
Scalable and Adaptive Data Replica Placement
for Geo-Distributed Cloud Storages

Kaiyang Liu ,Member, IEEE, Jun Peng ,Member, IEEE,

Jingrong Wang , Student Member, IEEE, Weirong Liu ,Member, IEEE,

Zhiwu Huang ,Member, IEEE, and Jianping Pan , Senior Member, IEEE

Abstract—In geo-distributed cloud storage systems, data replication has been widely used to serve the ever more users around the

world for high data reliability and availability. How to optimize the data replica placement has become one of the fundamental problems

to reduce the inter-node traffic and the system overhead of accessing associated data items. In the big data era, traditional solutions

may face the challenges of long running time and large overheads to handle the increasing scale of data items with time-varying user

requests. Therefore, novel offline community discovery and online community adjustment schemes are proposed to solve the replica

placement problem in a scalable and adaptive way. The offline scheme can find a replica placement solution based on the average

read/write rates for a certain period of time. The scalability can be achieved as 1) the computation complexity is linear to the amount of

data items and 2) the data-node communities can evolve in parallel for a distributed replica placement. Furthermore, the online scheme

is adaptive to handle the bursty data requests, without the need to completely override the existing replica placement. Driven by real-

world data traces, extensive performance evaluations demonstrate the effectiveness of our design to handle large-scale datasets.

Index Terms—Geo-distributed storage system, data replica placement, scalability, adaptivity, community discovery

Ç

1 INTRODUCTION

IN the current era of big data, geo-distributed cloud storage
systems need to manage, manipulate, and analyze a large

scale of data for the emerging data-intensive applications.
According to the IDC report, the volume of data is doubling
every two years and thus will reach a staggering 44 zetta-
bytes by 2020 [1]. To serve the ever more users around the
world, data replication among geo-distributed storages
has been widely used to increase data reliability and
availability [2].

Placing requested data closer to end users helps to lower
the user experienced service delay and the inter-node data
read traffic, which motivates intensive research about data
replica placement. Modern service providers, e.g., Face-
book, maintain a full copy of user data in each data cen-
ter [3]. However, this may generate unnecessarily high

inter-node synchronization traffic to maintain consistency
among data and replicas. Therefore, the inter-node traffic
can be reduced by selecting a proper number of data
replicas.

Apart from the inter-node traffic, the storage locations of
data replicas may also affect the system overhead of access-
ing associated data items [4], [5]. It is worth noting that
users may request multiple data items in one transaction.
For example, in online analytical processing (OLAP) sys-
tems, a query may be executed by accessing multiple data
blocks [6]. The system overhead could be reduced if fewer
storage nodes are involved to handle such a request. The
reason is that a certain overhead, e.g., the establishment of
TCP connections, will be introduced if the read request is
dispatched to a storage node. In short, data replica place-
ment reduces the system overhead by placing associated
data items together in the same storage location. With the
increasing number of data items, how to choose the proper
number and storage locations of data replicas becomes a
critical issue.

Various data replica placement schemes have been pro-
posed to seek optimal data storage locations, which are typi-
cally implemented in a centralized/offline way: At every
distributed storage node handling the user requests, the
data access logs are captured. Then, a central controller is
deployed to collect all logs and analyze the request fre-
quency of each data item. The extracted information is fed
into the replica placement algorithms, e.g., mathematical
programming [8] and graph partitioning [5], [7], [9], which
finally output the storage locations of data replicas. These
centralized/offline schemes can iteratively approximate the
optimal solutions with high accuracy.

� K. Liu is with the School of Computer Science and Engineering, Central
South University, Changsha 410075, China, and also with the Department
of Computer Science, University of Victoria, Victoria, BC V8P 5C2,
Canada. E-mail: liukaiyang@csu.edu.cn.

� J. Peng andW. Liu are with the School of Computer Science and Engineering,
Central SouthUniversity, Changsha 410075, China.
E-mail: {pengj, frat}@csu.edu.cn.

� J. Wang is with the Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ONM5S 1A1, Canada.
E-mail: jr.wang@mail.utoronto.ca.

� Z. Huang is with the School of Automation, Central South University,
Changsha 410075, China. E-mail: hzw@csu.edu.cn.

� J. Pan is with the Department of Computer Science, University of Victoria,
Victoria, BC V8P 5C2, Canada. E-mail: pan@uvic.ca.

Manuscript received 6 Mar. 2019; revised 5 Jan. 2020; accepted 15 Jan. 2020.
Date of publication 21 Jan. 2020; date of current version 25 Feb. 2020.
(Corresponding author: Zhiwu Huang.)
Recommended for acceptance by H. Huang.
Digital Object Identifier no. 10.1109/TPDS.2020.2968321

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020 1575

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0002-1114-8030
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0001-6269-6929
https://orcid.org/0000-0003-3392-7016
https://orcid.org/0000-0003-3392-7016
https://orcid.org/0000-0003-3392-7016
https://orcid.org/0000-0003-3392-7016
https://orcid.org/0000-0003-3392-7016
https://orcid.org/0000-0002-2567-9369
https://orcid.org/0000-0002-2567-9369
https://orcid.org/0000-0002-2567-9369
https://orcid.org/0000-0002-2567-9369
https://orcid.org/0000-0002-2567-9369
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0002-5485-2562
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
https://orcid.org/0000-0003-4893-6847
mailto:liukaiyang@csu.edu.cn
mailto:pengj@csu.edu.cn
mailto:frat@csu.edu.cn
mailto:jr.wang@mail.utoronto.ca
mailto:hzw@csu.edu.cn
mailto:pan@uvic.ca

Although intuitively valid in design, the centralized/off-
line schemes may meet two practical challenges when
applied to a large-scale storage system. First of all, a long
running time of the placement scheme is expected when a
large amount of data items are deployed at many storage
nodes [4]. Furthermore, faced with time-varying data
requests, these offline solutions are slow to react to the real-
time changes in workloads [10]. For a large scale storage sys-
tem with user request uncertainties, data replica placement
schemes should be 1) highly efficient with small computa-
tion overhead for a quick placement decision, and 2) flexible
to change the storage locations of data replicas in an online
fashion. Therefore, it is imperative to solve the replica place-
ment problem in amore scalable and adaptive way.

In this paper, based on the overlapping community dis-
covery and adjustment, we design scalable and adaptive
data replica placement schemes in geo-distributed cloud
storage systems. A data-node community is defined as the
group of a storage node and all data items placed at it, which
should have more internal data access requests than external
ones. Therefore, a more compact community structure
means more data requests are served locally with lower sys-
tem overhead and less inter-node traffic. Unlike traditional
centralized placement schemes, communities can evolve to
decide whether each data replica should be placed at the
node in a parallel and adaptive way. The scalability of our
design can be achieved by this distributed implementation
along with the computation complexity linear to the amount
of data items. Ourmajor contributions in this paper include:

� A novel distributed overlapping community discov-
ery scheme is proposed to solve the data replica
placement problem in a scalable way. This offline
scheme can find a replica placement solution based
on the average read/write rates for a certain time
period.

� Guided by the offline scheme, an online community
adjustment scheme is proposed to adaptively handle
the bursty requests.

� The worst-case performance guarantees of the pro-
posed schemes are provided via theoretical analysis.

� Extensive evaluation results driven by real-world
data traces show the superiority of our design over
the state-of-the-art replica placement methods.

The rest of this paper is organized as follows. Section 2
summarizes the related work. Section 3 presents the model
of the geo-distributed storage system. In Section 4, the dis-
tributed community discovery-based data replica place-
ment scheme is proposed along with the theoretical
analysis. In Section 5, an online community adjustment
scheme is further proposed to handle bursty requests. In
Section 6, the efficiency and the performance of the pro-
posed schemes are evaluated and substantiated with exten-
sive experiments. Section 7 concludes this paper.

2 RELATED WORK

2.1 Data Replica Placement

Many researchers have pointed out that data replica
improves the data locality to ensure a better read/write per-
formance in data-intensive systems. In online social

networks (OSN), Tran et al. [11] proposed to create data rep-
licas for users only at the node having the largest amount of
their friends to alleviate excessive data replication. How-
ever, only the read requests are considered, which may gen-
erate high data-write traffic. To minimize the total inter-
node traffic, Liu et al. [3] proposed to select data items that
have higher read rates and lower update rates for replica-
tion. Traverso et al. [12] proposed a lazy content update
mechanism to lower the peak-hour traffic in the geo-replica-
tion system. All these previous studies only focus on the
inter-node traffic or data access delay.

The system overhead is also affected by other factors,
e.g., the multi-get hole effect [13], which could be explained
as follows: When more than one items are requested in one
data transaction, the span of involved nodes to handle such
a data request influences the throughput of the storage sys-
tem. Therefore, how to place strongly associated data items
has attracted extensive research attention. Nishtala et al. [14]
pointed out that data items that are frequently requested
together can be treated as a whole, and such request pattern
information can be extracted by analyzing historical traces.
Agarwal et al. [4] presented Volley, an offline data place-
ment framework for geo-distributed services where a data
item is iteratively migrated to get near to both end users
and its associated data items. Jiao et al. [9] proposed a multi-
objective data placement (MODP) scheme, optimizing the
data storage locations through iterative graph cuts. Yu
et al. [5] designed a hypergraph-based framework for associ-
ated data placement (ADP) among geo-distributed storage
nodes. Nevertheless, these centralized solutions are not
effective enough, in terms of the running time and computa-
tion overhead, to output decisions quickly, especially when
the storage system is on a large scale.

Therefore, it is critical to solving the replica placement
problem in a more scalable way. Yu et al. [7] proposed a
sketch-based data placement (SDP) for hypergraph sparsifi-
cation, reducing the algorithm running time. SpeCH [15]
used a randomized solution for the low-rank approximation
of the hypergraph matrix, improving the efficiency of data
placement. GPlacer [16] proposed heuristic solutions that
can efficiently find sub-optimal data storage locations. How-
ever, these offline solutions are slow to react to the real-time
changes in workloads, e.g., the bursty data requests.

As an online scheme, DataBot [17], [18] utilized reinforce-
ment learning to adaptively learn optimal data placement
policies, reducing the data access latency with no future
assumption about the data requests. However, the inter-
node traffic and the system overhead of accessing associ-
ated data items are overlooked in DataBot. Charapko
et al. [19] proposed a data migration solution Akkio, which
adapts to the changing access locality patterns. To improve
the scalability of the solution for Petabytes of data at Face-
book, Akkio grouped the related data with similar access
locality into a migration unit. Akkio mainly focuses on the
granularity of data migration, without considering the opti-
mality of the solution. Table 1 compares the proposed
schemes with existing research work. Different from previ-
ous studies, the proposed scheme in this paper takes the
read/write requests and data association into account, and
uses the community discovery/adjustment for scalable and
adaptive data replica placement.

1576 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

2.2 Community Discovery-Based Schemes

Community discovery is considered as an efficient solution to
extract useful information from complex networks, which has
been widely used in a series of domains, e.g., biological net-
works, social sciences, and regional geography [20]. Various
methods have been proposed for detecting both non-overlap-
ping [21], [22] and overlapping communities [23], [24]. For the
data placement problem, Chen et al. [25] leveraged the interac-
tion locality to merge the pair of communities into a single
community, aiming to place the data items within an interac-
tion community together. Without considering data replica-
tion, the performance gain is limited in this work. To achieve a
perfect data locality inOSN, Pujol et al. [26] tried to place social
communities at the same storage location and designed a par-
titioning scheme to replicate the data of all friends, which
inevitably incurs a huge data synchronization traffic. Hu
et al. [27] proposed a two-phase community discovery scheme
to place associated data items to the cloud, speeding up the
parallel processing stage of data analytics. Unlike the existing
community discovery-based replica placement methods, our
design tries to find a proper number of data replicas in each
community, minimizing both the inter-node traffic andmulti-
get hole effect.

3 SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we start by introducing the model of the geo-
distributed storage system and then discuss how to opti-
mize the storage locations of data replicas. The major nota-
tions used in this paper are summarized in Table 2.

3.1 Geo-Distributed Storage System and Data Items

Fig. 1 illustrates the model of the geo-distributed cloud stor-
age system, which consists of a set of storage nodes N dis-
tributed at different geographical locations (with size
N ¼ jN j). LetM denote the set of data items stored in the
system (with size M ¼ jMj). The data items could be files,
tables or blocks in practice. Similar to the widely used
Hadoop [28] and Cassandra storage system [29], it can be
assumed that the data items are with a default size.

To improve data reliability, fault-tolerance, and accessi-
bility, data items are often stored in a one-leader multi-fol-
lower manner. Initially, each data item x 2 M is uploaded
to or generated at a single master node yx 2 N , denoted by

D : x! yx: (1)

Furthermore, data replicas are created and stored at the
follower nodes. A binary variable "xy is introduced to decide
whether a replica of data item x is placed at node y ("xy ¼ 1)
or not ("xy ¼ 0). Then, the set of follower nodes for data
item x is given by

Cx ¼ fy 2 N j "xy ¼ 1g: (2)

It is worth noting that a storage node can act as a master
node and a follower node simultaneously for different data
items. Then, the set of all stored data items and replicas at
node y is represented by

Dy ¼ fx 2 Mj y ¼ yx _ "xy ¼ 1g: (3)

TABLE 1
Comparison of the Proposed Data Replica Placement Schemes With the Existing Research Work

TABLE 2
Notations

Symbol Definition

N Set of geo-distributed storage nodes, andN ¼ jN j
M Set of data items, andM ¼ jMj
"xy Binary variable: To place a replica of data item x at node y

("xy ¼ 1) or not ("xy ¼ 0), x 2M, y 2 N
p Request pattern which involves multiple data items in one

read transaction, p 2 P
dpyj Binary variable: Request p from node y is routed to node j

(dpyj ¼ 1) or not (dpyj ¼ 0)
Px Subset of request patterns which contains data item x,

Px � P
Rpy Read request rate of pattern p from source node y
Rxy Read request rate of data item x from source node y
Wx Write request rate of data item x
yx; Cx Master node, set of follower nodes for data item x
Dy Set of stored data items and replicas at node y
� Constant overhead to fulfill a read request at the storage

node
h Weight to trade off the metrics of inter-node traffic and

system overhead of accessing associated data items
L Optimization objective value
T Time length of the service period
f Pre-defined value for the online community adjustment

scheme
Fig. 1. Illustration of the geo-distributed storage system with the data
read/write requests.

LIU ETAL.: SCALABLE AND ADAPTIVE DATA REPLICA PLACEMENT FOR GEO-DISTRIBUTED CLOUD STORAGES 1577

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

3.2 Workloads of Read/Write Requests

The data transactions contain a set of read and write
requests. For the cloud-based storage system, the data access
type could be both read-intensive and write-intensive [2].
Then, themodels of read/write workloads are introduced.

3.2.1 Read Request Flow

The data-intensive applications, e.g., OLAP, may request
multiple data items (denoted by request pattern p) in one
transaction. Denote P the set of request patterns,
P � fM; ;g. Fig. 1 illustrates an example of the systemwhich
contains 6 data items and 3 request patterns, P ¼
ffx1; x2; x3g; fx2; x4g; fx4; x5; x6gg. Then, the data flow of
read requests is defined as follows: When an application at a
node requests a dataset p to fulfill its task, this node is set as
the source of the flow, and the nodes having the data in p are
the destinations. Furthermore, Px is introduced to denote the
subset of request patterns which contains data item x,
Px � P. For example, Px2 ¼ ffx1; x2; x3g; fx2; x4gg in Fig. 1.

Let Rpy denote the average read rate or frequency to
the request pattern p from the source node y for a certain
period T . Mature prediction methods, e.g., EWMA [30],
could be applied to derive the request rates from the his-
torical information, so the details of dealing with predic-
tion are not included in this paper. The predicted read
rate information Rpy is fed into our scheme to make the
replica placement decision. Then, the request rate Rxy for
each data item x from node y can be calculated by

Rxy ¼
X
p2P

Rpy1ðx 2 pÞ; (4)

where the binary function 1ðx 2 pÞ indicates whether the
data x belongs to the request pattern p (denoted by
1ðx 2 pÞ ¼ 1) or not (1ðx 2 pÞ ¼ 0).

3.2.2 Write Request Flows

For the reason of data security, whenever a data item x is to
be written or updated, the write operation can only be sub-
mitted to the predefined master node yx [2], [31]. Take Fig. 1
as an example, data x1 can only be updated by the data
owner at master node A. Then, for data consistency, the
master node acts as the source to synchronize the updated
data with all follower nodes. Inter-node write traffic will be
generated to maintain data consistency. Let Wx denote the
write rate to the data item x. Similar to Rpy, Wx can also be
derived from the historical information.

3.3 Performance Metrics

It has been pointed out that data placement can affect the
performance of the storage system in both the inter-node
traffic and the overhead of accessing associated data [5].

Inter-node traffic: For the data read requests, if the data
item is not stored at the requesting node, the inter-node
read traffic will be introduced. The total read traffic can be
defined as

L½R� ¼
X
x2M

X
y2N

Rxy � ½1� 1ðx 2 DyÞ�; (5)

where the binary variable 1ðx 2 DyÞ indicates whether item
x is placed at node y or not. Furthermore, when the data

item is written or updated, inter-node write traffic will be
generated for synchronization. The total write traffic is
defined as

L½W� ¼
X
x2M

Wx �
X
y2N

"xy: (6)

System overhead of accessing associated data: Let us con-
sider the scenario that the associated data items in pattern p
are requested from node y. Since the local node y might not
be able to provide all needed data, all locally unobtainable
data items should be fetched from remote nodes. As the
routine process in handling a read request p may cause
extra overheads, e.g., the establishment of TCP connections,
the system overhead is related to the number of involved
remote nodes [5], which can be defined as

X
j2N ;j6¼y

� � dpyj; (7)

where � denotes the constant overhead to fulfill a read
request at a remote node j, j 6¼ y. The binary variable
dpyj 2 f0; 1g indicates whether node j provides data access
for request p or not. With different read rates to various
request patterns, the total overhead to handle all the
requests is given by

L½O� ¼
X
y2N

X
p2P

Rpy �
X

j2N ;j6¼y
� � dpyj: (8)

The operational cost of the cloud storage system can be
reduced if (8) is minimized, which can be achieved by plac-
ing strongly associated data items together.

3.4 Optimization Problem Formulation

Our objective is to minimize the total service overhead by
determining 1) where the data replicas should be placed "xy,
and 2) where the read request should be routed dpyj

minLð"xy; dpyjÞ ¼ L½O� þ h � ðL½R� þ L½W�Þ
s:t: dpyj � 1ðp \DjÞ;

p �
[

j¼y_dpyj¼1
Dj;

"xy; dpyj 2 f0; 1g;

(9)

where h is utilized to trade off the system overhead and
inter-node traffic metrics defined above. Constraint
dpyj � 1ðp \DjÞ ensures only nodes storing items in p can be
set as the destinations of data requests. Constraint
p � S

j¼y_dpyj¼1Dj ensures the route destinations can pro-
vide all the needed data items. Furthermore, the storage
capacity at each node is not considered as a constraint for
the following two reasons: 1) From the user perspective, a
cloud can provide “infinite” storage resources on demand;
2) Our work aims at a lower bound of the total service over-
head by assuming an unlimited storage capacity at each
node. The insights of the replica placement and request
routing problem are as follows:

Insight 1. If more data replicas are placed at each node,
the overhead L½O� and inter-node read traffic L½R� can be
reduced. In the extreme case, if each node stores a full copy

1578 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

of all data items, L½O� and L½R� decrease to 0 as all read
requests can be fulfilled locally. However, this will cause
unnecessary write traffic for synchronization purposes.

Insight 2. It is worth noting that the formulated optimiza-
tion problem is suitable for the scenario where data request
traffic is fairly steady for the time period T . Therefore, the
community discovery-based solution in Section 4 can find a
replica placement solution based on the average read/write
rates for this period. Furthermore, to handle the bursty
requests, an online solution is proposed in Section 5.

Then, the hardness of the formulated optimization prob-
lem is examined. The replica placement and request routing
decision is a 0-1 integer programming problem, which is
proven NP-hard [32]. Furthermore, the difficulty is also par-
tially due to the decision of replica placement and request
routing affecting each other. In general, facing large
amounts of data items, traditional solutions are less effec-
tive, in terms of the running time and overhead, to solve
this problem.

4 COMMUNITY DISCOVERY BASED REPLICA

PLACEMENT

4.1 Design Overview

Considering large-scale datasets, a novel overlapping com-
munity discovery-based approach is proposed to solve the
replica placement and request routing problem (9) in an effi-
cient and scalable way. As shown in Fig. 2, a community is
defined to include a set of data items and a storage node.
Generally speaking, community discovery is to find tight-
knit community structures that have more internal edges
than external ones. As illustrated in Fig. 3, there are three
kinds of external edges among the data-node communities:

(1) If a data item or its replica is not placed at a node, the
data item needs to be fetched from another node
when requested with a data-node read edge exy.

(2) The request pattern which involves multiple data
items can be generalized as a hyperedge epy.

(3) If a data replica is placed at a node, the data synchro-
nization edge ex will be introduced to maintain data
consistency.

Then, it can be demonstrated that the weight of all exter-
nal edges among communities is equivalent to the optimiza-
tion objective value Lð"xy; dpyjÞ in (9) with the following
theorem.

Theorem 1. If the weights of edges are set according to

wpy ¼ �Rpy; for request pattern hyperedge epy;
wxy ¼ hRxy; for data-node read edge exy;

wx ¼ hWx; for data synchronization edge ex;

8<
:

(10)

the sum of external edge weights among communities is equiv-
alent to the optimization objective value Lð"xy; dpyjÞ.

Proof. Given the data-node community fyg [Dy, the num-
ber of read edges initiated from y is

P
x2M½1� 1ðx 2

DyÞ� � 1ðRxy > 0Þ. The number of write edges to node y is
equal to the number of placed replicas

P
x2M "xy. For the

request pattern hyperedge, if the local community cannot
provide all needed data items, the hyperedge may con-
nect different communities, just as shown in Fig. 3. The
number of external hyperedges from node y isP

p2P
P

j2N ;j6¼y dpyj. With the edge weights in (10), the
sum of external edge weights is

X
y2N

X
x2M

hðRxy½1� 1ðx 2 DyÞ� þWx"xyÞ

þ
X
y2N

X
p2P

X
j2N ;j6¼y

�Rpydpyj;
(11)

which is equal to Lð"xy; dpyjÞ. tu
This means that a compact community structure with

fewer external edges can provide a better replica placement
solution. The methodology of community discovery can be
summarized as follows: Initially, each of theN storage nodes
and its affiliated data items (according to D in (1)) are preas-
signed to a different community. Fig. 2a illustrates that the
preassigned storage nodes and data items form N non-over-
lapping communities (also known as seeds). With the local
expansion from seeds, data items are gradually added to the
community, i.e., replicas are placed at storage nodes, based
on some criteria, trying to minimize the weights of all exter-
nal edges. As shown in Fig. 2b, the local expansion outputs
the overlapping data-node communities with replicas.

4.2 Distributed Community Discovery Algorithm

Then, the design details of the distributed community dis-
covery algorithm are presented to solve the replica place-
ment and request routing problem. As the community
discovery is based on the local expansion from seeds, we
show how the external edges change when a data replica is
added into a community first. Let us take Fig. 3 as an exam-
ple with the initial data placement fx4g ! B and fx5; x6g !
D. When data replica x4 is placed at node D, two external
edges, i.e., the request pattern hyperedge and the read

Fig. 2. An example of the overlapping community discovery-based
approach: (a) Initial data-node community with data stored over the
unique master node; (b) Local community expansion for replica place-
ment over the follower nodes.

Fig. 3. Illustration of three kinds of external edges among communities:
data-node read edge, request pattern hyperedge, and data synchroniza-
tion edge.

LIU ETAL.: SCALABLE AND ADAPTIVE DATA REPLICA PLACEMENT FOR GEO-DISTRIBUTED CLOUD STORAGES 1579

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

request edge to x4, could become internal edges, and an
external write edge should be created. However, when x5 is
added to B, the external hyperedge cannot be removed as B
still needs to fetch x6 from D. Therefore, when a data replica
x is added at a node y, the weight variations of external
edges are given by

vxy ¼ wx � wxy �
X
p2Px

wpyuxpy; (12)

where uxpy is a binary variable to decide whether the exter-
nal hyperedge epy can be removed (uxpy ¼ 1) or not
(uxpy ¼ 0). Then, how uxpy can be derived from the current
data locations Dy and request routing dpyj is shown. For
data item x in pattern p requested by node y, the set of
nodes which can provide x for Rpy is given by

fi 2 N jx 2 Di; dpyi ¼ 1g: (13)

Then, by assuming data replica x is placed at node y, uxpy
can be derived from

uxpy ¼ minf1;
X

i2N ;x2Di;dpyi¼1
1ðp �

[
j2N;dpyj¼1;j 6¼i

DjÞg;

(14)

where 1ðp � S
j2N;dpyj¼1;j6¼iDjÞg ¼ 1 indicates if node i is

removed from the routing destination (dpyi 0), other
nodes (dpyj ¼ 1, j 6¼ i) can still provide all needed items for

Rpy. If at least one node i could be removed, the external

hyperedge from y to i can be removed, and uxpy is set to 1.
Based on the analysis above, the criterion of community

expansion is set as: If vxy � 0, data replica x is added to the
community by placing it at node y. This criterion ensures
the efficiency of decision making facing a large amount of
data items. The pseudo code of the distributed community
discovery is listed in Algorithm 1. It is worth noting that in
order to improve the scalability of our design, each data-
node community evolves in parallel for decision making.

Algorithm 1. Distributed Community Discovery

Input: Dataset M, node set N , request pattern read rate Rpy,
data write rateWx, master node yx.
Output: Data replica placement "xy, request routing dpyj.
Initialization: 8"xy 0, dpyj 1 if j ¼ yx.
1: for Data item x 2 M, x =2 Dy do
2: "xy 1,Dy x, if Rxy �Wx;

" Initial replica placement
3: end for
4: Exchange the data storage location information Dj with all

other nodes, j 2 N ;
5: for Request pattern p 2 P do
6: Calculate request routing fdpyjg based onDj, j 2 N ;
7: end for
8: for Data item x 2 M, x =2 Dy do
9: Calculate uxpy based on (14), 8p 2 Px;
10: "xy 1,Dy x, if vxy � 0;

" Community expansion
11: end for
12: Repeat Step 4 – 7 to update the request routing fdpyjg based

on theDj after the expansion, j 2 N

Initially, for each data item which satisfies Rxy �Wx, a
data replica is directly created at node y ("xy 1, Dy x)
as it can always benefit the weight reduction of external
edges. In this step, the total inter-node traffic is minimized.
Then, node y exchanges the storage location information Dj

with all other nodes, j 2 N . The routing of all request pat-
terns Rpy from node y can be calculated based on Dj. As the
amount of inter-node traffic is determined, the optimization
problem in (9) for a read request Rpy is transformed to

min
X

j2N ;j6¼ydpyjs:t: dpyj � 1ðp \DjÞ;

p �
[

j¼y_dpyj¼1
Dj; dpyj 2 f0; 1g:

(15)

Therefore, the objective of routing is to find the minimum
number of nodes to serve each read request, which can be
classified into the classical NP-hard set cover problem [33].
To achieve a high solution efficiency, the well-studied
greedy method is applied here. The storage node which
holds the highest number of uncovered data items in the
earlier iterations is greedily selected. The competitive ratio
of this heuristic method is 2 with the computation complex-
ity of OðN2Þ [33]. Based on the updated routing decision,
the placement of data replica x will be decided by the
expansion criterion. All the rest data items will be consid-
ered one-by-one to decide whether it should be added to
the community. At last, the routing of all request patterns
will be updated again to search for a better routing decision
based on the current data-node communityDj, j 2 N .

4.3 Theoretical Analysis

The performance of the proposed distributed community
discovery algorithm is theoretically analyzed in terms of the
computation complexity and the worst-case performance
bound.

Property 1. Algorithm 1 has the computation complexity of
Oð Pj j �N2 þ Pxj j �N �MÞ.

Proof. If Rxy �Wx, the data items are directly added to the
community with the computation complexity of OðMÞ
(Step 1–3). The exchange of the data storage location
information with all other nodes needs N iterations (Step
4). Then, the routing for all request patterns P at node y
should be calculated (Step 5–7). The used greedy heuristic
method can solve the set cover problem in (15) in a poly-
nomial time OðN2Þ. Moreover, to calculate uxpy (Step 9),
all nodes storing data item x should be considered with
the maximum computation complexity OðNÞ. As data
items may be requested in at most Pxj j patterns at node y,
it needs Pxj j �N �M iterations to decide whether data
items should be added to the community or not. Further-
more, the routing update process of all request patterns
(Step 12) also needs N þ Pj j �N2 iterations. To sum up,
Algorithm 1 needs M þ 2ð Pj j �N2 þNÞ þ Pxj j �N �M
iterations in total. The overall computation complexity is
given by Oð Pj j �N2 þ Pxj j �N �MÞ. tu

Theorem 2. Algorithm 1 incurs no more than 1þ �
h
times of the

optimal objective value Lopt.

Proof. Let us consider an arbitrary data item x1. If x1 is
always requested solely from y, i.e., p ¼ fx1g, the weight

1580 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

variations of external edges for the placement of x1 at y are

vx1y ¼ ðWx1 �Rx1yÞ � h�Rpy � �: (16)

In this case, Algorithm 1 can always find the optimal
solution for x1 based on the defined criterion of commu-
nity expansion.

Then, let us consider the scenario when n data items
are simultaneously requested from node y, n � 2. As
shown in Fig. 4, data item x1 and x2 are assumed to be
placed at a node i initially, i.e., yx1 ¼ yx2 ¼ i. This repre-
sents the case that multiple data items are stored at the
same node. Furthermore, xn is assumed to be placed at a
node j, yxn ¼ j, which represents another case that the
requested data items are solely stored at each node. Given
the storage locations of data items, it can be assumed that
k storage nodes are involved to fulfill the data request,
just as illustrated in Fig. 4a. According to (12), the weight
variations of external edges are given by

vx1y ¼ ðWx1 �Rx1yÞ � h;
vx2y ¼ ðWx2 �Rx2yÞ � h;
. . .
vxny ¼ ðWxn �RxnyÞ � h�

P
p2P Rxny� � 1ðxn 2 pÞ:

8>><
>>:

(17)

Then, we have the following six different cases:
vx1y; vx2y; . . . ; vxny > 0: Based on Algorithm 1, no rep-

lica should be placed at node y, just as shown in Fig. 4a.
Then, the weight of external edges is given by

L ¼ k �
X
p2P

Rpy� � 1ðx1; x2; . . . ; xn 2 pÞ

þ ðRx1y þRx2y þ � � � þRxnyÞ � h:
(18)

However, it is possible that data replica x1, x2; : . . . ; xn
are placed at one node (not y) with the global optimal
solution. In this case, the optimal objective value can be
obtained by fetching x1, x2; . . . ; xn from that node

Lopt ¼
X
p2P

Rpy� � 1ðx1; x2; . . . ; xn 2 pÞ

þ ðRx1y þRx2y þ � � � þRxnyÞ � h:
(19)

As the number of requested patterns should be nomore
than the total number of requested data items,we have

X
p2P

Rpy � 1ðx1; . . . ; xn 2 pÞ � minfRx1y; . . . ; Rxnyg

� Rx1y þ � � � þRxny

n
:

(20)

As n � k, the approximation ratio is bounded by

L

Lopt
<
ðRx1y þ � � � þRxnyÞ � ðhþ �Þ
ðRx1y þ � � � þRxnyÞ � h

< 1þ �

h
: (21)

vx1y, vx2y; . . . ; vx2y � 0: As shown in Fig. 4b, a full copy
of data replicas will be placed at ywith the optimal objec-
tive value

L ¼ Lopt ¼ ðWx1 þWx2 þ � � � þWxnÞ � h: (22)

vx1y; vx2y; . . . > 0, xny; . . . � 0: As shown in Fig. 4c,
data replica xn will be placed at node ywith the objective
value

L ¼ k1 �
X
p2P

Rpy� � 1ðx1; . . . ; xn 2 pÞ

þ ðRx1y þRx2y þ � � � þWxnyÞ � h;
(23)

where k1 is the span of involved storage nodes, k1 < k.
According to (20), we have

L < ðRx1y þRx2y þ . . .Þ�þ ðRx1y þRx2y þ � � � þWxnyÞh:
(24)

The optimal objective value can be obtained by plac-
ing all data replicas at ywith

Lopt ¼ ðWx1 þWx2 þ � � � þWxnÞ � h: (25)

From (17) and (24), the approximation ratio is given by

L

Lopt
<
ðRx1y þRx2y þ � � � þWxnÞðhþ �Þ
ðRx1y þRx2y þ � � � þWxnÞh

¼ 1þ �

h
:

(26)

vx1y; vx2y; . . . � 0, xny; . . . > 0: As shown in Fig. 4d, the
objective value is given by:

L ¼ k2 �
X
p2P

Rpy� � 1ðx1; . . . ; xn 2 pÞ

þ ðWx1y þWx2y þ � � � þRxnyÞ � h;
(27)

where k2 is also the span of involved storage nodes. In
this case, the independently stored data xn should be
fetched from external storage nodes. We can check all
possibilities and determine that Algorithm 1 outputs the
optimal solution L ¼ Lopt.

For the other two cases vx1y; . . . > 0, vx2y; xny; . . . � 0
and vx1y; . . . � 0, vx2y; xny; . . . > 0, it can be also deter-
mined that Algorithm 1 outputs the optimal solution
L ¼ Lopt. Therefore, the overall worst-case performance
bound is given by

Fig. 4. Illustration of replica placement at node y when yx1 ¼ yx2 ¼ i and
yxn ¼ j: (a) No replication; (b) Full data replication x1; x2 and xn; (c) Par-
tial data replication xn; (d) Partial data replication x1 and x2; (e) Partial
data replication x2 and xn; (f) Partial data replication x1.

LIU ETAL.: SCALABLE AND ADAPTIVE DATA REPLICA PLACEMENT FOR GEO-DISTRIBUTED CLOUD STORAGES 1581

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

L

Lopt
< 1þ �

h
: (28)

tu

5 ONLINE COMMUNITY ADJUSTMENT FOR BURSTY

REQUESTS

When the read/write request rates change, it is not neces-
sary to modify the storage system by completely overriding
the existing replica placement. An online community
adjustment scheme is proposed to handle the bursty
requests. Therefore, the service overhead L can be mini-
mized based on the existing replica placement f"xyg and
request routing fdpyjg, x 2 M, y; j 2 N .

The Discounting Rate Estimator (DRE) [34] could be
applied here to construct the real-time request information
fRt

pyg and fWt
xg. For the data read Rt

py, a counter is main-
tained for each pattern p at every node y, which increases
with every read operation, and decreases periodically with a
ratio factor. Similarly, for the data writeWt

x, a counter is also
maintained for each data item x at every node y. The benefits
of DRE are as follows: (1) It reacts quickly to the changes of
the request patterns; (2) It only requires Oð1Þ space and
update time tomaintain the prediction for each counter.

The pseudo code of the online community adjustment is
listed in Algorithm 2, which monitors all data items from
t ¼ 0 to T in parallel. Let t0 denote the last time that the stor-
age location of data item x is updated at node y. If the varia-
tions of read/write request rates are greater than a pre-

defined value, i.e.,
P

p2Px Rt
py �Rt0

py

���
���þ Wt

y �Wt0
y

���
��� > f, the

data storage location will be adjusted accordingly for the
adaptive community expansion and reduction. The constant
f determines how frequently the community is adjusted.
Based on the updated replica placement, the request routing
will also be updated.

Algorithm 2. Online Community Adjustment

Input: Dataset M, node set N , real-time read/write rate Rt
py

and Wt
x, master node yx, existing replica placement "xy and

request routing dpyj.
Output: Updated placement "xy and request routing dpyj.
1: Monitor data item x at node y from t ¼ 0 to T , x 2 M;
2: if

P
p2Px Rt

py �Rt0
py

���
���þ Wt

y �Wt0
y

���
��� > f then

3: if "xy ¼ 1 && y 6¼ yx && Rt
xy < Wt

x then
4: "xy 0, x =2 Dy;
5: Calculate u0xpy based on (29), 8p 2 Px;
6: Update routing: dpyyx 1 if u0xpy ¼ 1, 8p 2 Px;
7: end if
8: if "xy ¼ 0 then
9: Calculate uxpy based on (14), 8p 2 Px;
10: "xy 1,Dy x, if vxy � 0;
11: end if
12: If replica x is added/removed at t, node y broadcasts the

message "xy to other nodes;
13: end if
14: if Receive the message "xj ¼ 1 or "xj ¼ 0; dpyj ¼ 1 from node

j, j 2 N , j 6¼ y then
15: Update request routing fdpyjg with the greedy method in

Section 4.2, 8p 2 Px;
16: end if

Community Reduction (Step 3–7). Initially, the scenario that
data replica x is placed at node y is considered, "xy ¼ 1,
y 6¼ yx. If the read rate decreases with the increased write
rate Rt

xy < Wt
x, replica x is deleted to reduce the total inter-

node traffic without considering the multi-get hole effect.
Then, the request routing for x at node y should be updated.
Therefore, u0xpy is introduced to decide whether a new rout-
ing destination should be added (u0xpy ¼ 1) or not (u0xpy ¼ 0)
if replica x is deleted from y

u0xpy ¼ 1�minf1;
X

j2N ;j6¼y
dpyj � 1ð"xy ¼ 1Þg; (29)

where dpyj � 1ð"xy ¼ 1Þ ¼ 1 indicates that the rest routing des-
tinations (dpyj ¼ 1, j 6¼ y) can still provide data x for Rpy,
p 2 Px. If no destination nodes can provide x, node y can
fetch x from the master node yx, dpyyx 1.

Community Expansion (Step 8–11). If "xy ¼ 0, the expan-
sion criterion proposed in Section 4.2 is used to determine
whether replica x should be added at node y or not.

Routing Update (Step 12–15). If replica x is added or
removed at t, node y broadcasts the message "xy to all
other nodes for routing update. On the other hand, node y
may receive the message from other nodes that the replica
placement of data item x has been changed. If 1) replica x
is added at node j, "xj ¼ 1, or 2) replica x is removed from
the routing destination, "xj ¼ 0, dpyj ¼ 1, the routing of all
patterns p 2 Px will be updated with the greedy method,
j 2 N , j 6¼ y. The theoretical analysis of the proposed
online community adjustment algorithms is provided as
follows.

Property 2. For a data item x, if the variations of request rates
are greater than f, Algorithm 2 will be triggered with the com-
putation complexity of Oð Pxj j �NÞ. If the storage node receives
the message that the replica placement of data item x has been
changed, Algorithm 2 has the computation complexity of
Oð Pxj j �N2Þ.

Proof. For data replica x placed at node y, if Rt
xy < Wt

x, the
data item is directly removed. To calculate u0xpy for routing
update, 8p 2 Px, all routing destinations (dpyj ¼ 1, j 6¼ y)
should be considered with Pxj j �N iterations at most.
Then, if x is not placed at node y, the community expan-
sion also needs Pxj j �N iterations to decide whether x
should be placed at y, just as discussed in Property 1. The
computation complexity of Algorithm 2 for a data item is
Oð Pxj j �NÞ when the variations of request rates are
greater than f.

Then, if node y receives the message that the storage
location of x has been changed, the routing for all
Pxj j request patterns is updated with the greedy
method. The computation complexity of Algorithm 2 is
Oð Pxj j �N2Þ. tu

Theorem 3. At time t, Algorithm 2 incurs no more than 1þ �
h

times of the optimal objective value Lt
opt.

Proof. Initially, the community reduction process ensures
that Rt

xy �Wt
x holds for all remaining data replicas at

each node. The minimum number of data replicas can
be achieved for data item x to reduce the total service
overhead Lt at time t. Then, by considering the multi-get

1582 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

hole effect, the community expansion process gradually
adds more data replicas at each node. According to The-
orem 2, the worst-case performance bound of the incre-
mental community expansion is 1þ �

h
. By using the same

expansion criterion, the worst-case performance bound
of the online community adjustment algorithms is also
given by

Lt

Lt
opt

< 1þ �

h
: (30)

tu
Guided by the offline community discovery scheme, the

proposed online community adjustment scheme is also a
distributed solution. All storage nodes only need to monitor
the information of data read/write request rates and update
the replica placement in parallel. Compared with the cen-
tralized solution which needs to collect the global real-time
request information for placement decision making, the
communication overhead of our scheme is limited with a
higher scalability.

6 PERFORMANCE EVALUATION

In this section, extensive evaluations are performed to eval-
uate the performance of the proposed distributed commu-
nity discovery (DCD) and online community adjustment
(OCA) algorithm. Two real-world traces, i.e., MSR Cam-
bridge Traces [35] and Facebook Friendships Dataset [36],
are synthesized together to extract the real-time request
information for associated data items. The evaluations are
conducted in Python for a parallel implementation of the
geo-distributed storage system.

6.1 Trace Description and Experiment Settings

MSR Cambridge Traces [35]. These are the I/O traces gath-
ered from servers located at Microsoft Research Cam-
bridge where data read/write requests are captured from
36 storage volumes for a week. Based on the traces, it can
be assumed that there are N ¼ 36 geo-distributed storage
nodes in the experiments. Fig. 5a illustrates the arrival
rates of the requests for a period of T ¼ 1 hour at each
node. The distribution is biased among storage nodes due
to real applications. The proposed DCD algorithm can
find a replica placement solution based on the average
read/write rates for this period. For each request, the
hostname, request type (read/write), and timestamp are
given. Fig. 5b illustrates the time-varying feature of data
request rates. Based on DCD, the OCA algorithm is fur-
ther proposed to handle the bursty requests during the
period T .

However, for the reason of confidentiality, most publicly
available traces, including the utilized MSR Cambridge
Traces, do not specify the detailed data items for each read/
write request. Therefore, Facebook Friendships Dataset is
introduced. These two data traces are synthesized together
to extract the detailed data request information.

Facebook Friendships Dataset [36]. Similar to the previous
study [5], the request pattern information is extracted from
the OSN dataset. The friend relationships can be discovered
through dataset analysis. Let us consider that a news update
operation from a user would incur the data fetching of all

his friends. The friend relationships form the request pat-
tern information of each considered user. Each user is
treated as a data item. Then, there are M ¼ 63; 731 data
items and Pj j ¼ 45; 092 read request patterns in total. Each
request pattern contains 13.92 items on average. It can be
assumed that each data item is randomly and uniformly
assigned to one of the 36 nodes as the original storage loca-
tion. The read rates of request patterns and the write rates
of data items at node y follow a Zipf distribution with
Ry ¼

P
p2P Rpy and Wy ¼

P
x2MWx as shown in Fig. 5a, just

similar to [5], [8], [17]. The tail index of the Zipf distribution
is set to 1.25. The ratio of read/write frequency of all data

items

P
x2M

P
y2N RxyP

x2M Wx
is 19.2. Please note that the proposed

data replica placement schemes can be evaluated under var-
ious system configurations. Experiment settings, e.g., vari-
ous workload characterizations, data request distributions,
and autoregressive models, can be configured according to
different user choices.

Furthermore, the default values of overhead � and
weight h are set to 1.0 and 1.0, respectively. The constant f
is set to 10 for OCA.

Performance Baselines. In the experiments, three other data
replica placement schemes are introduced for a fair perfor-
mance comparison. The first is Random—randomly places
data replicas to storage nodes to optimize the load-balanc-
ing, which has been widely adopted in the distributed stor-
age systems today, such as HDFS [28] and Cassandra [29].
The second is ADP [5]—utilizes hypergraph partitioning to
iteratively optimize the storage locations of data replicas.
ADP is a centralized scheme to reduce the access overhead
of associated data items and the inter-node read traffic. The
third is SDP [5]—constructs a hypergraph sparsifier of data

Fig. 5. Read/write request rates based on MSR Cambridge Traces [35].

LIU ETAL.: SCALABLE AND ADAPTIVE DATA REPLICA PLACEMENT FOR GEO-DISTRIBUTED CLOUD STORAGES 1583

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

traffic to lower the computation complexity of ADP. How-
ever, the synchronization traffic for data write is ignored in
ADP and SDP.1

6.2 Evaluation Results

In the beginning, the performances of four offline schemes,
i.e., Random, ADP, SDP, and DCD, are compared in terms
of the obtained objective values L based on their replica
placement results. It is worth noting that all the objective
values shown in the following figures are normalized
against the worst performance obtained by Random under
the default settings. Considering the associated relationship
of data in the request patterns, ADP, SDP, and DCD gener-
ate less inter-node read traffic L½R� and access overhead
L½O� in comparison with Random. As shown in Fig. 6, com-
pared with Random, the overall objective value with ADP,
SDP and DCD can be reduced by 83.52, 83.03 and 82.67 per-
cent, respectively.

Furthermore, ADP and SDP are centralized schemes,
which use hypergraph partitioning and sparsification to
iteratively achieve the replica placement solution, respec-
tively. Therefore, ADP and SDP achieve less L½R� + L½O�

than that achieved by the distributed scheme DCD. Note
that the data synchronization traffic L½W� is the same with
ADP, SDP, and DCD in Fig. 6. Hence, the performance gap
between ADP, SDP, and DCD is limited. However, the com-
putation overheads of ADP and SDP are higher than that of
DCD, just as shown in Section 6.3.

Then, the performance of the proposed online scheme
OCA is compared. Based on the replica placement results
obtained by DCD, OCA handles the bursty requests in
Fig. 5b. The replicas of data items are adaptively added or
removed from storage nodes according to the current data
read/write request rates. Compared with the proposed off-
line solution DCD, the overall objective value can be further
reduced by 29.48 percent with DCD + OCA.

The load balancing performance is also compared. Fig. 7
illustrates the number of stored data items and outgoing
traffic of each storage node with different solutions. Due to
the stochastic nature of Random, the stored data items are

uniformly distributed among nodes. However, due to the
biased distribution of user requests, the outgoing traffic is
unbalanced. Note that ADP, SDP, and DCD intend to place
more replicas on nodes with more read requests to reduce
the inter-node read traffic. The stored data items are
unevenly distributed but with more balanced outgoing traf-
fic. Furthermore, OCA tracks the dynamics of data request
rates. More data replicas will be added to further reduce the
read traffic when the data read requests increase. On the
contrary, unnecessary data replicas will be removed to
reduce the synchronization traffic when the data write dom-
inates. Therefore, both the stored data items and the outgo-
ing traffic become more balanced with DCD + OCA.

6.3 Network Scalability

The scalability of the placement scheme is determined by its
computation complexity. Four offline solutions, i.e., Ran-
dom, ADP, SDP, and DCD, are included for a fair perfor-
mance comparison in Figs. 8 and 9. The average running
time of four offline schemes determines the efficiency of
deploying a replica placement solution. Please note that
OCA monitors the dynamics of request rates for each data
item during the service period T in a real-time manner.
Therefore, OCA is not included in the performance compar-
ison. The hardware in the experiments features an Intel(R)
Core(TM) i7-7700 HQ processor and 16 GB memory.

Compared with any data placement solutions, Random
achieves the minimum computation complexity by using
simple heuristics. Under the default settings, Random only
lasts 2.18 s on average. Due to the high complexity of hyper-
graph partitioning over large-scale networks, ADP needs a

Fig. 6. Performance comparison with other schemes.
Fig. 7. Number of stored data items and outgoing traffic of nodes in a
scatter plot.

Fig. 8. Network scalability of the offline schemes: Average running time
with the number of storage nodes.

1. In the design of Random, ADP, and SDP, the replica number of
data items is a predefined value. Therefore, for a fair performance com-
parison, the replica number of Random, ADP, and SDP is set to the
same value achieved in DCD. Under this setting, the data synchroniza-
tion traffic is the same with Random, ADP, SDP, and DCD.

1584 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

much longer time of 474.62 s to converge.2 Furthermore,
SDP sparsifies the hypergraph through probabilistic sam-
pling, reducing the computation complexity of hypergraph
partitioning with a running time of 48.58 s. Unlike the cen-
tralized schemes above, with the parallel community expan-
sion, the running time of DCD is determined by the longest
running time of the individual data-node community. Com-
pared with ADP, DCD incurs a similar overhead L with a
much lower running time of 6.01 s.

Then, the scalability is evaluated with different network
scales where the number of storage nodes N varies from 16
to 36, with the fixed number of data items M ¼ 63; 731 and
read request patterns Pj j ¼ 45; 092, just as mentioned in Sec-
tion 6.1. This can be realized by using part of the MSR Cam-
bridge Traces. As shown in Fig. 8, the average running time
increases dramatically from 154.34 to 474.62 s with the cen-
tralized ADP scheme. Although with reduced computation
complexity, the average running time of SDP also increases
rapidly from 12.02 to 48.58 s. In contrast, with the distrib-
uted DCD scheme, the average running time increases
slightly from 5.24 to 6.01 s. This means the proposed DCD
scheme is more scalable for the large-scale deployments of
storage nodes.

Fixing the number of storage nodes at 36, the running
time performance is evaluated with the number of data
items varying from 10,000 to 60,000. Similarly, this can be
realized by extracting part of data items from the Facebook
Friendships Dataset. As shown in Fig. 9, the average run-
ning time increases from 134.64 to 472.28 s with ADP and
from 5.16 to 48.17 s with SDP. Furthermore, according to
our design, the computation complexity of DCD is linear to
the amount of data items. Therefore, the average running
time with DCD also increases linearly from 1.11 to 6.0 s.
This demonstrates the scalability and efficiency of our
scheme DCD to handle large-scale datasets.

6.4 Impact of Other Factors

To fully evaluate the performance of the proposed DCD and
OCA schemes, several other factors are considered with the
fixed setting N ¼ 36,M ¼ 63; 731, and Pj j ¼ 45; 092.

Read/Write Frequency. The data access type varies for dif-
ferent storage systems. For example, the system could be
both read-intensive and write-intensive for OSN. On the

other hand, for content delivery networks, the system is
read-intensive with rare data write. Therefore, the write fre-
quencies of data itemsWx are magnified or reduced in equal
proportion to emulate the scenario with various data access
types. When the ratio of read/write frequency is 1.0, the
average number of created replicas for each data item is
9.07 with DCD, ADP and Random. Meanwhile, DCD +
OCA generates 9.26 replicas on average. Then, when the
ratio of read/write frequency increases to 20.0, more data
replicas (11.48 with DCD, ADP, SDP, and Random, and
11.78 with DCD + OCA) will be created to reduce the inter-
node traffic and the access overhead to associated data.
With more data replicas, ADP, SDP, DCD, and OCD
schemes have more space to further reduce the service over-
head L. As shown in Fig. 10, the performance gaps between
Random and the other three schemes become higher and
higher. For example, the performance gain of DCD over
Random increases from 58.81 to 82.84 percent with the
increased read/write ratio.

Weight h. The tradeoff parameter h in (9) can balance the
importance of the data association and inter-node traffic.
With the increase of h from 0.5 to 3, the weight of the inter-
node traffic goes up in the objective function. According to
the performance bound in Eq. (28), with the increase of h,
the output of DCD is getting closer and closer to the optimal
solution.3 As shown in Fig. 11, the performance gain of
DCD over Random increases from 78.18 to 83.33 percent
with the increased weight h.

Pre-Defined Value f. The pre-defined value f determines
how frequently the community is adjusted, which greatly

Fig. 9. Network scalability of the offline schemes: Average running time
with the number of data items.

Fig. 10. Impact of the read/write frequency.

Fig. 11. Impact of tradeoff parameter h.

2. The running time of ADP is not the same as that in [5] due to the
difference of used hardware and parameter settings in the experiments.

3. Note that if h!1, then the access overhead to associated data is
not considered, and DCD can achieve the optimal objective value.

LIU ETAL.: SCALABLE AND ADAPTIVE DATA REPLICA PLACEMENT FOR GEO-DISTRIBUTED CLOUD STORAGES 1585

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

influences the performance of the proposed online scheme
OCA. As the read/write rates of data items follow a Zipf
distribution, a small portion of data items occupies the
majority of data requests. This also means that during the
service period, the variations of request rates are not signifi-
cant for the remaining large number of data items. When f

increases from 5 to 30, the percentage of data items that
have changed their storage locations during the service
period is decreased from 11.79 to 4.06 percent. The data-
node communities are less frequently adjusted with less
computation overhead. As shown in Fig. 12, compared with
the offline scheme DCD, the performance gain with DCD +
OCA is decreased from 31.65 to 14.54 percent along with
the increased value f.

Furthermore, Fig. 12 demonstrates that the proposed online
scheme OCA can reduce the computation overhead when
faced with bursty requests. It is not necessary to completely
overriding the existing replica placement with the offline
scheme DCD. Compared with DCD, only part of the data
itemswill change their storage locationswithDCD+OCA.

7 CONCLUSION AND FUTURE WORK

Observing the increasing scale of data items and time-vary-
ing data requests in geo-distributed storage systems, we
proposed scalable and adaptive data replica placement
schemes based on the overlapping community discovery
approach to improve the efficiency of making placement
decisions. With an overall consideration of the inter-node
traffic and system overhead of accessing associated data,
data-node communities can evolve to decide whether each
data replica should be placed at each node in a parallel way.
This distributed implementation along with the linear com-
putation complexity over the number of data items ensures
the scalability of our design. The online scheme was further
proposed to adaptively handle the bursty requests. The
worst-case performance bound was also theoretically ana-
lyzed. Evaluation driven by real-world datasets showed
that compared with the centralized scheme ADP, the pro-
posed scheme DCD incurs similar data access overhead,
while greatly reduces the running time. Guided by the off-
line DCD, the data access overhead can be further reduced
by about 30 percent with the online OCA.

In future work, more performance metrics, e.g., data
access latencies, cost of storage, and load balance among
storage nodes, will be considered in the data replica place-
ment. These metrics may also influence the performance of

the storage system. Furthermore, a prototype of the geo-dis-
tributed cloud storage system based on Amazon EC2 clus-
ters will be built for a series of real-world experiments to
validate the performance of the proposed data replica place-
ment schemes.

ACKNOWLEDGMENTS

The authors would like to acknowledge that this work was
partially supported by the National Natural Science Foun-
dation of China (Grant Nos. 61672537, 61672539 and
61873353), China Postdoctoral Science Foundation, and in
part by NSERC, CFI, and BCKDF.

REFERENCES

[1] Data Growth, Business Opportunities, and the IT Imperatives,
2014. [Online]: https://www.emc.com/leadership/digital-
universe/2014iview/executive-summary.htm

[2] Y. Mansouri, A. N. Toosi, and R. Buyya, “Data storage manage-
ment in cloud environments: Taxonomy, survey, and future
directions,” ACM Comput. Surv., vol. 50, no. 6, 2017, Art. no. 91.

[3] G. Liu, H. Shen, and H. Chandler, “Selective data replication for
online social networks with distributed data centers,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 8, pp. 2377–2393, Aug. 2016.

[4] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bho-
gan, “Volley: Automated data placement for geo-distributed cloud
services,” in Proc. USENIX Conf. Netw. Syst. Des. Implementation,
2010, Art. no. 2.

[5] B. Yu and J. Pan, “A framework of hypergraph-based data place-
ment among geo-distributed datacenters,” IEEE Trans. Services
Comput., to be published, doi: 10.1109/TSC.2017.2712773.

[6] Q. Pu et al., “Low latency geo-distributed data analytics,” in Proc.
ACM Conf. Special Interest Group Data Commun., 2015, pp. 421–434.

[7] B. Yu and J. Pan, “Sketch-based data placement among geo-dis-
tributed datacenters for cloud storages,” in Proc. IEEE INFOCOM,
2016, pp. 1–9.

[8] X. Ren, P. London, J. Ziani, and A. Wierman, “Datum: Managing
data purchasing and data placement in a geo-distributed data mar-
ket,” IEEE/ACMTrans. Netw., vol. 26, no. 2, pp. 893–905, Apr. 2018.

[9] L. Jiao, J. Li, W. Du, and X. Fu, “Multi-objective data placement for
multi-cloud socially aware services,” in Proc. IEEE INFOCOM,
2014, pp. 28–36.

[10] A. Charapko, A. Ailijiang, and M. Demirbas, “Adapting to access
locality via live data migration in globally distributed datastores,”
in Proc. IEEE Int. Conf. Big Data, 2018, pp. 3321–3330.

[11] D. A. Tran, K. Nguyen, and C. Pham, “S-CLONE: Socially-aware
data replication for social networks,” Comput. Netw., vol. 56, no. 7,
pp. 2001–2013, 2012.

[12] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli, N. Laoutaris,
and K. Papagiannaki, “TailGate: Handling long-tail content with a
little help from friends,” in Proc. 21st Int. Conf. World Wide Web,
2012, pp. 151–160.

[13] S. Raindel and Y. Birk, “Replicate and bundle (RnB)–A mecha-
nism for relieving bottlenecks in data centers,” in Proc. IEEE 27th
Int. Symp. Parallel Distrib. Process., 2013, pp. 601–610.

[14] R. Nishtala et al., “Scaling memcache at Facebook,” in Proc. USENIX
Conf. Netw. Syst. Des. Implementation, 2013, pp. 385–398.

[15] A. Atrey, G. V. Seghbroeck, H. Mora, F. D. Turcka, and B. Volckaert,
“SpeCH: A scalable framework for data placement of data-intensive
services in geo-distributed clouds,” J. Netw. Comput. Appl., vol. 142,
pp. 1–14, 2019.

[16] V. Zakhary, F. Nawab, D. Agrawal, and A. E. Abbadi, “Global-
scale placement of transactional data stores,” in Proc. 21st Int.
Conf. Extending Database Technol., 2018, pp. 385–396.

[17] K. Liu, J. Wang, Z. Liao, B. Yu, and J. Pan, “Learning-based adap-
tive data placement for low latency in data center networks,” in
Proc. IEEE 43rd Conf. Local Comput. Netw., 2018, pp. 142–149.

[18] K. Liu et al., “A learning-based data placement framework for low
latency in data center networks,” IEEE Trans. Cloud Comput., to be
published, doi: 10.1109/TCC.2019.2940953.

[19] M. Annamalai et al., “Sharding the shards: Managing datastore
locality at scale with Akkio,” in Proc. USENIX Conf. Operating
Syst. Des. Implementation, 2018, pp. 445–460.

Fig. 12. Impact of f on the online scheme OCA.

1586 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
http://dx.doi.org/10.1109/TSC.2017.2712773
http://dx.doi.org/10.1109/TCC.2019.2940953

[20] S. Sobolevsky and R. Campari, “General optimization technique
for high-quality community detection in complex networks,”
Phys. Rev. E, vol. 90, no. 1, 2014, Art. no. 012811.

[21] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” J. Statist.
Mech.-Theory Experiment, vol. 2008, no. 10, pp. 1–12, 2008.

[22] N. P. Nguyen, T. N. Dinh, Y. Xuan, and M. T. Thai, “Adaptive
algorithms for detecting community structure in dynamic social
networks,” in Proc. IEEE INFOCOM, 2011, pp. 2282–2290.

[23] G. Palla, I. Der�enyi, I. Farkas, and T. Vicsek, “Uncovering the
overlapping community structure of complex networks in nature
and society,”Nature, vol. 435, pp. 814–818, 2005.

[24] H. Long, “Overlapping community detection with least replicas in
complex networks,” Inf. Sci., vol. 453, pp. 216–226, 2018.

[25] H. Chen, H. Jin, and S. Wu, “Minimizing inter-server communica-
tions by exploiting self-similarity in online social networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 4, pp. 1116–1130,
Apr. 2016.

[26] J. M. Pujol et al., “The little engine(s) that could: Scaling online
social networks,” in Proc. ACMSIGCOMMConf., 2011, pp. 375–386.

[27] K. Hu and G. Zeng, “Placing big graph into cloud for parallel
processing with a two-phase community-aware approach,”
Future Gener. Comput. Syst., vol. 101, pp. 1187–1200, 2019.

[28] HDFS Architecture Guide, 2019. [Online]: https://hadoop.
apache.org/

[29] Cassandra, 2019. [Online]: http://cassandra.apache.org/
[30] J. S. Hunter, “The exponentially weighted moving average,”

J. Quality Technol., vol. 18, no. 4, pp. 203–210, 1986.
[31] J. Zhou and J. Fan, “JPR: Exploring joint partitioning and replica-

tion for traffic minimization in online social networks,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 1147–1156.

[32] M. R. Garey and D. S. Johnson, Computer and Intractability: A Guide
to The Theory of NP-Completeness. Amsterdam, The Netherlands:
Elsevier, 1979.

[33] U. Feige, “A threshold of ln n for approximating set cover,”
J. ACM, vol. 45, no. 4, pp. 634–652, 1998.

[34] M. Alizadeh et al., “CONGA: Distributed congestion-aware load
balancing for datacenters,” ACM SIGCOMM Comput. Commun.
Rev.. vol. 44, pp. 503–514, 2014.

[35] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Trans.
Storage, vol. 4, no. 3, pp. 1–23, 2008.

[36] J. Kunegis, “KONECT: The Koblenz network collection,” in
Proc. 22nd Int. Conf. World Wide Web, 2013, pp. 1343–1350.

Kaiyang Liu (Member, IEEE) received the PhD
degree from the School of Information Science
and Engineering, Central South University,
Changsha, China, in 2019. From 2016 to 2018,
he was a research assistant with the University of
Victoria, Victoria, BC, Canada. His research inter-
ests include networked systems, distributed sys-
tems, and cloud/edge computing, with a special
focus on the analysis and optimization of the
data-intensive services. He is one of the three
IEEE LCN 2018 Best Paper Award candidates.

Jun Peng (Member, IEEE) received the BS degree
from Xiangtan University, Xiangtan, China, in 1987,
the MSc degree from the National University of
Defense Technology, Changsha, China, in 1990,
and the PhD degree from Central South University,
Changsha, China, in 2005. In April 1990, she joined
the Central South University. From 2006 to 2007,
shewaswith the School of Electrical and Computer
Science, University of Central Florida, as a visiting
scholar. She is currently a professor with theSchool
of Computer Science and Engineering, Central

South of University, China. Her research interests include cooperative con-
trol, cloud computing, andwireless communications.

Jingrong Wang (Student Member, IEEE) received
the bachelor’s degree from the School of Electronic
and Information Engineering, Beijing Jiaotong Uni-
versity, Beijing, China, in 2017, and theMSc degree
in computer science from the University of Victoria,
Victoria, BC, Canada, in 2019. She is currently
working toward the PhD degree at the University of
Toronto, Toronto, ON, Canada. Her research inter-
ests include wireless communications, mobile edge
computing, andmachine learning.

Weirong Liu (Member, IEEE) received the BE
degree in computer software engineering and the
ME degree in computer application technology
from the Central South University, Changsha,
China, in 1998 and 2003, respectively, and the
PhD degree in control theory and control engi-
neering from the Institute of Automation, Chinese
Academy of Sciences, Beijing, China, in 2007.
Since 2008, he has been a faculty member with
the School of Information Science and Engineer-
ing, Central South University, where he is

currently a professor. His research interests include cooperative control,
energy storage management, reinforcement learning, neural networks,
wireless sensor networks, network protocol, and microgrids.

Zhiwu Huang (Member, IEEE) received the BS
degree in industrial automation from Xiangtan Uni-
versity, Xiangtan, China, in 1987, the MS degree in
industrial automation from the Department of Auto-
matic Control, University of Science and Technol-
ogy Beijing, Beijing, China, in 1989, and the PhD
degree in control theory and control engineering
from Central South University, Changsha, China, in
2006. In 1994, he joined the Central South Univer-
sity. From 2008 to 2009, he was with the School of
Computer Science and Electronic Engineering,

University of Essex, United Kingdom, as a visiting scholar. He is currently a
professor with the School of Automation, Central South University, China.
His research interests include fault diagnostic technique and cooperative
control.

Jianping Pan (Senior Member, IEEE) received the
bachelor’s and PhD degrees in computer science
fromSoutheast University, Nanjing, Jiangsu, China.
He is currently a professor of computer science
with the University of Victoria, Victoria, British
Columbia, Canada. He did his postdoctoral
research with the University of Waterloo, Waterloo,
Ontario, Canada. He also worked with Fujitsu Labs
and NTT Labs. His area of specialization is com-
puter networks and distributed systems, and his
research interests include protocols for advanced

networking, performance analysis of networked systems, and applied net-
work security. He received the IEICE Best Paper Award in 2009, the Tele-
communications Advancement Foundation’s Telesys Award in 2010, the
WCSP 2011 Best Paper Award, the IEEE Globecom 2011 Best Paper
Award, the JSPS Invitation Fellowship in 2012, the IEEE ICC 2013 Best
Paper Award, and the NSERC DAS Award in 2016, and is a co-author of
one of the three IEEE LCN 2018 Best Paper Award candidates, and has
been serving on the technical programcommittees ofmajor computer com-
munications and networking conferences including IEEE INFOCOM, ICC,
Globecom,WCNC, and CCNC. He was the ad hoc and Sensor Networking
Symposium co-chair of IEEE Globecom 2012 and an associate editor of
the IEEE Transactions on Vehicular Technology.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LIU ETAL.: SCALABLE AND ADAPTIVE DATA REPLICA PLACEMENT FOR GEO-DISTRIBUTED CLOUD STORAGES 1587

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:40 UTC from IEEE Xplore. Restrictions apply.

https://hadoop.apache.org/
https://hadoop.apache.org/
http://cassandra.apache.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

