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Proactive Mobility Management With Trajectory
Prediction Based on Virtual Cells in
Ultra-Dense Networks

Qian Liu, Gang Chuai, Jingrong Wang

Abstract—Ultra-dense networking (UDN) is a promising tech-
nology to improve the network capacity in the next-generation
mobile communication system. The virtualization paradigm is
tightly integrated into UDN to address the problem of interference
management. However, mobility management based on virtual cells
meets significant challenges in UDN due to the frequent handovers
and massive signaling overhead. These problems become severe
for vehicles owing to their high-speed movement. In this paper,
driven by trajectory prediction using a real-world vehicle mobility
dataset, we propose a proactive mobility management solution
based on virtual cells. Four modules are designed in the centralized
Software-Defined Networking controller to support the proposed
solution. The proposed LSTM-DR framework predicts the next
locations of vehicles by integrating Long Short-Term Memory
(LSTM) networks and Dead Reckoning (DR) method. The active
gNBs selection algorithm selects the serving gNBs to form virtual
cells according to predicted locations and mobility preferences. The
corresponding signaling procedure is then carefully designed to
further reduce the signaling overhead. Simulation results show that
the proposed prediction framework can achieve higher accuracy
and robustness in trajectory prediction. The proposed proactive
solution reduces the handover frequency and handover failure rate
and thereby saves the handover signaling overhead significantly.

Index Terms—Proactive mobility management, trajectory
prediction, mobility preference, signaling procedure, virtual cells,
UDN.

I. INTRODUCTION

LTRA-DENSE networking (UDN) is a pillar technol-
l ] ogy for the next-generation of mobile communication to
enhance the system capacity in hotspots [1]. The ultra-dense
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and irregular deployment of the next-generation NodeBs, i.e.,
gNBs, reduces the distance between the transmitter and the
receiver. With gNBs being deployed closer to users, the spec-
trum efficiency per unit area gets enhanced. Moreover, the
ultra-dense deployment environment can bring more chances
to multi-gNB cooperation. The effective utilization of radio
resources among cooperative gNBs can also improve the system
capacity. However, the ultra-dense gNBs deployment results in
a high interference level and the degradation of communication
performance.

On the other hand, virtual cell (VC) technique can take ad-
vantage of the multi-gNB cooperation to offer benefits in terms
of interference management. Users receive data from multiple
gNBs around them as if each user is located in the center of
its own VC [2]. By this architecture, the interference sources
can be turned to useful signals, and the received signals are not
affected by close scattering paths. VCs enable cell-edge users to
utilize resources efficiently from multiple gNBs and break the
limitation of conventional static cell topology.

Instead of adopting the cell-centric approach, a user-centric
VC is more suitable for UDN. On the other hand, the UDN
provides more chances to realize multi-gNB cooperation. There-
fore, VC technique is more tightly integrated into UDN. These
two techniques were combined to improve spectral efficiency
and energy efficiency [3]. However, mobility management
(MM) based on VCs becomes more complicated in UDN due to
the ultra-dense deployment and multi-gNB connection. Frequent
handovers (HOs) may generate a large amount of control and
signaling overhead, especially for users with high mobility.

N. Meng et al. proposed a user-centric MM solution [4], which
uses VC design based on the local anchor for the seamless
movement in UDN. M. Joud ef al. adopted an adaptive cell
clustering scheme accomplished with the dual connectivity tech-
nique to improve the mobility robustness in UDN [5]. The novel
architectures [6], [7] were developed to support MM in UDN,
which can dramatically reduce HO latency and HO overhead.
These works have a similar concept of splitting control planes
and user planes. They take advantage of a logically centralized
control plane to maintain the connection to provide seamless
coverage for mobile users.

Meanwhile, some authors proposed an SDN-based architec-
ture in small cell networks [8], [9]. They integrated the SDN
paradigm into an X2-based local MM scheme. The centralized
SDN controller maintained a global view of the network. An
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SDN-based VC architecture was introduced [10] to enhance the
quality of experience of users. These researches open a new
direction to address the challenges due to the dense deploy-
ment of small cells. However, they mainly address problems
of inconsistent interfaces, extensive backhauling, and seamless
coverage for mobile users. The control information and signaling
overhead are still frequent and massive. Moreover, most existing
works target on pedestrians in UDN. Frequent HOs and heavy
signaling overhead become severe if considering vehicles with
higher mobility.

Therefore, the problem of frequent HOs and massive signal-
ing overhead in UDN for the vehicle-centric VCs should be
addressed. The HO procedures generally include the detection
of available gNBs, the notification of VCs, the admission of
resource allocation, and the execution of the HO signaling.
Though the optimized HO signaling can reduce overhead to a
certain degree, the frequent change of serving gNBs still causes
alarge amount of control information. An efficient MM solution
based on vehicle-centric VCs is needed in UDN. In this paper,
we analyze real-world taxi traces in Rome, Italy. These taxis are
assumed located in a scenario with SDN-enabled ultra-dense
networks. Each taxi adopts the user-centric VC approach to
access the wireless network. A novel proactive MM solution
with trajectory prediction is designed for vehicles. The main
contributions of this paper are summarized as follows:

1) A trajectory prediction framework is proposed, which
integrates Long Short-Term Memory networks and Dead
Reckoning method to predict the vehicles’ trajectories in
various road scenarios.

2) Four function modules are designed for a centralized SDN
controller to measure the quality of gNBs around vehicles
and build VCs in advance based on the predicted locations.

3) An active gNBs selection algorithm is proposed to priori-
tize gNBs activation according to the mobility preferences.
The proposed algorithm improves the serving time and
quality of VCs and thereby reduces HO frequency and
HO failure rate (HFR).

4) An HO signaling procedure is designed for VC-based
MM. The optimized signaling procedure is combined
with proactive management to further reduce the signaling
overhead.

The rest of this paper is organized as follows. In Section II, the
related work about vehicle-centric VCs, MM assisted by predic-
tion information, and vehicle trajectory prediction is presented.
In Section III, the system model and the dataset of vehicle traces
are introduced. In Section IV, a proactive mobility solution is
proposed. The solution includes the design of function modules,
a trajectory prediction framework, an active gNBs selection
algorithm, and the HO signaling procedure. The prediction and
simulation results are analyzed in Section V. The conclusions
are provided in Section VI.

II. RELATED WORK

A. Vehicle-Centric VCs

Some researches are dedicated to the issue of the realizations
of VCs for vehicles-to-infrastructure communications. T. Sahin
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et al. presented a realization of VCs for the vehicle broadcast
groups [11]. It had improvements in terms of latency, capacity,
and reliability performance. K. Chen ef al. realized the formation
of VCs by integrating open-loop radio transmission and error
control [12]. It introduced a proactive network association to
achieve ultra-low latency. An anticipatory MM solution was in-
troduced to predict the next access points in the ultra-low latency
communication networks [ 13]. However, the main target of these
works is reducing latency and increasing reliability. The problem
of massive signaling overhead is not solved. The serving gNBs
start to provide services for vehicles after the measurement,
decision, and signaling interaction procedures. These processes
need a large amount of control signaling messages.

B. MM Assisted by Prediction Information

Other researches used prediction information to improve MM
efficiency. The prediction algorithms were proposed [14], [15] to
reduce the impact of frequent HOs on management performance
and provide seamless communication. A novel prediction-based
clustering scheme was proposed [16], which can predict vehi-
cles’ longevity of being the cluster head. In [17], an optimization
of HO parameters was applied in UDNs to minimize the system
HFR. A neural networks (NN) based model is presented in [18]
to predict the next serving base stations by the sequences of
Received Signal Strength (RSS). However, these works mainly
focused on predicting HO, RSS, and clustering. For vehicle-
centric VCs in UDN, the MM solution based on the real-world
trajectory prediction has not been addressed.

Indeed, the predicted trajectories present the useful informa-
tion of vehicle movement in the near future: moving direction,
velocity, and mobility patterns. The information is not only
useful for HO decision but also crucial for other aspects of MM,
i.e., location management and resource allocation. Moreover,
many taxi companies are required to install the Global Posi-
tioning System (GPS) devices in their taxis for administrative
purposes, which can record the taxi traces. It provides a pos-
sibility to predict vehicles’ movement by the historical trace
data. Therefore, an accurate trajectory prediction is expected
to help enhance the MM efficiency of vehicles, thus avoiding
unacceptable degradation of the service quality.

C. Vehicle Trajectory Prediction

Vehicle mobility has a strong correlation with the inherent
randomness of different drivers’ driving behavior [19]. Some
typical methods such as Dead Reckoning (DR) are suitable
for the linear mobility pattern. Inspired by the inertia-based
prediction technique, DR treats the speed and direction in the
latest slot as the estimated values for the future location. The next
location is calculated by the current location and the estimated
speed and direction [20]. However, its performance is decreased
due to the non-linear characteristic of the random movement
and may lead to a large deviation [21]. Therefore, the drivers’
behavior features, i.e., hidden mobility patterns, can be further
extracted from the historical trajectories to improve the predic-
tion accuracy of the near future location.
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The vehicle trajectory prediction problem can be treated as a
particular case of time series forecasting, which can be solved ef-
ficiently by machine learning algorithms [22]. Auto-Regressive
Moving Average (ARMA) models, the traditional time series
forecasting method, can be used to model the stationary tra-
jectory series [23] and estimate vehicle positions [24]. Support
Vector Machine (SVM), a supervised classification method, was
also used to predict the lane change of vehicles [25], [26]. The
Random Forest (RF) model has been shown to have a better
trajectory prediction accuracy than the Kalman filter [27], as
well as being robust in predicting latitude and longitude [28].
However, compared with the Recurrent Neural Network (RNN),
the traditional machine learning methods could result in a high
computational cost and lower prediction accuracy for long-term
time series [29]-[31].

RNN is especially suitable to capture the temporal and spatial
evolution of human moving patterns [32]. Long Short-Term
Memory (LSTM) networks, a typical RNN architecture, is de-
signed to learn the long-term time series. It is able to store
and update the key information efficiently over a long time.
LSTM networks are considered particularly efficient for time
series forecasting [33], [34] and have been widely used in the
vehicle trajectory prediction [35]-[37]. Regarding the city-wide
mobility, we have observed that NN-based methods maintain
high accuracy in complex traffic environments such as down-
town, while DR-based methods show the superiority of low
computation complexity on highways. In this paper, we not only
leverage the advantage of LSTM but also jointly consider the
road limitations. The proposed LSTM-DR integrated prediction
framework can handle various road and traffic scenarios.

From the related work listed above, it can be found that
the vehicles’ trajectories can be predicted efficiently, and the
predicted information is beneficial for vehicles” MM. If HO can
be prepared in advance and the appropriate serving gNBs are
selected according to the predicted locations, the number of HOs
and the signaling cost can be reduced significantly. Therefore,
a VC-based proactive management solution is proposed for
vehicles, which reasonably selects the serving gNBs in advance
based on the predicted trajectories.

III. SYSTEM MODEL

An SDN-enabled ultra-dense network is illustrated in Fig. 1.
The network consists of an SDN controller and multiple gNBs
with vehicles driving along the road. The controller manages
all gNBs to provide wireless access for vehicles. gNBs Z are
distributed subject to a stationary Poisson Point Process (PPP)
with density L. A set of gNBs within radius D around vehicle
j € J form a VC. Therefore, the candidate gNBs of vehicle j
can be denoted as V; = {i € Z s.t. d;; < D}, where d;; is the
Euclidean distance between gNB 7 and vehicle j.

gNBs in V; are considered as “active” when their reference
signal received power (RSRP) are higher than a threshold 7.
The active gNBs provide services to vehicle j simultaneously
by the non-coherent joint transmission (NCJT) mechanism. An
indicator a;; € {0, 1} reflects whether gNB ¢ is activated for
vehicle 7 or not.
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SDN Controller

Fig. 1.

Network architecture.

Each channel between gNBs and vehicles is assumed inde-
pendent. The channel gain between gNB 7 and vehicle j is

hij = \/lij fij, (D
where f;; is the fading gain following a unit-mean exponential
distribution (Rayleigh fading). [;; = |d;;|* is the path-loss and
a > 2 is the pass-loss exponent.

A. Communication Model

The channel state information (CSI) is assumed imperfect
in this paper, and the error introduced by channel estima-
tion is treated as a new interference. Therefore, the signal-to-
interference-plus-noise ratio (SINR) of vehicle j is

2 2
. Yiev, Pilhijl ai; (1 - 035%) @
J— 2 2 ’
>iev, Bilhil aijoi? + 37, Pilhi |+
where P; is the transmitted signal power from gNB ¢, and 7 is
the white noise power. afj is the minimum mean-square error of

the channel estimation between gNB ¢ and vehicle j, which can
be calculated as [38].

) 1

0.2 =
Yol N
Tiev, [hij[F4n/Pi Us

; 3)

where N is the total number of resource blocks in the pilot-based
channel estimation, and U; is the number of active gNBs in V.

According to (16) and (17) in [39], the average spectral
efficiency F[C}] can be calculated [40] as

ElC)]) = /0 P(y; > 2" — Dda .
_ /00(1 — P(y; <2° — 1))dz,

0

C =logy(1 +7;). Let =27 —1, we can obtain z =
log, (8 + 1). E[C}] can be further derived as

ElC)] = / T - Py < B))d(loga(B + 1))
1

©)
<1
= E/o m(l — P(v; < B))d5,
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Fig. 2. Trajectory patterns. (a) Smooth curves (P1). (b) Making turns (P2).

(c) Making U-turns (P3). (d) Circling around (P4).

where 3 is an SINR threshold. Thus, E[C}] can be calculated
by SINR distribution, which can be approximated as

v8)"

P(’VJSB):(K_\_KJ)ES (95) |—:‘£‘|'
L%
3 o (95)' 7 ©)
m=0 :

where £,,, x and 6 can be obtained in [41].

B. Dataset of Vehicle Traces

The real-world vehicle traces [42] in Rome, Italy, are used to
illustrate vehicle mobility. It consists of the GPS trajectories of
320 taxis from Ist February 2014 to 2nd March 2014. Each
vehicle’s trace includes a list of GPS coordinates (longitude
and latitude) and the corresponding timestamps. The sample
interval of the GPS coordinates is 15 s. The distances between
adjacent coordinates are extracted as an input for the proposed
prediction framework. The trajectories are divided into four
patterns according to their main features: smooth curves (P1),
making turns (P2), making U-turns (P3), and circling around
(P4), which are as shown in Fig. 2.

IV. PROACTIVE MOBILITY MANAGEMENT SOLUTION

A novel proactive MM solution is proposed to reduce the
signaling cost and enhance HO performance. Generally, vehicles
measure RSRPs from gNBs and send the measurement reports to
the SDN controller. The controller makes HO decisions based on
the received measurement reports and the predicted trajectories
of vehicles. More specifically, the proposed MM solution is
described in the following aspects: 1) function modules of MM
2) an LSTM-DR integrated prediction framework; 3) an active
¢NBs selection algorithm, and 4) an HO signaling procedure.
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A. Function Modules of MM

In the SDN controller, four function modules are designed
for the proactive MM solution. These modules are in charge
of prediction control, measurement control, HO control, and
admission control.

1) Prediction Control Module: This module is in charge of
vehicle trajectory prediction. The LSTM-DR integrated frame-
work predicts the next location of a vehicle using its historical
trajectories. Details can be found in Section I'V-B.

2) Measurement Control Module: Based on the prediction
locations, the SDN controller detects candidate gNBs in the
corresponding region, and measures the states of the candidate
gNBs.

The measurement region is expanded to mitigate the impact
of prediction deviations on HO performance. The radius of
measurement regions is expanded from D to R.

R=D+6, @)

where 0 is the median of mean absolute errors of all vehicles’
prediction trajectories. The measurement contents include the
specific states of gNBs: ID and available spectrum resources.

3) HO Control Module: The HO decision-making procedure
is triggered by event A2 with a threshold C\,, i.e.,

C < Ch, (8)

where C'Jt is the system spectral efficiency of vehicle j at time ¢.
Cm = em X E[C}] is the threshold in event A2, which is higher
than the minimum required capacity. €, is the proportional value
of the threshold relative to E[C}].

After HOs are triggered, a set of active gNBs are selected
from candidate gNBs by the proposed active gNBs selection
algorithm described in Section IV-C. Then, the new list of active
gNBs A;H is sent to the vehicle after a time-to-trigger (TTT)
time. Compared to the old activation list A;, these gNBs are
divided into three categories: new gNBs, old gNBs, and ongoing
gNBs. New gNBs need to be added to VC, old gNBs are deleted
from VC, and ongoing gNBs maintain their connection. An HO
signaling procedure is designed to support the VC-based HO,
and its details can be found in Section I'V-D.

4) Admission Control Module: This module guarantees the
candidate gNBs sufficient spectrum resources for data transmis-
sion. The controller removes a gNB in the overloaded condition
from the activation list, and the newly available gNB will be
added.

B. The LSTM-DR Integrated Prediction Framework

In the prediction control module, an LSTM-DR integrated
prediction framework is proposed by taking advantage of LSTM
and DR to handle various road and traffic scenarios.

1) Framework Construction: In the proposed prediction
framework, the vehicle’s trajectory and the extracted distances
are fed into an LSTM neural network. The outputs are the
directions and distances in the next time interval. A three-layer
LSTM neural network is established with the first layer of 20
neurons, the second layer of 50 neurons, and the third dense
layer. The previous 19 locations are used to predict the next
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location. Then, the final predicted location can be generated
by the predicted direction, distance, and the current location
according to the DR method.

2) Evaluation Metrics: The Mean Haversine Distance
(MHD) (j, is used to calculate the deviation of vehicle j between
the predicted GPS coordinate (w;, f;) and real coordinate
(Wik» pjk). k€ K (with K; = |K;|) represents the index of
sample locations on vehicle trajectories.

(jk2><r><arctan< p), )
Vi—p

p = sin® (St

+cos(@jk)cos(wjk)sinz(wm (10)
where r = 6,371 km is the radius of the Earth’s sphere.

Mean absolute error (MAE) and root mean square error
(RMSE) are used to evaluate the prediction accuracy of vehicle
J with K; predicted locations.

K.
1 J
MAE; = fZQk, (11)
J k=1
1 K;
RMSE; =\ | = Zk:l Gir’. (12)
J

After taking the average over J = | 7| vehicles, the average
MAE (AMAE) and the average RMSE (ARMSE) can be ob-
tained as

> MAE

AMAE =
J )

13)

J
>i_i RMSE’K;

ARMSE = i
Zj:l Kj

(14)

C. Active gNBs Selection Algorithm

In the VC-based UDN, a vehicle is served by multiple gNBs.
When the vehicle’s communication capacity falls below a thresh-
old, the controller needs to select new serving gNBs for it. Based
on our observation, the priorities of gNBs selection are associ-
ated with not only their channel qualities but also the vehicle’s
moving direction and velocity. On the one hand, the gNB located
in the vehicle’s moving direction has a higher priority to serve the
vehicle [17]. On the other hand, the resident time of the vehicle
served by a certain gNB is affected by its velocity [43]. The gNBs
with a short serving time will result in frequent HOs. Therefore,
the gNBs located in the moving direction are preferred to be
activated, which have a longer average serving time.

The intuition of the proposed gNBs selection algorithm is
illustrated in Fig. 3. When the vehicle is stationary, the mea-
surement region is a circular area with radius 2, which is shown
in blue line. As the velocity increases, the measurement region
will be more biased toward the moving direction, which is shown
in solid red line. This intuition is to prolong gNB/VC serving
time to reduce HO frequency. If a longer service time is pursued
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Fig. 3. Measurement region with selection preference.
blindly, the selected gNBs will be excessively biased toward
the moving direction, thereby the vehicle’s quality of service
(QoS) significantly degrades at the current location. When the
vehicle’s capacity at the current location is lower than C},,, event
A2 is triggered again. Therefore, the blindly sacrificed capacity
does not result in a drop of the HO frequency and even brings in
additional HOs. A threshold is set to avoid the excessive capacity
reduction, i.e., the adjusted measurement region should provide
the vehicle with a capacity that is larger than C},, at the current
location. As shown in Algorithm 1, an active gNBs selection
algorithm is proposed following this intuition to select serving
gNBs for vehicles.

First, the controller sets a circular protection area for each
vehicle with radius I/%; f%; depends on the velocity v; of vehicle
J, which is calculated as

@R( ki

Umax

> X (Dopt — D), (15)
where vy, is the highest speed limit of taxis in Rome. D is
the optimal D, which maximizes E[C}]. D,, is the VC radius

corresponding to C',, [41]. The protection radius ﬁj is related to
v;. When the velocity is low, the probability of frequent HO
is relatively low. Sacrificing too much capacity for a longer
VC serving time is not expected. A large protection radius can
provide a good QoS for the vehicle to avoid the HO failure at
the current location. As the velocity increases, the probability
of HO is increasing accordingly. Therefore, the primary goal of
MM turns to reduce the HO frequency, and thereby the controller
prefers to activate gNBs located in the moving direction. As a
result, a small protection radius is needed for high velocity.

Next, the controller calculates the length of the vehicle’s
trajectory in the adjusted measurement region with selection
preference. For computation convenience, an ellipse is used to
approximate the adjusted region and assume that vehicles are
traveling in straight lines between the adjacent sample loca-
tions. Let L; denote the trajectory of vehicle j in the adjusted
measurement region. The total number W; of sample locations
of vehicle j on L; is counted by the controller. For each gNB
i1 € Vj, the average distance between it and WW; sample locations
is calculated as

W.
LS 0
Eld;;] = W, ;dij‘ : (16)
Finally, U; gNBs are chosen from the candidate gNBs with the
shortest E[d;;] to serve the vehicle. For a fair comparison, U;
stays the same as the number of serving gNBs in the reactive

solution at the corresponding predicted locations [41].
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Fig. 4. Proactive HO signaling procedure.

________

Algorithm1: Active gNBs Selection.

Input:

the current location (W, k),

the predicted location (w;, fi;)s
the locations of gNBs,

the radius of measurement region R,
the measurement report,

the old activation list A?.

Output:
the new activation list A",
1 A2: Cf < Cys
2 if A2 is satisfied then
3 | report candidate gNBs V; by R and (wj, f1;%);
4 calculate the number of active gNBs U; by D and

@), Bjk);

5 for i € V; do
6 calculate Ed;;] by (16)
7 5

e e

t+1.
Aj ;
10 return A§+1;

sort gNB i € Vj in ascending order of E|[d;];
select the first U; gNBs to form the new activation list

D. HO Signaling Procedure

The HO signaling procedure is designed to support HOs based

on VC, and its main steps are illustrated in Fig.
Step 1: HO is triggered when event A2 is sat

4.
isfied.

TABLE I
SYSTEM PARAMETERS IN THE SIMULATION

Parameter Value ‘ Parameter Value
AgNB 174 / km? N 92
Dopt 0.122 km €m 0.35

T 0 dBm Umax 130 km/h
« 4 TOF*Switch 50 ms [8]
P; 30 dBm PynB 4 ms [8]
n -174 dBm/Hz PSDN*Controller 15 ms [8]

Step 2: The controller executes HO control and admission
control. Then, it sends the new activation list of gNBs AE-'H to
vehicle j after a TTT time.

Step 3: The vehicle receives A} and divides gNBs in A%
into three classes as mentioned above. Then, it sends connec-
tion requests and disconnection requests simultaneously to new
gNBs and old gNBs, respectively.

Step 4: The new gNBs transmit connection requests to the
OpenFlow (OF) switch. At the same time, the old gNBs transmit
disconnection requests to the switch.

Step 5: The switch sends replies to new gNBs and old gNBs,
respectively.

Step 6: The new gNBs send connection acknowledgments
(ACKSs) to the controller. Then they build connections with the
vehicle and transfer the data. Meanwhile, the old gNBs send
ACKSs to the controller and detach data paths from the vehicle.
The ongoing gNBs transfer the buffered data continuously.

V. NUMERICAL RESULTS

The proposed solution selects the serving gNBs for a vehi-
cle based on its measurement report and predicted locations,
and then starts the HO process in advance. In this section,
the prediction results of the LSTM-DR integrated framework
are compared with other state-of-the-art methods. Then, the
management performance of the proposed solution is evaluated
in terms of HFR, HO signaling time, and message cost. The
simulation parameters are shown in Table I.

A. Prediction Results

The proposed LSTM-DR integrated framework is evaluated
on the platform of an Intel (R) Core (TM) i7-3770 CPU @
3.40 GHz. The default prediction interval is 15 seconds, which is
the same as the minimum sample interval in the historical traces.
Vehicles are divided into four patterns mentioned in Section I1I-
B according to the main feature of their predicted trajectories.
96 taxis are chosen to guarantee that there are enough taxis in
each mobility pattern.

The performance of different prediction methods on four
trajectory patterns is shown in Table IIl. AMAE and ARMSE are
used together to diagnose the variation of trajectory prediction.
Since the errors are squared before they are averaged, ARMSE
gives arelatively high weight to large errors. Generally, the larger
the difference between ARMSE and AMAE is, the larger the
prediction errors exist. It can be seen that LSTM-DR has the
highest accuracy on ARMSE. Although DR has a similar per-
formance with LSTM-DR on AMAE, the gap between AMAE
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TABLE II
PERFORMANCE AMONG DIFFERENT PATTERNS

Metric Trajectory pattern
Model (km) B 1593 B3 Ba Average
AMAE | 0.063 | 0.070 | 0.072 | 0.075 | 0.070
LSTM-DR - pMSE 0254 | 0.263 | 0.392 | 0.386 | 0.324
R AMAE | 0.047 | 0.058 | 0.060 | 0.065 | 0.058
ARMSE | 0343 [ 0471 | 0.614 | 0.576 | 0501
e AMAE | 0256 | 0.266 | 0271 | 0.293 | 0272
ARMSE | 0306 | 0.443 | 0.562 | 0.540 | 0.463
AMAE | 1.588 | 1.899 | 2282 | 1.874 | 1911
ARMA ARMSE | 2.580 | 2.816 | 4501 | 2592 | 3.125
- AMAE | 3.763 | 2.955 | 2.920 | 2.948 | 3.147
ARMSE | 5.396 [ 3.011 | 4232 | 3530 | 4.267
- AMAE | 4.161 | 4767 | 5.507 | 5450 | 4.974
ARMSE | 4721 [ 5.386 | 6.036 | 6.178 | 5.580
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Fig.5. Prediction performance. (a) LSTM. (b) DR. (¢) LSTM-DR. (d) Impact
of time span on MAE.

and ARMSE of DR is 74.4% larger than that of LSTM-DR. This
indicates that large prediction deviations happen at certain points
by DR. Overall, the proposed LSTM-DR model has stable and
robust prediction performance.

Taking taxi 2 as an example, the comparison between the
predicted and real trajectory regarding the three methods are
shown in Fig. 5(a), (b), and (c), respectively. It can be seen that
the predicted trajectory of LSTM-DR has the best match with
the real trajectory. DR has a large deviation in some predicted
points. However, LSTM has a high consistency with the real
trace especially when the taxi makes turns. The impact of
different time spans on the prediction performance is shown
in Fig. 5(d). MAEs of the three prediction methods (LSTM,
DR, and LSTM-DR) increase with the growth of the time span.
For all methods, the prediction result under 15 seconds is more
accurate than those over other spans. Moreover, the LSTM-DR
integrated framework is shown to be more robust over different
time spans.

The proposed LSTM-DR integrated framework does not re-
quire any special hardware such as GPUs. The time cost of the
framework is demonstrated in Table III. The training time of the
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TABLE III
TIME COST
# of sample locations | 1000 3000 5000 7000
Training time (s) 176.72 | 530.12 | 833.21 | 1236.06
Prediction time (s) 0.12 0.37 0.61 0.83
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Fig. 6. HFR of different MM solutions.

proposed prediction architecture is acceptable, and its prediction
time is short.

B. MM Results

In this subsection, the management performance of the pro-
posed MM solution is compared with the reactive solution [10]
and the non-preference proactive solution [44]. In the reactive
solution, VCs are frequently updated as the vehicle moves, and
HOs are triggered when VCs changed. For the non-preference
proactive solution, only the LSTM model is used for trajectory
prediction, and all gNBs in VCs are activated to provide services
without selection preference.

1) HFR: HO failure occurs when the received capacity of the
vehicle is less than a capacity threshold CY,,.

C} < Cho, (17)
where Cho = €no X E[C]]. €, is the proportional value of the
threshold relative to the average spectral efficiency E[C;]. It
represents the capacity requirement of a successful HO and is
no greater than ¢,,. In this work, we do not differentiate when
HO failure occurs. HFR is calculated as

# of HO failures
# of HOs

Fig. 6 shows the impact of €, on HFRs of different MM
solutions. With the increase of €y, the capacity requirement
becomes strict. When ey, is lower than 0.12, the reactive so-
Iution has the highest HFR, and the non-preference proactive
solution can reduce the HFR by up to 50%. It is because the
proactive solution executes the HO preparation based on the
trajectory prediction in advance. It avoids the impact of invalid
measurement due to the movement of vehicles and HO delay and
thus leads to alower HFR. The proposed solution further reduces
HFR by the efficient gNBs selection algorithm. The optimization
of gNBs selection gives its VCs a longer average serving time.

HFR = (18)
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Besides, HOs are triggered only when event A2 is satisfied.
These designs greatly reduce the number of unnecessary HOs,
and thereby avoid the potential HO failure. Therefore, the HFR
of the proposed solution is the lowest.

With €y, increasing from 0.12 to 0.35, the HFR of the non-
preference proactive solution becomes the highest. The main
reason is that the prediction deviation results in a lower capacity
in certain places, especially when taxis change their direction
sharply. However, the proposed solution can maintain a low
HFR, since the measurement region is enlarged to mitigate
the impact of the prediction deviations. Then, the selection of
serving gNBs is optimized by selection preference. It can avoid
HO failures caused by the large prediction deviations. A proper
capacity threshold of HO failure is vital for HFR performance.
Overall, the proposed solution has the best performance on HFR
compared to other MM solutions.

Fig. 7 shows the impact of ¢, on HFRs regarding different
prediction methods. The default MM solution is the proposed
proactive solution with selection preference. €y, is the propor-
tional value of the threshold relative to the average spectral
efficiency E[C}], which represents the capacity requirement for
a successful HO. It can be seen HFRs based on four prediction
methods all increase with the growth of ey,,. This is because
the stricter the criterion of successful HOs is, the higher the
probability of HO failure becomes. Moreover, an accurate loca-
tion prediction helps enhance HO decision-making. Under the
same MM solution, the MM performance is mainly affected
by the prediction performances. When ¢y, is small, the MM
performance is in accordance with ARMSE. As the system has
a higher tolerance to prediction errors, the MM performance is
mainly affected by very large prediction deviations, which are
evaluated by ARMSE. When ¢y, is large, HFR is sensitive to
both ARMSE and AMAE. Overall, LSTM-DR maintains the
lowest HFR when compared to other methods. It is because
LSTM-DR takes advantage of both LSTM and DR as well as
avoiding large prediction deviations.

2) HO Number: HO frequency is affected by the HO trig-
gering condition and the serving time of VCs. Fig. 8 shows the
total number of HOs under different mobility patterns regarding
different MM solutions. In the reactive solution, VCs are fre-
quently updated as the vehicle moves, thus resulting in high HO

8839

500
Il Reactive
I Non-preference Proactive
400 r [ Proposed
7]
g
3001 :
©
e
2
£ 2001 1
5
Z
100 | ]
L AT Him
P2 P3 P4
Mobility pattern
Fig. 8. Number of HOs for different MM solutions.
150
I Reactive
I Non-preference Proactive
[T Proposed
2100 1
z
Q
()
£
Nl | (N | A | N
P1 P2 P3 P4
Mobility pattern
Fig. 9. Time cost of different MM solutions.

frequency. When compared with the non-preference proactive
solution, the proposed proactive solution jointly considered the
impact of trajectory on gNB selection as well as a flexible
measurement region. Overall, the number of HOs under the
proposed solution remains the lowest among the three MM
solutions.

3) HO Cost: The HO cost mainly includes two parts: the time
cost and the message cost.

The time cost S; is defined as the HO processing time in the
whole simulation area, and it is calculated by the number of HOs
Ny, and the HO signaling processing time 7. Tpro and Trea can
be obtained from Fig. 4 and [10], separately.

St = Nno X T, (19)
7;)1"0 = 4ToF-Switch + 6Pg;NB + 2PSDNfController7 (20)
7;ea = 4ToF—Switch + 13‘PgNB + 2—PSDNfcontrollery 2D

where Tor_switch 1S the transmission latency between gNB and
the OpenFlow-enabled switch, P,np is the processing latency at
gNBs, and PspN_controller 18 the latency at the SDN controller.
The time costs of four patterns are shown in Fig. 9.

According to (18), HO time cost S; is affected by both
the number and execution time of HO. When comparing the
proposed HO signaling procedure with the reactive solution,

Authorized licensed use limited to: The University of Toronto. Downloaded on December 04,2024 at 02:26:42 UTC from |IEEE Xplore. Restrictions apply.



8840
6000 - Il Reactive
" I Non-preference Proactive
g‘) 5000 |- 1 Proposed
2}
$ 4000
g
G
© 3000
B
"E 2000
z
1000 |
0
P1 P2 P3 P4
Mobility pattern
Fig. 10. Message cost of different MM solutions.

our approach has a shorter execution time. It simultaneously exe-
cutes the process of activating new gNBs and releasing old gNBs
(Step 3, 4, 5, and 6 in Fig. 4). Thereby, 7., can save 10% HO
execution time when compared with 7., = 0.282s. Besides, the
two proactive solutions reduce the HO frequency significantly
by the proper gNB selection based on the precise trajectory
prediction. The proposed solution with mobility preference can
further reduce the HO frequency due to a longer serving time of
the adjusted VC. Therefore, the proposed solution can efficiently
decrease HO cost.

In the same duration (450 s), the cumulative HO time costs of
all solutions decrease gradually from P1 to P4. As the areas taxis
passing through shrink, a fewer number of HO and signaling
costs are needed. On the other hand, the gaps between two
proactive solutions also decrease from P1 to P4. The trajectory
prediction accuracy decreases when taxis make more turns,
thus resulting in performance degradation. Ultimately, under
different mobility patterns, the proposed solution can efficiently
reduce the HO time cost.

The message cost S, is the total signaling messages involved
in the HO process, and it is calculated by the Ny, and the
signaling message involved in each HO procedure. The message
cost can be calculated as

Nho

Z (2 + 4Mh0),

ho=1

S = (22)

where My, is the number of new and old gNBs in an HO process,
and its value is different in each HO process.

The message costs of four trajectory patterns are shown in
Fig. 10. From (21), it can be seen that the cumulative HO
message costs of three management solutions decrease from P1
to P4 in the same duration (450 s). From the above analysis, it
can be found that two proactive solutions can reduce the number
of HO significantly. Furthermore, the total number of new and
old gNBs in the HO process is decreased by the proposed
eNBs selection algorithm. By considering the impact of moving
direction and velocity, the gNB selection becomes more targeted
and efficient. Therefore, unnecessary gNBs are deleted from the
new VC, and the number of exchanged messages decreases. The
proposed solution has the least message cost for all mobility
patterns.
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4) The Adjusted VC Region: From the analysis in Section [V-
C, the VC region is adjusted according to the gNBs selection
preferences, which is affected by the predicted direction and
the vehicle’s velocity. According to the intuition in Fig. 3, the
adjusted VC regions on different velocities are shown in Fig. 11.
It can be seen that the adjusted VC region changes from the circle
area to the approximate ellipse with the increase of velocity.
Moreover, the ellipse drifts in the moving direction, and the
change is increasing with the vehicle’s velocity. However, the
change requires careful control. If the ellipse is drifted too much
in the direction, it will directly affect the capacity after HO. The
decrease in capacity will cause HO failure. If the change is small,
the serving time of VC cannot be effectively extended.

VI. CONCLUSION

In this paper, a proactive mobility management solution based
on VC technique is proposed. The SDN controller proactively
manages HO processes of vehicles based on the trajectory
prediction. An LSTM-DR integrated prediction framework was
designed to improve prediction accuracy and robustness. Then,
the solution selected the serving gNBs efficiently according to
mobility preference. The corresponding signaling procedure was
designed to support proactive HO processes. Simulation results
showed that the proposed solution could significantly decrease
the HFR and signaling cost.
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