edge server is
limited. This means that we may not cache all data items in
the caching layer, i.e., C �M �K. In general, the caching
scheme works well for the scenario where the request pat-
terns across data items are highly skewed [26]. Facebook and
Microsoft have reported that the request frequency of the top
5% data items is seven times larger than that of the bottom
75% [29]. Intuitively, a fraction of data items with higher
request frequencymay benefitmore from caching.

Traditional caching schemes usually cache full copies of
data items [30]. However, in the coded storage system, cach-
ing at the data item level at the edge server may not achieve
the full benefits of caching. We demonstrate this through
experiments based on Amazon S3. As shown in Table 2, a
coded storage system is deployed over N ¼ 6 AWS regions,
i.e., Tokyo, Ohio, Ireland, S~ao Paulo, Oregon, and Northern
California. Each AWS region creates three buckets, each
of which denotes a storage server for remote data storage.
The distributed storage system is populated with M ¼
10; 000 data items. For the RS codes, we set K ¼ 6 and R ¼
3. The coded data and parity chunks are with a default size
of 1 MB [8]. For each data item, the coded nine chunks are
evenly distributed among eighteen buckets to achieve
load balancing. In particular, any chunks from the same
data item are not placed at the same server to guarantee the
R-fault tolerance. As noted in prior work [6], [26], the popu-
larity of data items follows a Zipf distribution. Furthermore,
three edge servers are deployed near the end users at vari-
ous locations around the world. The edge server uses a
thread pool to request data chunks in parallel. Memc-

ached [31] module is adopted at the edge servers for data
caching in RAM.

The data access latency includes the network latency
from remote storage nodes to the edge server, the data
reconstruction latency, and the network latency from the
edge server to end users. This paper focuses on investigat-
ing how the edge server caches data chunks from remote
storage servers to achieve low latency over WAN. For a
given city, the edge server is deployed in close proximity to
end users with low data access latency in the experi-
ments [12]. Compared with the high network latency over
WAN (in hundreds of milliseconds), the reconstruction
latency with data chunks and the network latency from the
edge server to end users are negligible. To serve more users
that are scattered around this city, more edge servers can be
flexibly deployed in an on-demand manner.

Table 2 shows the average latency of end users fetching
data chunks from geo-distributed storage nodes. Experi-
ment results confirm the positive correlation between physi-
cal distance and latency. For instance, the latency from the
storage node in S~ao Paulo to end users in Victoria, CA, is
much higher than that in Oregon. This is because the propa-
gation delay dominates and depends primarily on the phys-
ical distance of data transmission [32]. For data requests, the
latency is determined by the slowest chunk retrieval among
all chunks. As shown in Fig. 1, if data item B (including
data chunk B1–B6) is requested from Victoria in parallel,
the latency is about 479.3 ms as we need to fetch data
chunks B5 and B6 from the farthest storage node in Tokyo.

Then, considering data caching at the edge server, we
show the performance of latency reduction by gradually
increasing the number of cached data chunks for a data
item. In the experiments, only data chunks will be cached to
avoid degraded read. Let T denote the period of data serv-
ices. Let lti denote the real-time network latency from stor-
age node i to end users at time t, i 2 N , t 2 T . According to
the storage locations in (1), the average latency of sending
data chunkmk is given by

ltmk
¼ lti � 1ðmk ! iÞ; (2)

where 1ðmk ! iÞ indicates whethermk is placed at node i or
not, returning 1 if true or 0 otherwise, k 2 f1; . . . ; Kg. For
ease of notation, let us relabel the data chunks according to
the descending order of the data access latency, i.e., ltm1

�
::: � ltmK

. The data chunks with higher access latencies will
be cached first. In this way, the number of remote storage
nodes that end users must access can be progressively
reduced. Let �t

m denote the number of cached data chunks
for data item m at time t, �t

m 2 f0; . . . ; Kg, m 2 M. The dis-
crete latency function can be defined as follows:

TABLE 2
The Deployment of Storage Nodes Over Six AWS Regions and the Average Data Access Latency (In Milliseconds) From Remote

Storage Nodes to End Users at Three Different Locations

Storage node 1 2 3 4 5 6

Region Tokyo Ohio Ireland S~ao Paulo Oregon Northern California

Average latency (ms)
Victoria, CA 479.3 345.5 686.3 803.9 128.3 179.3
San Francisco, US 513.2 338.4 663.2 786.9 158.3 84.7
Toronto, CA 794.7 129.0 631.5 705.5 302.6 355.7
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ftmð�t
mÞ ¼

ltm1
; �t

m ¼ 0;

:::

ltmk
; �t

m ¼ k� 1;

:::

0; �t
m ¼ K:

8>>>>>><
>>>>>>:

(3)

Fig. 2 shows the average access latency of caching a dif-
ferent number of data chunks at the edge server in Victoria.
We have the following two observations:

� The access latency function ftmð�t
mÞ is monotonically

decreasing but nonlinear to the number of cached data
chunks. For a data item, caching more data chunks
may notmake the data access proportionally faster.

� The storage locations of chunks may be different for
various data items, e.g., data items A and B in Fig. 1.
For various data items, the access latency function
could be different. For example, for data item A, the
latency is reduced by 40.3% if three data chunks are
cached. For data item B, three cached data chunks
can reduce the latency by 62.6%.

As the values of data chunks to cache in terms of latency
reduction are unequal, traditional caching policies at the
data item level may not achieve the full benefits of caching.

3.3 Caching Problem Statement

Our objective is to minimize the data access latency over the
service period by determining the number of cached data
chunks for each data item:

min
�tm2N;m2M

X
t2T

X
m2M

ft
mð�t

mÞ � rtm

s:t: 0 � �t
m � K;X

m2M
�t
m ¼ C; (4)

where rtm denotes the request rate at time t. Constraint 0 �
�t
m � K ensures that the number of cached chunks for each

data item is less than the number of coded data chunks. As
C �M �K,

P
m2M �t

m ¼ C ensures that the cache capacity is
fully utilized for latency reduction. Then, the hardness of
problem (4) is examined from the following aspects:

� Experiments show that ft
mð�t

mÞ, e.g., the latency func-
tion of data item B, is both nonlinear and nonconvex.
Problem (4) is an integer programming problem
with non-convexity and nonlinearity. In general,

complex combinatorial methods are needed for an
efficient solution [33].

� In a dynamic scenario, the network conditions and
user requests, i.e., ft

mð�t
mÞ and rtm, are time variant. It

is a challenge to design adaptive solutions that can
react quickly to real-time changes.

For a large-scale storage system with uncertainties, the
caching scheme should be 1) highly efficient for a quick
caching decision, and 2) flexible to change the caching deci-
sion in an online manner. Therefore, it is imperative to solve
the caching problem efficiently and adaptively.

4 ADAPTIVE AND SCALABLE CACHING DESIGN

In this section, adaptive and scalable caching schemes are
presented based on the measured request rates and data
access latencies in real time. To begin with, we discuss why
the formulated caching problem with erasure codes is not
identical to the well-known Knapsack problem. Mature sol-
utions with theoretical analysis to the Knapsack problem
cannot be directly applied to the caching problem with era-
sure codes. Therefore, novel tailored schemes are needed
for the distributed coded storage system. Detailed theoreti-
cal analysis for the tailored caching schemes is also a non-
trivial task. Then, we consider the scenario without server
failure, where only data chunks are fetched from the remote
buckets or cached at the edge server. Furthermore, we
extend the proposed caching schemes to the case of storage
server failure.

4.1 Adaptive Content Replacement

Data Popularity. Exponentially Decayed Counter (EDC) [35],
[36] tracks an approximate per-object request count over a
time period, which is applied to predict the future data pop-
ularity information rtm in real time, t 2 T . Initially, rtm is ini-
tialized to 0. Whenever there is a read request for data item
m, Dm is updated first, which indicates the amount of time
since m was last requested. Please note that D is used by
many successful heuristics, such as Least Recently Used
(LRU) and its variants. Then, rtm is updated with

rtm ¼ 1þ rtm � 2�
Dm
ar : (5)

Compared with LRU which only considers the most
recent data request, EDC explores the tradeoff between
recency and frequency in data accesses. The parameter ar

determines the weight of recency versus frequency and it is
empirically set to 29 according to [36]. EDC can accurately
approximate the decay rate of data popularities, which has
been widely used in block storage caching [36] and video
popularity prediction [37]. Furthermore, EDC only needs
Oð1Þ space to maintain the request popularity information
for each data item.

Network Latency. The latency function ft
mð�t

mÞ is different
for various data items and could be time-varying. Therefore,
instead of formulating accurate mathematical latency mod-
els, the measured end-to-end latency is used to quantify the
benefits of caching. Let lti denote the real-time network
latency from storage node i to end users at time t. Similar to
the previous study [8], the Exponentially Weighted Moving
Average (EWMA) method [34] is used to estimate the

Fig. 2. Experiment results show the average access latency of caching a
different number of data chunks at the edge server in Victoria. The rela-
tionship between the number of cached chunks and the reduced latency
is nonlinear. The storage locations of data items A and B are shown in
Fig. 1.
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average network latency of data requests. Specifically, after
a data read operation, lti is updated by

lti ¼ al � lti þ ð1� alÞ � ii; (6)

where ii is the measured end-to-end latency of a data request,
and al is the discount factor to reduce the impact of the previ-
ous requests. The advantage of EWMA is that it only needs
OðNÞ space forN storage nodes at each edge server tomaintain
the prediction. The long-tested techniques EDC and EWMA
are used to estimate future data popularity and network
latency information with low implementation overheads.
Recent advances in future information prediction, e.g., Least
Hit Density (LHD) [15] and Hyperbolic [38], could also be
applied to our solution.

Let G denote the set of data requests in the service period
T . The caching decision is updated upon the arrival of each
request gt

m, gtm 2 G. Based on the latest measurement of
data access latency lti and request rate rtm, a ðK þ 1Þ-dimen-
sional array is maintained for each data item

ftm;0; tm;1; . . . ;tm;Kg ¼ f0; ðltm1
� ltm2

Þ � rtm; . . . ; ðltm1

� ltmk
Þ � rtm; . . . ; ðltm1

� ltmK
Þ � rtm; ltm1

� rtmg; (7)

where tm;k�1 ¼ ðltm1
� ltmk

Þ � rtm denotes the value of reduced
latency when k� 1 data chunks are cached. For example, if
chunk m1 and m2 are cached, lm3

becomes the bottleneck.
Without caching, the latency reduction tm;0 ¼ 0. If all K
data chunks are cached, the latency is reduced to 0 with
tm;K ¼ ltm1

� rtm. Due to the monotonic decreasing nature of
ft
mð�t

mÞ, problem (4) is equivalent to maximizing the total
amount of reduced latency

max
�tm2N;m2M

Qð�t
mÞ ¼

X
t2T

X
m2M

tm;�tm

s:t: 0 � �t
m � K;X

m2M
�t
m ¼ C: (8)

Due to the presence of erasure codes, problem (8) does not
belong to the well-studied 0-1 Knapsack problem, which
requires each data item in its entirety to be cached. For a data
item, each data chunk cannot be treated individually as the
latency is progressively reduced with more cached chunks.
Furthermore, problem (8) differs from Fractional Knapsack
due to 1) the nonlinearity between the fraction (data chunk)
and its value (latency reduction), and 2) the finite number of
fractions for a data item. Therefore, mature solutions for
Knapsack problems cannot be directly applied to problem (8).
In this section, to obtain the number of cache data chunks �t

m

in real time, anAdaptive Content Replacement (ACR) scheme
is designedwith a detailed theoretical analysis.

The pseudo code of our design is listed in Algorithm 1.
Let M̂ denote the set of data items cached at the edge
server. If the cache capacity is not fully utilized, i.e.,P

n2M̂nfmg �
t
n � C �K, all K chunks of the requested data

itemm should be cached. In contrast, if
P

n2M̂nfmg �
t
n > C �

K, we need to determine 1) whether data item m should be
cached or not, 2) how many chunks for m should be cached,
and 3) which data items in M̂ should be replaced? To solve
this problem, let

tn;k
k denote the unit valuation of latency

reduction when k chunks of data item n are cached. Then,
the data items n 2 M̂ with the lowest unit valuations are
added into subset M̂0. The data items in M̂0 will be replaced
first by the requested data item m to maximize the amount
of reduced latency. Besides, m is also added into M̂0. All
data items in M̂0 are cache replacement candidates
(8�t

n  0, n 2 M̂0). The cached data items in M̂ are gradu-
ally added into M̂0 until the available cache capacity C½a� ¼
C �

P
n2M̂ �t

n � K. This guarantees that all K data chunks
ofm have a chance to be cached. The expansion of M̂0 needs
K iterations at most with jM̂0j � K þ 1 and C½a� � 2K � 1.
Then, data chunks with the highest unit valuations, i.e.,
fn; kg  argmaxn2M̂0f

tn;k
k g, are selected to be cached. The

selection process is repeated until the cache capacity is fully
utilized, i.e.,

P
n2M �t

n ¼ C. The theoretical analysis is pro-
vided as follows.

Algorithm 1. Adaptive Content Replacement

Input: Cache capacity C, number of coded data chunks K, data
item setM, valuation array t, data request set G.

Output: Set of cached data items M̂, caching decision �t
n.

1: for Data request gtm 2 G, t 2 T do
2: Update ftm;0; tm;1; . . . ; tm;Kg based on (7);

3: if
P

n2M̂nfmg �
t
n � C �K and �t

m < K then

4: �t
m  K, addm to M̂0;

5: else if
P

n2M̂nfmg �
t
n > C �K and �t

m < K then

6: M̂0  fmg, �t
m  0;

7: repeat
8: n argminn2M̂nM̂0f

tn;k
k g, �t

n  0, remove n from M̂,
add n to M̂0;

9: until C½a� ¼ C �
P

n2M̂ �t
n � K

10: repeat
11: Select fn; kg  argmaxn2M̂0f

tn;k
k g, k � C �

P
n2M �t

n;

12: �t
n  k and mark fn; kg as selected;

13: until
P

n2M �t
n ¼ C

14: end if
15: Update M̂, insert n into M̂ if �t

n > 0, 8n 2 M̂0;3

16: end for

Theorem 1. Algorithm 1 is C�Kþ1
2C�Kþ1-approximation, reaching

more than C�Kþ1
2C�Kþ1 of the maximum reduced latency.

Proof. Let fM̂; K̂g denote the set of caching decisions
induced by Algorithm 1. Let fM	;K	g denote the set of
optimal caching decisions. Then, we consider the follow-
ing two cases:

1) 8m	 2 M	 \ M̂: If k	 � k, tm	;k	 � tm	;k holds as
caching more chunks for a data item is always beneficial
to reducing the access latency for that data item. Simi-
larly, if k < k	, tm	;k � tm	;k	 holds. However, for the

3. We use binary search for the insertion to ensure M̂ is maintained
in ascending order. With size jM̂j � C, the computation complexity of
the binary search is OðlogCÞ. The sorted set M̂ can reduce the lookup
cost of Algorithm 1 (Line 8). If set M̂ is not sorted, the insertion cost of
M̂0 is OðKÞ but with higher lookup cost OðCÞ. If set M̂ is sorted, the
insertion cost goes up (from OðKÞ to OðK � logCÞ) but the lookup cost
reduces dramatically (from OðCÞ to OðKÞ). In large-scale storage sys-
tems, the number of coded data chunks per data item K is much
smaller than the cache capacity C, i.e., K 
 C. Therefore, our design
can reduce the overall cost of insertion and lookup (from OðK þ CÞ to
OðK þK � logCÞ).
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caching space k	 � k, we can always find a data itemm0 2
M̂ nM	 with

tm	 ;k	

k	 �
tm0 ;k0
k0 . This is because if

tm	 ;k	

k	 >
tm0 ;k0
k0

always holds, Algorithm 1 will update the caching deci-
sion of data item m	 from k to k	 for more latency reduc-
tion. As

P
k	2K	\K̂ k

	 �
P

k2K̂ k ¼ C, we haveX
m	2M	\M̂ tm	;k	 �

X
m2M̂ tm;k: (9)

2) 8m	 2 M	 n M̂: According to the value of
tm	 ;k	

k	 , set
M	 n M̂ (with set size jM	 n M̂j ¼ q) is sorted in
descending order

tm	
1
;k	
1

k	1
�

tm	
2
;k	
2

k	2
� ::: �

tm	q ;k	q
k	q

: (10)

Similarly, set M̂ nM	 (with set size jM̂ nM	j ¼ p) is also
sorted in descending order

tm1;k1

k1
� tm2;k2

k2
� ::: �

tmp;kp

kp
: (11)

Then, set M̂ nM	 is divided into two subsets M̂1 and
M̂2

tm1;k1

k1
� ::: �

tmp0 ;kp0

kp0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{M̂1

�
tm	

1
;k	
1

k	
1

;

tm	
1
;k	
1

k	
1
�

tmp0þ1;kp0þ1

kp0þ1
� ::: �

tmp;kp

kp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M̂2

;

8>>>>>>>><
>>>>>>>>:

(12)

Please note that kp0þ1 þ :::þ kp < k	1 � K always
holds. This is because with Algorithm 1, if kp0þ1 þ :::þ
kp > k	1, fm	1; k	1g will be added to fM̂; K̂g. This contra-
dicts with the fact that m	1 2 M	 n M̂. Based on (9)
and (12), we have

Q	

Q
< 1þ

P
m	2M	nM̂ tm	;k	P

m2M̂1
tm;k þ

P
m2M̂2

tm;k

� 1þ

tm	
1
;k	
1

k	
1
� C

tmp0 ;kp0

kp0
� ðC �K þ 1Þ

� 2C �K þ 1

C �K þ 1
: (13)

The proof completes. tu

Proposition 1. For a data request, Algorithm 1 has the computa-
tion complexity of OðK2 þK � logCÞ.

Proof. For a data request, the ðK þ 1Þ-dimensional array is
updated with the computation complexity of OðKÞ (Line
2). If

P
n2M̂nfmg �

t
n � C �K, the whole data item m is

cached with the computation complexity of Oð1Þ (Line 4).
Otherwise, the lookup process for subset M̂0 needs K þ 1
steps at most (Line 6–9). With jM̂0j � K þ 1, based on the
radix sort algorithm, the valuation for all data items in
M̂0 is sorted with the computation complexity of OððK þ
1Þ �KÞ. As

P
n2M̂0 �

t
n < 2K � 1, the greedy selection

needs 2K � 1 iterations at most to obtain the caching deci-
sions (Line 10–13). Then, the update of M̂ needs ðK þ 1Þ �
logC iterations at most for all uncached data items in M̂0

(Line 15). The computation complexity of Algorithm 1 is
OðK2 þK � logCÞ. tu

We use a simple example to demonstrate that the
approximation ratio is a fairly tight bound. The storage loca-
tions of data items A and B, the average data access laten-
cies, and the request popularities are provided in Fig. 3. We
assume s is an arbitrarily small positive number. The
ðK þ 1Þ-dimensional valuation arrays of latency reduction
are

tA ¼ f0; 0; 0; . . . :; 0; K � sg;
tB ¼ f0; 1; 1; . . . :; 1; 1þ sg:

�
(14)

The unit valuation of latency reduction tm
k ; k ¼ f1; . . . ; Kg, is

tA
k ¼ f0; 0; . . . :; 0; 1� s

Kg;
tB
k ¼ f1; 1

2 ; . . . :; 1
K�1 ;

1þs
K g:

(
(15)

At the high level, ACR prefers to choose data chunks
with the highest unit valuations for caching to reduce the
data access latency. Let cache capacity C ¼ K. At the begin-
ning, ACR selects �t

B ¼ 1 (with tB
1 ¼ 1). Then, ACR prefers

to select �t
A ¼ K (with tA

K ¼ 1� s
K). However, the remaining

cache capacity K � 1 is not enough to accommodate the
data chunks �t

A ¼ K. So, �t
B ¼ 2 (with tB

2 ¼ 1
2) is selected. The

limited cache capacity incurs performance loss. We repeat
the selection process until �t

B ¼ K. ACR outputs caching
decision f�t

A; �
t
Bg ¼ f0; Kg with the reduced data access

latency Q ¼ 1þ s. The optimal caching decision is
f�t	

A ; �
t	
B g ¼ fK; 0g with the reduced data access latency

Q	 ¼ K � s. We have Q
Q	 ¼

1þs
K�s > C�Kþ1

2C�Kþ1 as C ¼ K in this
case and s is an arbitrarily small positive number. This
means if C ¼ K, high performance loss may be incurred.

In large-scale storage systems given K 
 C, Theorem 1
shows that the approximation ratio is about 12 . This indicates
that in the worst case, the ACR scheme incurs up to a 50%
performance loss in terms of reduced latency Q. Guided by
Algorithm 1, an Adaptive Content Adjustment (ACA)
scheme is proposed for further performance improvements.

4.2 Adaptive Content Adjustment

For low computation complexity, Algorithm 1 prefers to
choose data chunks with the highest unit valuations for
caching. However, due to the limited size of cache capacity,
the remaining capacity may not always be enough to accom-
modate the selected data chunks. As shown in (12), with
lower unit valuations, data chunks in M̂2 incur the perfor-
mance loss. Therefore, for performance improvements, the
cache contents in M̂2 should be replaced bym	1. The pseudo

Fig. 3. An example of the distributed coded storage system with caching
at the edge server is shown. Both data items A and B are coded into K
data chunks and R parity chunks. According to our design in Section 3.1,
the degraded read will be passively triggered during storage server fail-
ure. For simplicity, the coded parity chunks are not shown.
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code of ACA is listed in Algorithm 2, which is based on the
outputs of Algorithm 1.

Algorithm 2. Adaptive Content Adjustment

Input: Valuation array t.
Output: Set of cached data items M̂, caching decision �t

n.
1: for Data request gt

m 2 G, t 2 T do
2: Invoke Algorithm 1 for cache replacement candidates M̂0

(with available capacity C½a�), cached data items M̂, and
caching decisions �t

n;
3: Sort data items n 2 M̂ \ M̂0 based on

tn;�tn
�tn

in ascending
order;

4: for k 2 f1; . . . ;Kg do
5: ��t

n  �t
n, 8n 2 M̂0;

6: From left to right for n 2 M̂ \ M̂0, ��t
n is decremented

until C½a� �
P

n2M̂\M̂0
��t
n ¼ k, ��t

n � 0;
7: for n 2 M̂0 do
8: Restore the value of ��t

n as in Line 5 and 6;
9: ��t

n  minfK; ��t
n þ kg, V 0n;k  

P
n2M̂0

��t
n;

10: end for
11: end for
12: ��t

n  argmaxfV 0n;kg;
13: �t

n  ��t
n ifmaxfV 0n;kg >

P
n2M̂0 tn;�tn , update M̂;

14: end for

To replace cache contents in set M̂2, the selected data
items among cache replacement candidates n 2 M̂ \ M̂0 are
sorted based on

t
n;�tn

�tn
in ascending order first. Let ��t

n denote
the updated caching decisions, which is initialized as ��t

n  
�t
n, 8n 2 M̂0. Based on the sorted information, the cached

chunks in M̂ \ M̂0 are gradually removed from the caching
layer for replacement (Line 6). The data chunks with lower
unit valuations will be removed first. As discussed in (12),
with kp0þ1 þ :::þ kp � K, we gradually increase the number
of removed chunks k from 1 toK (Line 4–11). Then, all cache
replacement candidates n 2 M̂0 are considered one by one to
search for m	1. The cache decision is updated with ��t

n  
minfK; ��t

n þ kg to fill the vacated caching space. The valua-
tion of the updated cache decision is V 0n;k  

P
n2M̂0

��t
n. We

choose the cache decision with the highest valuation, i.e.,
��t
n  argmaxfV 0n;kg. If maxfV 0n;kg >

P
n2M̂0 tn;�tn , the cache

decision yielded by Algorithm 1 is replaced by �t
n  ��t

n. The
set of cached data items M̂ is also updated accordingly.
With a higher valuation than the output of Algorithm 1, the
approximation ratio of Algorithm 2 is higher than C�Kþ1

2C�Kþ1 .
Let us reuse the example in Fig. 3 to show the workflow

of Algorithm 2. To search for better caching decisions, ACA
gradually decreases the number of already cached chunks
(Line 6) to make room for other uncached data chunks (Line
9). Based on the caching decision of ACR f�t

A; �
t
Bg ¼ f0; Kg,

ACA considers the caching decisions of f1; K � 1g; f2; K �
2g; . . . :; fK � 1; 1g, and fK; 0g. Among them, the caching
decision f�t

A; �
t
Bg ¼ fK; 0g with the highest reduced latency

is selected (Line 12–13). In this example, ACA obtains the
optimal caching decision. Experiment results in Section 5
show that compared with Algorithm 1, Algorithm 2 can fur-
ther reduce the data access latency by about 5% without
sacrificing efficiency.

Proposition 2. For a data request, Algorithm 2 requires an extra
computation complexity of OðK2Þ.

Proof. With jM̂0j � K þ 1, the data items in M̂ \ M̂0 is
sorted with the computation complexity of OðKÞ (Line 3).
Then, the calculation of the updated cache decisions ��t

n

needs K � 2 � ðK þ 1Þ iterations (Line 4–11). Based on the
outputs of Algorithm 1, Algorithm 2 requires an extra
computation complexity of OðK2Þ. tu

4.3 Caching Design Under Server Failure

In the distributed storage system, servers may experience
downtime frequently. If a storage server at node i fails at
time t, a set of data chunks (denoted by Mi) becomes
remotely unavailable. Recall that we need exactly K chunks
to reconstruct a data item. If data chunk mk is not cached
beforehand, the degraded read is triggered to serve the data
requests, mk 2 Mi. In this case, the parity chunk mr with
the lowest data access latency will be fetched from node j to
reconstruct the data item. In Algorithm 1 (or Algorithm 2),
the unavailable data chunk mk is replaced by parity chunk
mr, i.e., mk  mr and ltmk

 ltmr
. Similar to (2), the average

latency of sendingmr is given by

ltmr
¼ minfltj � 1ðmr ! jÞg: (16)

When Algorithm 1 (or Algorithm 2) suggests caching mr,
the recovered mk is directly added into the caching layer
instead of mr. As a result, the parity chunk mr is not always
required to reconstruct data item m. This means our design
can reduce the decoding overheads of the subsequent data
requests.

5 EXPERIMENTAL EVALUATION

In this section, we implement the proposed cache schemes
in Python, and then integrate them in the experiment plat-
form deployed in Section 3.2. Next, extensive experiments
are performed to evaluate the performance of our design.

5.1 Experimental Setup

As shown in Table 2, N ¼ 6 storage nodes are deployed
over six AWS regions. Each storage node creates three
buckets, each of which represents a server for remote data
storage. By default, the storage system is populated with
M ¼ 10; 000 data items. The zfec [39] library is adopted to
implement the RS codes. The numbers of data and parity
chunks are set as K ¼ 6 and R ¼ 3. The coded nine chunks
of each data item are with the same block size of 1 MB [8],
which are uniformly distributed among eighteen buckets

to achieve fault tolerance.
As shown in Table 2, three edge servers are deployed on

personal computers in three different cities. The hardware
features an Intel(R) Core(TM) i7-7700 HQ processor and 16
GB of memory. Memcached [31] module is used to cache
data chunks in RAM. The assigned cache capacity is 1,000
MB, i.e., the maximum number of cached data chunks is C ¼
1; 000. To request data chunks in parallel, a thread pool is cre-
ated at each edge server. The time period of data services T is
1 hour. We rely on the MSR Cambridge Traces [40] as the
workload of data requests, but not the data sizes as they are
not collected from coded storage systems. We assume all
data items are with the same size. MSR Cambridge Traces
are production traces collected from Microsoft Research,
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which have been widely used to evaluate the performance of
the caching systems [12], [15].

Performance Baselines. To evaluate the performance of the
proposed ACR and ACA schemes, five baselines are intro-
duced for a fair performance comparison.

� LFU and LRU—The Least Frequently Used (LFU)
and the Least Recently Used (LRU) policies are used
for data eviction in the caching layer with the com-
putation complexity of Oð1Þ [41]. LFU and LRU
cache allK data chunks for each selected data item.

� Agar [8]—A dynamic programming-based scheme is
designed to iteratively add data chunks with larger
request rates and higher data access latencies in the
caching layer with the computation complexity of
OðCKMÞ.

� Online Near-Optimal (ONO) scheme [20]—This
scheme updates the caching decision upon the arrival
of each data request. Specifically, through iterative
search on Diophantine equations, the feasible caching
decisions are categorized into a set of cache partitions
fx1; . . . ; xKg 2 x based on the number of cached
chunks for each data item. Then, the online caching
decision is obtained by applying the market clearing
price [42] on all cache partitions (the caching partition
with the highest latency reduction is selected). Theo-
retical analysis shows that the approximation ratio of
the near-optimal scheme is 1� 2K�1

C . The computa-
tion complexity is OðK2 � P �K!Þ in updating the
caching decision of a data request, where P is the
“potential energy” driving the pricing process

P ¼
XK

k¼1 sum top
m2M

ftðm; kÞ; xkg; (17)

and function sum top
m2M

ftðm; kÞ; xkg represents the

sum of largest xk elements.

� Solver—Assuming that the future data request rates
and network condition information is available, the
offline caching decisions are obtained by solving the
integer programming problem with the optimization
solver IBM ILOG CPLEX.

5.2 Experimental Results

In the beginning, the performance of seven schemes is com-
pared in terms of the latency and hit ratio of data requests
under default settings. LFU prefers to cache data items with
higher request rates. LRU caches the recently requested
data items by discarding the least recently used data items.
As shown in Fig. 4, the average latencies of all data requests
from three locations incurred by LFU and LRU are 538.9 ms

and 527.5 ms, respectively. Besides, as shown in Fig. 6, with
LFU and LRU, 28.7% and 30.2% of data chunk requests are
served by cached data chunks. With the whole recently
requested data items cached, LFU and LRU reduce the
access latencies to 0 ms for 28.7% and 30.2% of data
requests, respectively. Due to the limited cache capacity, the
remaining parts of the data requests suffer from high access
latencies. Therefore, as shown in Fig. 5, the 95th percentile
tail latencies of LFU and LRU are 1,138.2 ms and 1,131.3 ms,
respectively. LFU and LRU overlook the diversity of data
chunk storage locations and the heterogeneity of latencies
across different storage nodes. Caching the whole data item
cannot enjoy the full benefits of caching for low latency.

Agar iteratively improves the existing caching configura-
tions by considering new data chunks. Compared with LFU
and LRU using whole data item caching, more data items
enjoy the benefits of caching. The hit ratios of data requests
from three edge servers are increased to 32.9%, 32.7%, and
33.5%, respectively. The average latencies of requests are
reduced to 484.7 ms, 471.7 ms, and 509.1 ms, respectively.
Furthermore, Agar prefers to evict low valuation data
chunks which incur high access latencies from the caching
layer. The 95th percentile tail latencies are reduced to 905.3
ms, 858.8 ms, and 1,266.2 ms, respectively.

The ONO scheme improves the caching configuration by
applying the market clearing price on cache partitions.
Compared with LFU and LRU using the whole data item
caching, more data items enjoy the benefits of caching. The
average hit ratio of data requests from three edge servers is
increased to 37.0%, 37.1%, and 36.1%, respectively. The
average latency of requests is reduced to 393.81 ms, 379.43
ms, and 460.68 ms, respectively. Furthermore, the ONO
scheme prefers to evict low valuation data chunks that incur
high access latencies from the caching layer. The average
95th percentile tail latency is reduced to 924.82 ms, 893.81
ms, and 1,380.77 ms, respectively.

The proposed ACR scheme prefers to cache the data
chunks with the highest unit valuations. This means the
contents in the caching layers are with higher data request
rates and lower access latencies. The hit ratios of data
requests from three edge servers are increased to 37.6%,

Fig. 4. Average data request latencies.

Fig. 6. Hit ratio of data chunk requests.

Fig. 5. 95th percentile tail latencies.
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38.0%, and 37.8%, respectively. The average access latencies
of three edge servers are reduced to 417.7 ms, 408.1 ms, and
474.3 ms, respectively. Based on the outputs of ACR, the
subset of cached contents which incur performance loss is
updated with the proposed ACA scheme. As shown in
Fig 4, the average latencies with ACA are further reduced to
396.2 ms, 382.5 ms, and 459.2 ms, respectively. Compared
with the offline Solver, ACA incurs the performance loss of
9.3%, 8.8%, and 11.8%, respectively.

Then, the average running time of various schemes,
which determine the efficiency of updating caching deci-
sions, is compared under default settings.4 In an offline sce-
nario, the Solver scheme obtains near-optimal caching
decisions by using the commercial solver. As shown in
Table 3, the average running time of Solver is in tens of
minutes. Agar periodically optimizes the caching configura-
tion for all data items in the storage system, which needs
tens of seconds for a round of optimization. The long
running time implies that Agar cannot react quickly to real-
time network changes. In contrast, LFU, LRU, and the pro-
posed ACR and ACA schemes update the caching decision
upon the arrival of each data request, without completely
overriding the existing caching solution. By directly caching
the recently requested data items, LFU and LRU achieve the
minimum computation complexity with the average run-
ning time of 0.19 ms and 0.17 ms, respectively, for a data
request. As a caching scheme working at the data chunk
level, the ONO scheme optimizes the caching configuration
by considering multiple cache partitions, which needs a lon-
ger running time of 4.44 ms to handle a data request. With
the computation complexity sublinear to the cache capacity,
ACR needs about 1.59 ms to finish. Compared with ACR,
ACA reduces the average latency by about 5% with a little
bit longer running time of 1.76 ms. With ACR and ACA,
few extra delays will be introduced when handling the
intensive data requests. Compared with ONO, the computa-
tion overhead of ACA is reduced by 60.36% while only
incurring a performance loss of 0.32%.

5.3 Impact of Other Factors

The impact of other factors, i.e., cache capacity, number of
coded data chunks, number of data replicas, server failure,
concurrent applications, and prediction methods, is consid-
ered in the experiments. By default, we set the cache capac-
ity C ¼ 1; 000 data chunks. The number of data items is set
to M ¼ 10; 000. Without considering data replication, the
numbers of coded data and parity chunks per data item are

set to K ¼ 6 and R ¼ 3, respectively. For simplicity, the
average latency represents the average latency of all data
requests from three edge servers in the following parts of
the paper.

Cache Capacity C. Fig. 7 illustrates the average latencies
when the cache capacity C increases from 600 to 1,200
chunks. As more data requests enjoy the caching benefits,
the average latencies with all seven caching schemes
decrease. With the increase of C, the proposed schemes
have more space for caching decision optimization. Com-
pared with Agar, the percentage of reduced latency via the
proposed ACA scheme is improved from 1.4% to 21.5%.

Then, the average running time of seven caching
schemes is evaluated. As shown in Table 4, with the
increase of cache capacity, the offline caching schemes, i.e.,
Agar and Solver, need more and more time for a round of
optimization. In contrast, the online scheme updates the
caching decision upon the arrival of each data request.
According to our design in Algorithm 1 and 2, when a data
request arrives, the caching decision will not be updated if
the data item is already cached. Therefore, the average run-
ning time of ACR and ACA for each request decreases with
the increase of cache capacity. This means the proposed
online schemes are scalable solutions for a large-scale stor-
age system.

Number of Coded Data Chunks K. We increase the size of
data items from 4 MB to 10 MB. With the same size of coded
chunks (1MB), the number of coded data chunksK increases
from 4 to 10. As coded chunks are uniformly distributed
among eighteen buckets, more data chunks will be placed
at the bucketswith higher access latencieswith the increase
of K. Moreover, when the data item is coded into more data
chunks, more requests are served by fetching data chunks
from the remote buckets. The average latencies with all
seven schemes increase accordingly. Fig. 8 shows that ACA
always incurs lower latencies than ACR, Agar, LRU, and
LFU. Compared with Agar, the percentage of reduced
latency via ACA varies from 29.9% to 2.2% with the increase
ofK. Comparedwith LFU, the percentage of reduced latency
via ACA varies from 35.7% to 13.3%. Furthermore, Table 4
shows that the average running time of ACA only increases
from 1.18 ms to 2.23 ms. With the proposed online scheme,

TABLE 3
Average Running Time of Various Schemes at Three Edge Servers

Scheme LFU LRU Agar ONO ACR ACA Solver

Average running time
Victoria, CA 0.19 ms 0.16 ms 63.38 s 4.88 ms 1.67 ms 1.75 ms 820.18 s
San Francisco, US 0.20 ms 0.17 ms 74.28 s 4.21 ms 1.63 ms 1.90 ms 718.43 s
Toronto, CA 0.19 ms 0.17 ms 65.37 s 4.55 ms 1.46 ms 1.64 ms 750.39 s

Fig. 7. Impact of cache capacity.

4. The average running time is the quantity of processor time taken
by the caching schemes at the edge servers, which has been widely
adopted as an indicator to show how CPU intensive a process or pro-
gram is [20], [43].
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few extra delays will be introduced to handle the intensive
data requests. Compared with ONO, ACA can reduce the
computation overhead by up to 84.57% while only incurring
a performance loss of 1.12%.

Number of Data Replicas. In the distributed coded storage
system, if data replication is considered, more than a single
copy of data chunks will be created at remote buckets.
With the increased number of data replicas, more data
chunks will be placed at the storage nodes near end users.
As shown in Fig. 9, since the faraway storage nodes are no
longer the bottleneck, the average data access latency of
ACA is considerably reduced from 412.6 ms to 130.8 ms.
Compared with Agar, the percentage of reduced latency via
ACA varies from 17.8% to 4.1% with the increased number
of data replicas. Compared with ONO, the computation
overhead of ACA is reduced by about 60% with a perfor-
mance loss ranging from 0.32% to 1.64%.

Server Failure. The performance of our design is then
evaluated in the presence of server failure. Although era-
sure codes can tolerate up to R simultaneous server failures,
it has been reported that single server failure is responsible
for 99.75% of all kinds of server failures [44]. Therefore, we

consider single server failure by terminating each storage
server in turn. This experiment setting is identical to that in
Section 5.2 except for the storage server failure. If the
needed data chunks are not available on the remote servers
or cached beforehand, degraded read will be triggered to
serve data requests. Therefore, the data access latency
includes both the network latency and the decoding latency.

Fig. 10 illustrates the average data access latencies with
various schemes. We start by considering the performance
of caching parity chunks if the needed data chunks are
remotely unavailable under server failure. The seven cach-
ing schemes incur the average decoding latencies of about
23 ms. Then, let us consider the performance of caching the
recovered data chunks to avoid unnecessary decoding over-
heads of the subsequent data requests. LFU, LRU, Agar,
ONO, and the proposed ACR and ACA schemes incur low
decoding latencies of 16.8 ms, 16.6 ms, 16.7 ms, 16.4 ms, 16.3
ms, and 16.5 ms, respectively. This means the computation
overhead of the decoding process is reduced by about 28%
if the recovered data chunks are cached.

Compared with LFU, LRU, Agar, and ACR, the ACA
scheme reduces the overall average data access latency by
21.1%, 19.4%, 22.1%, 14.2%, and 4.3%, respectively. Further-
more, compared with ONO, ACA incurs a performance loss
of 1.0% but can reduce the computation overhead by about
60%. Compared with the time-consuming Solver scheme,
ACA incurs a performance loss of 9.0% but with much
higher efficiency in the presence of server failure.

Concurrent Applications. As a general-purpose computing
and storage paradigm, the edge system may need to handle
a variety of applications, which may have different request
patterns. Fig. 11 shows the time-varying data request rates
of two MSR Cambridge Traces.5 The Standard Deviations of
Trace 1 and Trace 2 are 6.54 and 15.91 (in requests/second),
respectively. Traces 1 and 2 represent two classes of applica-
tions with relatively steady and bursty request patterns,
respectively.

Fig. 12 compares the performance of seven caching
schemes by replaying the two traces separately. The average
data access latencies of two traces are 588.66 ms, 581.15 ms,
524.12 ms, 488.48 ms, 508.17 ms, 492.10 ms, and 444.64 ms,
respectively. Fig. 13 shows the performance by concurrently
replaying the two traces at the edge servers. For a fair per-
formance comparison, the cache capacity is increased to
2,000 chunks in this case. Due to the multiplexing gain, the
average data access latencies of two traces decreased to
573.95 ms, 575.87 ms, 522.73 ms, 478.10 ms, 494.69 ms,
480.65 ms, and 439.51 ms, respectively.

TABLE 4
The Average Running Time of Caching Schemes Under

Various Settings

Fig. 8. Impact of number of coded data chunks.

Fig. 9. Impact of data replicas.

Fig. 10. Average data access latencies in the presence of server failure.

5. Trace 1 is used in the above performance evaluation.

1850 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:52 UTC from IEEE Xplore.  Restrictions apply. 



As shown in Figs. 12 and 13, different caching schemes
may work differently when concurrent applications com-
pete for the limited cache capacity. For example, with the
future data request rates known as the prior information,
the offline Agar scheme assigns more cache capacity to
Trace 2 for handling the bursty data requests. With concur-
rent caching services, the average latency of Trace 2
decreases from 559.74 ms to 534.01 ms while that of Trace 1
increases from 488.50 ms to 511.43 ms. The offline Solver
scheme works similarly as Agar. In contrast, as an online
scheme, ACA prefers to assign more cache capacity to the
steadier trace. With concurrent caching services, the average
latency of Trace 1 decreases from 412.64 ms to 339.57 ms
while that of Trace 2 increases from 571.56 ms to 621.74 ms.
Please note that the time-consuming Solver scheme incurs
the lowest average latency of the two concurrent traces
overall, although the online ONO, ACR, and ACA schemes
incur lower latency than Solver for Trace 1.

Prediction Method. Beyond the EDC method [36] in Sec-
tion 4.1, the Discounting Rate Estimator (DRE) [45] method
is also introduced to construct the real-time request infor-
mation for performance comparison. At the edge server, a
counter is maintained for each data item, which increases
with every data read request, and decreases periodically
with a decay factor. The performance of the two prediction
methods is compared when they are applied to three online
caching schemes that need the real-time request informa-
tion, i.e., ONO, ACR, and ACA. With EDC, the three cach-
ing schemes incur average data access latencies of 411.31
ms, 433.38 ms, and 412.64 ms, respectively. With DRE, the
average data access latencies are 430.20 ms, 450.82 ms, and
435.19 ms, respectively. Fig. 14 indicates that the adopted
EDC method can track the real-time request information
more accurately for lower data access latency.

Summary and Insights. Overall, the evaluation results
under various settings demonstrate that when compared
with the caching schemes working at the data item level,
the proposed ACR and ACA schemes can reduce the data
access latency by up to 35.7%. More importantly, as shown
in Table 4, the computation overheads of ACR and ACA are

controlled well with the increasing scale of the storage sys-
tem. Compared with the state-of-the-art ONO scheme that
was designed for the coded storage system, our design can
reduce the computation overhead by up to 84.57% while
only incurring a performance loss of 1.12%. This indicates
that ACR and ACA are scalable schemes, which could be
applied to large-scale storage systems in the real world.

6 CONCLUSION AND FUTURE WORK

In this paper, novel adaptive and efficient caching schemes
were proposed to achieve low latency in the distributed
cloud-edge storage system with erasure codes. Popular
data chunks are cached at the edge servers near end users.
As the distributed storage system spans multiple geo-
graphical sites, the measured end-to-end latencies were
used to quantify the benefits of caching. Based on the mea-
sured data popularity and network latency information, an
adaptive content replacement scheme with the approxima-
tion ratio of C�Kþ1

2C�Kþ1 was designed to determine which data

chunks to cache. The computation complexity being sublin-
ear to the size of the cache capacity ensured the scalability
of our design. Guided by the theoretical analysis and out-
puts of the approximation scheme, we obtain the subset of
cached contents which incurs the performance loss. Then,
an adaptive content adjustment scheme was designed to
update this subset for further performance improvements.
Moreover, we also extended the proposed caching schemes
to the case of storage server failure. Extensive experiments
demonstrate the efficiency and effectiveness of our design.

In this paper, we considered the situations where data
items are of the same or similar block size in the distributed
coded storage system. In future work, we plan to investigate
the caching problem with variable data item sizes. Consid-
ering the limited cache capacity of the edge servers, a size-
aware cache admission scheme will be designed to ensure
data items with small sizes have a higher priority to be
admitted. This ensures more data items can enjoy the bene-
fits of caching to achieve low latency.

Fig. 11. Time-varying data request rates of two MSR Cambridge
Traces [40].

Fig. 12. Average data access latencies by separately replaying the two
traces.

Fig. 13. Average data access latencies by concurrently replaying the two
traces.

Fig. 14. Average data access latencieswith different predictionmethods.
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