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Abstract—In decentralized machine learning over a network of workers, each worker updates its local model as a weighted average of
its local model and all models received from its neighbors. Efficient consensus weight matrix design and communication resource
allocation can increase the training convergence rate and reduce the wall-clock training time. In this paper, we jointly consider these
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1 INTRODUCTION

LARGE-SCALE machine learning (ML) often requires dis-
tributed storage and computing. Distributed ML is a

special form of distributed optimization, often characterized
by high-dimensional decision variables that can lead to a
huge amount of communication among the participants.
While most well-known distributed ML algorithms and
systems are built in a centralized fashion (e.g., with a ded-
icated parameter server) [2]–[4], recent works have demon-
strated the efficacy of decentralized ML. In decentralized
ML, a network of workers cooperate to train ML models by
communicating with their neighbors. This can alleviate the
problem of computation and communication bottleneck at a
central parameter server.

The training performance of decentralized ML is af-
fected by how the model information is exchanged among
neighboring workers. Specifically, in each training iteration,
each worker takes a weighted average of the models that
are aggregated from its neighbors. Those weights can be
stacked into a matrix called the consensus weight matrix. It
has been shown that the convergence speed of decentralized
ML is governed by the second-largest singular value of the
consensus weight matrix [5]. The smaller this value is, the
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higher the convergence rate is, i.e., the fewer iterations are
required to achieve the same level of training accuracy in
decentralized ML.

The optimal consensus weight matrix that leads to the
fastest convergence rate can be obtained by the Fastest Dis-
tributed Linear Averaging (FDLA) algorithm, which min-
imizes the second-largest singular value of the consensus
weight matrix [5]. Other variations of FDLA have also
been applied to decentralized learning [6]–[8]. In addition
to optimization-based solutions, some heuristics based on
the Laplacian matrix of the communication graph have
been widely used to design the consensus weight matrix,
e.g., best constant weight, maximum-degree weight, and
Metropolis-Hastings weight [9].

In the above methods, all physical links of the under-
lying network are used in model training. However, this
can lead to inefficient communication among the workers,
especially in scenarios where limited network bandwidth is
shared among them. Although a more connected network
may result in fewer iterations in model training, it also in-
troduces higher communication costs in each iteration [10].
Training ML models over a sparse communication graph
could outperform a fully-connected network in terms of
the wall-clock training time. This suggested that a properly
designed sparse consensus weight matrix could accelerate
the training process, which is achieved by removing low-
quality communication links and by alleviating the impact
of straggling workers.

A general design of the consensus weight matrix in-
volves network topology design, since the non-zero ele-
ments reflect the chosen topology. Deploying decentralized
ML over some standard sparse network topologies, e.g., a
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ring, has been investigated to reduce the communication
complexity [10]–[15]. However, such an approach is subop-
timal because of the inflexibility of the prescribed topology.
Further studies have considered finding an optimal network
topology with the fastest convergence rate subject to some
prescribed communication cost [16]–[23], or finding an op-
timal network topology that minimizes the communication
cost subject to a prescribed convergence rate [5], [24], [25],
or a prescribed type of connected graph, e.g., minimum
spanning tree [26]. However, the total wall-clock training
time is not only determined by the convergence rate but also
by the latency in each training iteration, which is dominated
by the stragglers and the slowest communication links.
Furthermore, efficient communication resource allocation is
also of importance to speed up the training process. It is
coupled with the choice of the consensus weight matrix
and could compensate for the latency introduced by those
important but poor-quality links.

In this work, we aim to accelerate the training pro-
cess of decentralized ML via jointly designing a sparse
consensus weight matrix and allocating bandwidth to the
communication links. We propose a novel algorithm named
Communication-Efficient Network Topology (CENT), as
well as a more robust variant that requires less parameter
tuning, named CENT with adaptive step size (CENT-A).
Both algorithms reduce the latency in each training iteration
by enforcing the sparsity of the communication graph while
retaining a comparable convergence rate as FDLA. Our main
contributions are summarized as follows:

• We formulate the problem of joint consensus weight
matrix design and communication resource allocation
in decentralized ML, which minimizes the total wall-
clock training time subject to a limited communication
resource budget. The wall-clock training time is char-
acterized both by the computation and communication
latency in each training iteration and by the number of
iterations needed to reach convergence.

• We propose a novel CENT algorithm for joint consen-
sus weight matrix design and communication resource
allocation. It iteratively enforces graph sparsity while
retaining the convergence rate. When enforcing graph
sparsity, we weigh each link with additional coefficients
based on the link quality to avoid selecting bad links.
We show the convergence of CENT. We further analyze
the convergence of decentralized ML while applying
the output of CENT. We show that CENT can terminate
after a finite number of steps while still guaranteeing
that its output leads to convergence in decentralized
ML.

• To reduce the tuning complexity of CENT, we propose
CENT-A, which adaptively updates the tradeoff factor
between the ML convergence rate and the network
graph sparsity as the algorithm progresses. Rather than
enforcing a linear growth of the tradeoff factor as in
CENT, we propose to tune the tradeoff factor based on
the objective function values, i.e., the ratio between the
convergence factor and the sparsity of the consensus
weight matrix. We show the convergence of decentral-
ized ML while applying the output of CENT-A.

• Experimental results on decentralized training of neural

networks further demonstrate the performance advan-
tage of CENT and CENT-A over state-of-the-art algo-
rithms, in terms of significantly faster wall-clock train-
ing time. Moreover, both algorithms provide robust
performance under various system setups, e.g., various
network sizes and data heterogeneity.

The rest of the paper is organized as follows. Section 2
introduces the related work. In Section 3, the system model
of decentralized ML and the problem formulation of wall-
clock training time minimization are presented. In Section 4,
we present the design of CENT for joint consensus weight
matrix design and communication resource allocation. In
Section 5, we present the design of CENT-A as well as the
corresponding convergence analysis. Experimental results
are shown and discussed in Section 6. Section 7 presents the
conclusion.

2 RELATED WORK

In this section, we summarize the state of the art in the
design of consensus weight matrix for general distributed
optimization and distributed learning, with and without
considering communication.

2.1 Consensus Weight Matrix Design without Consid-
ering Communication
Many designs for the consensus weight matrix have been
proposed to ensure the convergence of existing distributed
optimization techniques such as distributed averaging [5],
distributed subgradient methods [27], weight-averaging
[28], and push-pull gradient methods [29], with subsequent
works extending their application to decentralized machine
learning [30]–[32]. To find the optimal consensus weight
matrix that leads to the fastest convergence rate in terms of
iteration, Xiao and Boyd [5] proposed FDLA that minimizes
the spectral norm of the consensus weight matrix. Further
studies on the variations of FDLA have been investigated
[6]–[8]. Some heuristics to construct the consensus weight
matrix have also been proposed to guarantee the conver-
gence of decentralized ML. A naive heuristic is to treat each
link equally and design a constant edge weight based on
the Laplacian matrix of the graph, e.g., the best constant
weight and the maximum degree weight. The consensus
weight matrix can also be designed locally by selecting
the maximum degree of the two adjacent workers, called
Metropolis-Hastings weights [9]. A common disadvantage
of the above methods is that they use all physical links of a
given underlying network.

2.2 Communication-Efficient Consensus Weight Matrix
Design
Although a fully connected network leads to the fastest con-
vergence rate, recent works suggested that a sparse network
can lead to faster convergence in terms of the wall-clock
training time. Some previous works have examined certain
common sparse graphs to facilitate communication-efficient
decentralized ML, e.g., ring [10], [11], path [12], regular
expander graphs [13], [14], and EquiStatic [15]. However,
such sparse graphs are sub-optimal in general.

Existing optimization-based solutions can be grouped
into the following two approaches:
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2.2.1 Maximizing the convergence rate subject to limited
communication budget

Dai and Mesbahi [16] proposed to find the optimal network
topology that maximizes the algebraic connectivity subject
to a prescribed number of edges, noting that the conver-
gence rate is determined by the algebraic connectivity of
the topology, i.e., the second smallest eigenvalue of the
Laplacian matrix. Delvenne et al. [17] and Kempton et
al. [18] optimized the consensus weight matrix by max-
imizing the algebraic connectivity of the network subject
to upper bounds on the degrees of workers, i.e., the di-
agonal entries of the weighted Laplacian matrix. Ogiwara
et al. [19] maximized the algebraic connectivity subject to
constraints on the number of workers and communication
links. Similarly, Gusrialdi et al. [20] proposed to remove a
prescribed number of links such that the largest eigenvalue
of the adjacency matrix is minimized. Tang et al. [21] solved
the problem of maximum match for a given graph where
each worker only communicate with a single neighbor.
Meng et al. [22] solved the link selection problem with
reinforcement learning subject to communication resource
and energy consumption constraints. Wang et al. [23] pro-
posed to randomly select disjoint pairs of workers based
on the matchings’ selection probabilities which optimize the
algebraic connectivity of the expected topology subject to a
given communication budget.

2.2.2 Minimizing the communication cost subject to a re-
quired convergence rate

Given the underlying connected graph, Xiao and Boyd [5]
extended FDLA to sparse graph design by zeroing out the
elements in the consensus weight matrix, subject to a pre-
scribed convergence rate. Rafiee and Bayen [24] minimized
the number of communication links subject to the constraint
that the algebraic connectivity is larger than a prescribed
positive value. Zhou et al. [25] proposed to randomly select
neighbors by minimizing the probabilities of the workers
selecting themselves. Marfoq et al. [26] proposed to find a
strongly connected directed graph such that the time per
communication round is minimized.

All of these prior works overlook the impact of consen-
sus weight matrix design on the total wall-clock training
time, which is determined by both the convergence rate and
the computation and communication latency in each train-
ing iteration. The design of the consensus weight matrix
should consider the trade-off between the convergence rate
and communication latency. Furthermore, since the latency
in each training iteration is dominated by the straggling
workers and the slowest communication links, efficient
communication resource allocation is also essential.

2.3 Other Communication-Efficient ML Techniques

There are many recent works on developing ML techniques
with improved communication efficiency, which do not in-
volve network topology design. Examples include compres-
sion and coding [33]–[35], gossip and push-sum algorithms
[36], [37], and efficient scheduling [38]–[41]. Most of these
techniques are orthogonal to our work and can be combined
with the proposed solution.
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Fig. 1. CENT for decentralized ML.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model for decentral-
ized ML. We further formulate the problem of joint con-
sensus weight matrix design and communication resource
allocation.

3.1 Decentralized ML

We consider a network of workers N = {1, 2, ..., N} that
cooperatively train a shared model. The physical network
topology is represented by an undirected graph G = (N , E),
where E is the edge set. We have (i, j) ∈ E if there exists
a link between worker i and worker j and i 6= j. We use
A = [Ai,j ] to denote the adjacency matrix of G. Without loss
of generality, we assume that G is connected, i.e., there exists
a path between any two workers.

Let Fi(x) = Eπ∼ξifi(x;π) denote the local training loss
function of worker i, where x denotes the ML model param-
eters, ξi is the set of local data samples at worker i, fi(·) is
the loss function defined by the learning model, e.g., cross-
entropy loss. Let F (x) = 1

N

∑
i∈N Fi(x) denote the global

training loss over all workers. Typically, decentralized ML
can be posed as minimizing the training loss as follows:

min F (x), (1)
s.t. x ∈ X , (2)

where X denotes the feasible set of the training model.
Take the commonly used stochastic gradient descent to

solve (1) as an example. A typical training process is as
follows. Each worker i stores a local estimate xi of the global
model x. In each training iteration t, each worker i updates
its local model with local gradients gi(t) taken at xi(t) and
transmits the updated model to its neighbors. Each worker
then further updates its local model as a weighted average
of its local model and all received models. Specifically, let
Wi,j denote the weight from worker i to worker j for
weighted aggregation, and let W = [Wi,j ]. The model
update rule is

X(t+ 1) = PX︸︷︷︸
Projection

(X(t)− β(t)G(t))︸ ︷︷ ︸
Local training

W︸︷︷︸
Consensus

 , (3)

where X(t) = [x1(t), ...,xi(t), ...,xN (t)], PX (·) is a pro-
jection onto X , β(t) is the step size at iteration t, and
G(t) = [g1(t), ...,gi(t), ...,gN (t)]. The training process
repeats until the convergence of the ML model or until
some pre-defined maximum number of training iterations
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is reached. Afterward, the training model can be finalized
by selecting either one of the local estimates or the average
of all local models [4].

3.2 Communication Model

In various application scenarios such as distributed robotic
systems in 5G [42], UAV networks [43], and smart connected
vehicles [44], decentralized learning with centralized man-
agement has demonstrated superior system performance
[45]. Furthermore, a central coordinator already exists in
many distributed computing and communication systems.
For example, in cellular networks, a base station can serve
as the coordinator to manage decentralized learning among
devices connected by device-to-device (D2D) links. Typi-
cally, the base station maintains a global view of the network
state information and facilitates centralized optimization for
efficient resource allocation among the D2D links. Indeed,
3GPP support for distributed ML promotes using a central
controller within the network infrastructure to leverage the
established network analytics and control functions [46]. We
note that it is important to distinguish the central coordina-
tor from a parameter server. While the coordinator performs
topology design and resource allocation, and ensures com-
pliance among all workers, it does not have access to the
local ML models or their gradients [21]–[23], [26].

As shown in Fig. 1, the N workers form a decentralized
ML network, while a coordinator, e.g., edge server, assists
with the design of W and network resource allocation. The
edge server communicates with the workers via a dedicated
control channel of an access network, e.g., LTE or 5G access.
To facilitate D2D communication, we consider frequency
division multiple access (FDMA) system with a total band-
width budget B̄. Let Bi,j denote the bandwidth allocated
to the link from worker i to worker j. The communication
latency from i to j is

lCi,j(Bi,j) =
Di

Bi,jηi,j
,∀i 6= j, (4)

where Di is the size of the model sent by worker i and
ηi,j is the spectrum efficiency of the link from worker i
to j. In Section 4, we will use the Shannon bound for
illustration, such that ηi,j = log2(1 +

pih
2
i,j(di,j)

σ2
i,j

), where pi
is the transmission power of worker i, di,j is the distance
between workers i and worker j, h2

i,j(di,j) is the wireless
channel power gain, and σ2

i,j is the white noise power. We
further define lCi,i = 0,∀i ∈ N . The latency corresponding
to the link from worker i to worker j is

Li,j(Bi,j) = lPi + lCi,j(Bi,j), (5)

where lPi denotes the processing latency of worker i for
gradient calculation. Let B = [Bi,j ]. The latency in each
training iteration is determined by the straggler, which is
given by

g(W,B) = max
i,j∈N

{
Li,j(Bi,j)1{Wi,j 6=0}

}
, (6)

where 1{·} is the indicator function. Note that 1{Wi,j 6=0} = 0
indicates that there is no information exchange from worker
i to worker j.

We note that in decentralized ML, (6) is determined by
the model we select to train as well as the computation ca-
pacities of the workers. Once we specify the training model,
the coefficients in the latency function can be obtained. We
assume that the processing time of the workers lPi ,∀i, and
channel information ηi,j ,∀i, j, are known and constant over
the training iterations.

3.3 Problem Formulation

We first characterize the impact of the consensus weight
matrix on the training process. Let ρ(W ) = ‖W − 11>

N ‖2,
where || · ||2 denotes the spectral norm of a matrix and 1
is the all-one column vector. Let Tε denote the number of
training iterations required to approximate the ideal training
model by a desired error ε. Under various assumptions that
are common in the literature, it is known that Tε is inversely
proportional to 1− ρ(W ) [27], [47], [48], i.e.,

Tε ∈ O
(

1

ε2(1− ρ(W ))

)
. (7)

Thus, ρ(W ) < 1 guarantees the convergence of decen-
tralized ML, and a smaller ρ(W ) suggests faster network
consensus. For example, (7) in [48] was derived under the
following assumptions:

Assumption 1. (Smoothness): There exists L > 0 such that
‖∇Fi(x)−∇Fi(y)‖ ≤ L‖x− y‖,∀x and y.

Assumption 2. (Lower bounded): There exists Finf such that
Fi(x) ≥ Finf ,∀x.

Assumption 3. (Unbiased gradients): Eξi|x[gi(x)] =
∇Fi(x),∀x.

Assumption 4. (Bounded variance): There exists σ2 ≥ 0 such
that Eξi|x‖gi(x)−∇Fi(x)‖2 ≤ σ2,∀x.

Assumption 5. (Bounded Dissimilarities): There exists κ2 ≥ 0
such that 1

N

∑N
i=1‖∇Fi(x)−∇F (x)‖2 ≤ κ2,∀x.

Assumption 6. (Mixing Matrix): W1 = 1, W = W>, and
ρ(W ) < 1.

The wall-clock time for training Tε iterations is
Tεg(W,B). Therefore, to reduce the total training time, we
should minimize 1

1−ρ(W )g(W,B). We formulate the prob-
lem of joint consensus weight matrix design and communi-
cation resource allocation as follows:

min
W,B

1

1− ρ(W )
g(W,B), (8)

s.t.
∑
i,j∈N

Bi,j ≤ B̄, (9)

Bi,j ≥ 0,∀i, j ∈ N , (10)
ρ(W ) < 1, (11)
W1 = 1, (12)

W = W>, (13)
W ∈ SA, (14)

where

SA = {W ∈ RN×N |Wi,j = 0 if Ai,j = 0 and i 6= j}.
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Constraints (9)-(10) state that the total allocated resource
should not exceed the resource budget. Constraint (11)
guarantees the convergence of decentralized ML. We set
constraints (12) and (13) so that W is a symmetrical matrix
and each row or column sums to 1, since using symmetric
weights leads to only small decrease in the convergence rate
but substantial reduction in computation [5]. Constraint (14)
indicates the selected links are restricted by the physical
network topology.

The joint design of W and B in problem (8) brings
new challenges when compared with optimizing them sepa-
rately. The choices of consensus matrix and communication
resource allocation are coupled and restricted by the physi-
cal network topology. Moreover, due to the existence of the
indicator function, the objective function of problem (8) is
non-smooth and non-convex with respect to W . Finally, due
to the vast search space, exhaustive search is computation-
ally expensive.

Remark 1. Existing solutions to the minimization of a
multivariable non-convex function cannot be directly ap-
plied to problem (8). Since the indicator function is non-
differentiable, common gradient-based solutions to non-
convex optimization, e.g., successive convex approxima-
tion and majorization minimization, are inapplicable to this
problem. Another naive solution could be the coordinate de-
scent method, which minimizes the objective function with
respect to one decision variable at a time. In our case, if we
optimize B with some given W , we will obtain an optimal
solution to bandwidth allocation such that the latency is
equal for all links. Then, when we optimize W with this
B, since at least one link needs to be selected to satisfy
constraint (11), the value of g(W,B) in problem (8) stays
constant for all feasible W and thus the problem is reduced
to FDLA, which means that the non-zero elements of W
remain the same as in the previous cycle. As a result, the
solutions to bandwidth allocation will not change and the
coordinate descent method becomes stuck after the above
two iterations.

Remark 2. Constraint (9) considers the case where all work-
ers use orthogonal channels and share the same bandwidth
pool. This system setting can also be extended to the case
where there is a bandwidth constraint for each worker, i.e.,

∑
j∈N

Bi,j ≤ B̄i,∀i, (15)

where B̄i is the resource budget at worker i. Such extensions
will not alter the convergence of the proposed algorithms
and the details on how to adapt the proposed algorithms
CENT and CENT-A to this can be found in Remark 5. When
used in conjunction with frequency reuse, (15) helps reduce
the spectrum overlapping, and thus mutual interference,
among workers. However, the joint design of topology de-
sign and frequency reuse, and possibly further transmission
scheduling techniques, is a challenging open problem that
will be left for future research.

4 JOINT CONSENSUS WEIGHT MATRIX DESIGN
AND BANDWIDTH ALLOCATION

In this section, we present the design of CENT, which
extracts a sparser subgraph of the physical network topol-
ogy and jointly calculates the consensus weight matrix and
bandwidth allocation. We observe from problem (8) that
there exists a trade-off between the convergence factor ρ(W )
and the latency in each training iteration g(W,B). A more
connected network results in a higher convergence rate, but
since the network bandwidth is shared among workers,
it also leads to a higher communication latency in each
training iteration. This inspires us to reduce the communi-
cation cost by removing certain communication links, while
guaranteeing the convergence of decentralized ML.

4.1 Communication-Efficient Network Topology Design
In this work, we introduce a trade-off factor to balance the
convergence rate and the sparsity of the consensus weight
matrix. We design this trade-off factor through iterative cal-
culation. Moreover, when enforcing sparsity, we distinguish
the links based on the computation time of the workers and
the channel conditions of the links.

At step k, we maintain a graph represented by the
adjacency matrix A(k). To differentiate links when enforc-
ing graph sparsity, we weigh each link with its latency
under equal resource allocation. Thus, we first calculate
the number of links in the current graph, i.e., ||A(k)||1,1,
where || · ||1,1 denotes entry-wise matrix norm, so that
||A(k)||1,1 =

∑
i,j∈N |A

(k)
i,j |. We hypothetically allocate equal

resource to each link, i.e., setting B
(k)
i,j = B̄

||A(k)||1,1
, for all

i and j such thatA(k)
i,j = 1. We consider an estimated latency

matrix, L(k) = [L
(k)
i,j ], which indicates the goodness of the

links as follows:

L
(k)
i,j =

{
Li,j(B

(k)
i,j ), if i 6= j,

0, if i = j.
(16)

Remark 3. The rationale behind equal resource allocation
here is to capture the inherent goodness of the links. Oth-
erwise, suppose we apply min-max resource allocation to
optimize the bandwidth allocation and obtain the latency
matrix. Then the latency would be equal for all links and
that would defeat the purpose of L(k) to differentiate the
links. We emphasize that equal resource allocation here is
only for calculating L(k). The proposed solution will include
optimization of resource allocation.

To enforce graph sparsity and avoid selecting bad links,
we consider a trade-off factor, denoted by λ(k), between
the convergence factor ρ(W ) and a weighted graph sparsity
||L(k) �W ||1,1 at step k, which will be updated over time.
We solve the following optimization problem:

min
W

λ(k)ρ(W ) + ||L(k) �W ||1,1, (17)

s.t. W ∈ SA(k) , (18)
(12)− (13),

where � denotes the Hadamard product of matrices, so
that ||L(k)�W ||1,1 =

∑
i,j∈N |Li,jWi,j |. Here SA(k) follows

the same definition as SA below (14). Since W ∈ SA(k) ,
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Algorithm 1 Communication-Efficient Network Topology
(CENT)
Input: Number of rounds K , set of workers N , phys-
ical network topology A, global network conditions
Di, l

P
i , ηi,j ,∀i, j, bandwidth budget B̄, and step size ∆λ > 0.

Output: consensus weight matrix Ŵ , bandwidth allocation B̂.
1: λ(0) ← 0, A(0) ← A, Â(0) = 0;
2: for k = 0, ...,K − 1 do
3: A(k) ← A if Â(k) = 0; otherwise A(k) ← Â(k);
4: B

(k)
i,j ← B̄

||A(k)||1,1
,∀(i, j);

. Equal allocation among edges
5: Compute matrix L(k) with (16);

. Capture the inherent goodness of the links
6: Compute W (k) with (17);

. Enforce sparsity and avoid bad links
7: Update the adjacency matrix Â(k+1) with (19);

. Update adjacency matrix
8: if Â(k+1) = A(k) or Â(k+1) = 0 then
9: λ(k+1) ← λ(k) + ∆λ; . Enforce consensus

10: else
11: λ(k+1) ← λ(k);
12: end if
13: end for
14: Ŵ ← FDLA(A(K));
15: B̂ ← Min-Max-RA(A(K));
16: return Ŵ , B̂

we further have ||L(k) �W ||1,1 =
∑
{(i,j)|A(k)

i,j =1} |Li,jWi,j |.
Placing this norm in the objective encourages graph sparsity.
Furthermore, since L(k) reflects the quality of the links, a
link that corresponds to the stragglers and poor channels
is penalized with a large coefficient L(k)

i,j . We note that
constraint (11) is not considered in problem (17) but will
be naturally guaranteed by our design, as shown in the next
section.

Problem (17) can be efficiently solved through semidef-
inite programming (SDP). We reformulate (17) by intro-
ducing scalar variables s1 and s2 to bound ρ(W ) and
||L(k) � W ||1,1, respectively. Then, we express the norm
bound constraint as linear matrix inequalities (LMI):

min
W,s1,s2

λ(k)s1 + s2,

s.t. − s1I �W − 11>

N
� s1I,∑

{(i,j)|A(k)
i,j =1}

|Li,jWi,j | ≤ s2,

W ∈ SA(k) ,

(12)− (13),

where � denotes the general matrix inequality, i.e., for
any matrix A and B, A � B means that B − A is a
positive semidefinite matrix. The reformulated problem is
readily transformed to an SDP with linear objective, LMI
constraints, and linear inequality constraints [49].

Let W (k) = [W
(k)
i,j ] be any solution to problem (17). Note

that the existence of such an minimizer is guaranteed by
the Weierstrass Theorem [50]. Then, the adjacency matrix is
updated by replacing nonzero elements of the weight matrix

with ones, i.e.,

Â
(k+1)
i,j =

{
1{W (k)

i,j 6=0}, if i 6= j,

0, if i = j.
(19)

If the adjacency matrix changes, we will run the same pro-
cess to further extract a sparser graph with the current trade-
off factor λ(k). If the adjacency matrix does not change, we
will enforce consensus by increasing the weight of ρ(W )
with λ(k+1) = λ(k) + ∆λ, where ∆λ is a positive step size.

The above procedure is repeated for K iterations. As
shown in the next section, there exists some positive integer
k0, such that for all K > k0, we have ρ(W (K)) < 1 and
consequently ρ(Ŵ ) < 1, meaning that constraint (11) is
satisfied by the output of CENT. Furthermore, we will show
in the next section that larger K leads to better performance
in terms of our objective.

With the extracted sparse topology A(K), the corre-
sponding optimal consensus weight matrix design Ŵ and
bandwidth allocation B̂ can be obtained by solving the
spectral norm minimization problem

min
W

ρ(W ), (20)

s.t. W ∈ SA(K) ,

(12)− (13),

and the Min-Max-RA problem

min
B

max
i,j∈N

{
Li,j(Bi,j)1{A(K)

i,j 6=0}

}
, (21)

s.t. (9)− (10).

Both are convex problems with known solutions, e.g., FDLA
[5] and the primal-dual Lagrangian approach [51].

The pseudocode of CENT is given in Algorithm 1, where
lines 2–13 extract a sparse graph A(K) and lines 14–15
compute the solution of consensus weight matrix design Ŵ
and bandwidth allocation B̂ based on the extracted graph.

4.2 Convergence Analysis of CENT

We will prove the following two properties: 1) the conver-
gence of CENT, and 2) the convergence of decentralized
ML that uses the output of CENT. As illustrated in Fig. 2,
we argue that there exists a positive integer k0 such that
{ρ(W (k))}k>k0 is a decreasing sequence and bounded be-
low. To guarantee the convergence of decentralized ML,
we will first show that ρ(W (k0+1)) < 1 and then with
the decreasing sequence {ρ(W (k))}k>k0 , we conclude that
ρ(Ŵ ) < 1.

The feasible set at step k of CENT is denoted as

W(k) = {W |W1 = 1,W = W>,W ∈ SA(k)},∀k. (22)

We partitionW(k) into two subsets, i.e.,

W(k)
1 = {W |W ∈ W(k), ρ(W ) ≥ 1},
W(k)

2 = {W |W ∈ W(k), ρ(W ) < 1}.

In [5] (Section 4), it is shown that, for any connected
graph G, we can always design some W such that ρ(W ) < 1
by applying simple heuristics such as best constant weight,
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Fig. 2. Schematic of Lemmas 5 and 6.

maximum-degree weight, and Metropolis-Hastings weight.
Therefore, we have the following lemma.

Lemma 1. For connected graph G,W(0)
2 6= ∅.

Furthermore, we make the following observation:

Lemma 2. For anyW ∈ W(k),∀k, we have ||L(k)�W ||1,1 = 0
if and only if W is the identity matrix I .

Proof. IfW = I , we have ||L(k)�W ||1,1 =
∑
i,j |L

(k)
i,jWi,j | =∑

i=j |0 ·Wi,j |+
∑
i 6=j |L

(k)
i,j · 0| = 0.

If there exists a pair (i, j) such that Wi,j 6= 0 and i 6= j,
we have

||L(k) �W ||1,1 =
∑

{(i,j)|A(k)
i,j =1}

|L(k)
i,jWi,j |

(a)
> 0,

where (a) holds since L
(k)
i,j 6= 0 for all i and j such that

A
(k)
i,j = 1. Therefore, if ||L(k) �W ||1,1 = 0, we must have

Wi,j = 0 for all i and j such that A(k)
i,j = 1. Since W ∈ W(k),

we further have W = I .

Lemma 3. For any k, if A(k+1) 6= A(k), then we have L(k)
i,j >

L
(k+1)
i,j for any i and j such that L(k)

i,j 6= 0.

Proof. If A(k+1) 6= A(k), then we have λ(k+1) = λ(k),
W(k+1) ⊂ W(k), and ||A(k+1)||1,1 < ||A(k)||1,1. By equally
allocating resource to each link, we have B(k+1)

i,j > B
(k)
i,j for

any i and j such that A(k+1)
i,j 6= 0 (line 4 of Algorithm 1).

Since Li,j is strictly decreasing with Bi,j , we further have
L

(k)
i,j > L

(k+1)
i,j for any i and j such that L(k)

i,j 6= 0.

To facilitate the rest of our analysis, we define

λ0 = inf
W∈W(0)

2

||L(0) �W ||1,1
1− ρ(W )

.

Lemma 4. λ0 is non-negative and finite.

Proof. Since I /∈ W(0)
2 , from Lemma 2, we know that for

any W ∈ W(0)
2 , ||L(0) � W ||1,1 > 0. Further combining

the fact that for any W ∈ W(0)
2 , 1 − ρ(W ) > 0, we have

||L(0)�W ||1,1
1−ρ(W ) > 0. Therefore, we have λ0 ≥ 0. Finally, λ0 is

finite since 1− ρ(W ) 6= 0.

Let k0 = b λ0

∆λ
c, i.e., k0∆λ ≤ λ0 and (k0 + 1)∆λ > λ0.

The following lemma reveals important properties of the
proposed algorithm with respect to k0.

Lemma 5. For 0 ≤ k < k0, the identity matrix I is the
unique minimizer to problem (17), so ρ(W (k)) = 1. For k = k0,
ρ(W (k)) ≤ 1. For k > k0, ρ(W (k)) < 1.

Proof. Let f (k)(W ) = λ(k)ρ(W ) + ||L(k) �W ||1,1.
For k < k0, we have λ(k) ≤ k∆λ < k0∆λ ≤ λ0. We start

with k = 0. For any W ∈ W(0), we have

f (0)(I)− f (0)(W )

= λ(0) − (λ(0)ρ(W ) + ||L(0) �W ||1,1)

= λ(0)(1− ρ(W ))− ||L(0) �W ||1,1.

If W ∈ W(0)
1 \ I , from Lemma 2, we know that ||L(0) �

W ||1,1 > 0. Since ρ(W ) ≥ 1, we further have f (0)(I) −
f (0)(W ) < 0. If W ∈ W(0)

2 , we have ρ(W ) < 1. Combining
this with λ(0) < λ0, we have

f (0)(I)− f (0)(W ) < λ0(1− ρ(W ))− ||L(0) �W ||1,1.

Since by definition λ0 ≤ ||L(0)�W ||1,1
1−ρ(W ) , for all W ∈ W(0)

2 ,
we have λ0(1 − ρ(W )) − ||L(0) � W ||1,1 ≤ 0. Therefore,
f (0)(I)−f (0)(W ) < 0 and the identity matrix I is the unique
minimizer, i.e., W (0) = I and ρ(W (0)) = 1. This further
implies that W(1) = W(0), L(1) = L(0), and λ(1) = λ(0) +
∆λ. The case of 0 < k < k0 can be proved in the same
way since λ(k) < λ0. We conclude that in this case, the
identity matrix I is the unique minimizer, i.e., W (k) = I and
ρ(W (k)) = 1. Note that this further implies that W(k0) =
W(0), L(k0) = L(0), and λ(k0) = k0∆λ.

For k = k0, we have two cases depending on λ(k0). If
λ(k0) < λ0, we can prove W (k0) = I and ρ(W (k0)) = 1 in
the same way as above. If λ(k0) = λ0, for W ∈ W(k0)

1 \ I ,
from analysis similar to the above, we still have f (k0)(I) −
f (k0)(W ) < 0. Now we inspect the setW(k0)

2 . SinceW(k0) =
W(0) and L(k0) = L(0), by the definition of λ0, we have for
all W ∈ W(0)

2 ,

f (k0)(I)− f (k0)(W )

= λ0(1− ρ(W ))− ||L(0) �W ||1,1≤0.

We conclude that the identity matrix I is no worse than any
solution in W(k0)

2 , and thus either W (k0) = I or W (k0) ∈
W(0)

2 , so ρ(W (k0)) ≤ 1.
For k = k0 + 1, we have two cases depending on W (k0).

i) If W (k0) = I , we have W(k0+1) = W(k0) = W(0),
L(k0+1) = L(k0) = L(0), and λ(k0+1) = (k0 + 1)∆λ >

λ0. Therefore, for W ∈ W(k0+1)
1 \ I , we still have

f (k0+1)(I) − f (k0+1)(W ) < 0. Now we consider the
other part of the feasible region W(k0+1). By the def-
inition of λ0, for some 0 < ε < λ(k0+1) − λ0, there
is a W̄ such that ||L

(0)�W̄ ||1,1
1−ρ(W̄ )

< λ0 + ε. In this case,

sinceW(k0+1)
2 =W(0)

2 , we also have W̄ ∈ W(k0+1)
2 . We

observe that

f (k0+1)(I)− f (k0+1)(W̄ )

= λ(k0+1)(1− ρ(W̄ ))− ||L(k0+1) � W̄ ||1,1
= λ(k0+1)(1− ρ(W̄ ))− ||L(0) � W̄ ||1,1
> (λ0+ε)(1− ρ(W̄ ))− ||L(0) � W̄ ||1,1
> 0.
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Therefore, any minimizer to problem (17) must be in
W(k0+1)

2 and thus ρ(W (k0+1)) < 1.
ii) If W (k0) 6= I , we further have two cases depending on

A(k0+1) (lines 8-12 of Algorithm 1).
If A(k0+1) = A(k0), then we have W(k0+1)

1 = W(k0)
1 =

W(0)
1 , L(k0+1) = L(k0) = L(0), and λ(k0+1) = (k0 +

1)∆λ > λ0. This is identical to the previous case and
thus ρ(W (k0+1)) < 1.
If A(k0+1) 6= A(k0), from Lemma 3, we have L(k0)

i,j >

L
(k0+1)
i,j for any i and j such that L(k0)

i,j 6= 0. This implies
that

f (k0+1)(I)− f (k0+1)(W (k0))

= λ(k0+1)(1− ρ(W (k0)))− ||L(k0+1) �W (k0)||1,1
= λ(k0)(1− ρ(W (k0)))− ||L(k0+1) �W (k0)||1,1
> λ(k0)(1− ρ(W (k0)))− ||L(k0) �W (k0)||1,1.

Since W (k0) is a minimizer at step k0, the last line
above, which equals f (k0)(I) − f (k0)(W (k0)) ≥ 0, is
non-negative. From (19), we also know that W (k0) ∈
W(k0+1). Therefore, I is not a minimizer at step k0 + 1.
From analysis similar to the above, we still have
f (k0+1)(I) − f (k0+1)(W ) < 0,∀W ∈ W(k0+1)

1 \ I , so
the minimizer at step k0 + 1 must be in W(k0+1)

2 and
thus ρ(W (k0+1)) < 1.

For k > k0 + 1, we can apply induction using the same
analysis as in case ii) above to conclude that ρ(W (k)) < 1.

We can further show that {ρ(W (k))}k>k0 is a non-
increasing sequence, as stated in the next lemma.

Lemma 6. ρ(W (k)) ≥ ρ(W (k+1)),∀k > k0.

Proof. For k > k0, depending on whether we increase λ(k)

at step k of CENT (lines 8-12 of Algorithm 1), we have the
following two cases.

If A(k+1) = A(k), then L(k+1) = L(k) and λ(k) < λ(k+1).
In this case, we have W (k+1) ∈ W(k+1) = W(k), and
from (19), we also have W (k) ∈ W(k+1). Let η(k) =
||L(k) �W (k)||1,1. Since W (k) and W (k+1) are minimizers
to problem (17) in steps k and k + 1, respectively, we have

λ(k)ρ(W (k)) + η(k) ≤ λ(k)ρ(W (k+1)) + η(k+1),

λ(k+1)ρ(W (k+1)) + η(k+1) ≤ λ(k+1)ρ(W (k)) + η(k).

Summing the above inequalities yields

(λ(k+1) − λ(k))(ρ(W (k+1))− ρ(W (k))) ≤ 0.

Since λ(k) < λ(k+1), we must have ρ(W (k)) ≥ ρ(W (k+1)).
If A(k+1) 6= A(k), we have λ(k+1) = λ(k). Let ψ(k)(W )

denote the ratio between ||L(k+1) � W ||1,1 and ||L(k) �
W ||1,1. As explained in the proof of Lemma 3, in this case
we also have L(k)

i,j > L
(k+1)
i,j ,∀i, j, so ψ(k)(W ) ≤ 1,∀W ∈

W(k+1). From Lemma 5, we see that, for k > k0, the identity
matrix I is not a minimizer, so ψ(k)(W ) 6= 0,∀W ∈ W(k+1).
Therefore, the objective of problem (17) in step k + 1 can be
equivalently written as

min
W∈W(k+1)

λ(k)

ψ(k)(W )
ρ(W ) + ||L(k) �W ||1,1.

𝐾

𝑔(
𝑊%
,𝐵(
)

1
−
𝜌
𝑊%
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Fig. 3. Impact of step size ∆λ when updating tradeoff factor λ in CENT.

This has exactly the same form as the previous case, except
with λ(k) ≤ λ(k)

ψ(k)(W )
instead of λ(k) < λ(k+1). Using a

similar argument, we have ρ(W (k)) ≥ ρ(W (k+1)).

Theorem 7. CENT converges as k approaches infinity. Further-
more, the objective 1

1−ρ(W (k))
g(W (k), B(k)) is non-increasing in

k for k > k0.

Proof. From Lemma 6, we see that, regardless of whether
we increase λ(k) at step k of CENT, {ρ(W (k))}k>k0 is a non-
increasing sequence. Furthermore, this sequence is bounded
below by arg minW∈W(0) ρ(W ). Therefore, the Monotone
Convergence Theorem implies that CENT converges.

As explained in the proof of Lemma 5, L
(k)
i,j ≥

L
(k+1)
i,j ,∀i, j, k. SinceW(k+1) ⊆ W(k), we have

g(W (k), B(k)) = max
i,j∈N

{
L

(k)
i,j 1{W (k)

i,j 6=0}

}
(23)

≥ max
i,j∈N

{
L

(k+1)
i,j 1{W (k+1)

i,j 6=0}

}
= g(W (k+1), B(k+1)), ∀k.

For k > k0, since we also have ρ(W (k)) < 1,
1

1−ρ(W (k))
g(W (k), B(k)) is non-increasing.

Theorem 8. Under Assumptions 1–5, if K > k0, decentralized
ML converges when the output of CENT is applied.

Proof. The convergence of decentralized ML is guaranteed,
if the consensus weight matrix W satisfies Assumption 6,
i.e., W1 = 1, W = W>, and ρ(W ) < 1 [48]. From Lemma 5,
we have ρ(W (k)) < 1 for k > k0. Therefore, ρ(W (K)) < 1.
By solving problem (20), we further have ρ(Ŵ ) ≤ ρ(W (K)).
We conclude that ρ(Ŵ ) < 1. Furthermore, from (21), if there
exists a link (i, j) such that A(K)

i,j 6= 0 and B̂i,j = 0, the
objective function goes to infinity, which is obviously not
optimal. Therefore, we have B̂i,j 6= 0 for all i and j such
that A(K)

i,j 6= 0. The selected subgraph is connected and each
link has a finite delay, which concludes the proof.

5 CENT WITH ADAPTIVE STEP SIZE (CENT-A)
In CENT, we enforce a linear growth to update the tradeoff
factor λ(k), which is designed to balance the ML conver-
gence rate and the weighted graph sparsity. To reduce the
parameter tuning complexity of CENT, we aim to adaptively
tune the tradeoff factor as the algorithm progresses. In this
section, we propose CENT-A, short for CENT with adaptive
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Algorithm 2 CENT with Adaptive Step Size (CENT-A)
Input: Number of rounds K , set of workers N , phys-
ical network topology A, global network conditions
Di, l

P
i , ηi,j ,∀i, j, and bandwidth budget B̄.

Output: consensus weight matrix Ŵ , bandwidth allocation B̂.
1: γ(0) ← 0, A(0) ← A;
2: for k = 0, ...,K − 1 do
3: B

(k)
i,j ← B̄

||A(k)||1,1
,∀(i, j);

. Equal allocation among edges
4: Compute matrix L(k) with (16);

. Capture the inherent goodness of the links
5: Compute W (k) with (24);

. Enforce sparsity and avoid bad links
6: Update the adjacency matrix A(k+1) with (19);

. Update adjacency matrix
7: if A(k+1) = A(k) then
8: γ(k+1) ← 1−ρ(W (k))

||L(k)�W (k)||1,1
; . Enforce consensus

9: else
10: γ(k+1) ← γ(k);
11: end if
12: end for
13: Ŵ ← FDLA(A(K));
14: B̂ ← Min-Max-RA(A(K));
15: return Ŵ , B̂

step size. A proxy for λ(k), which is denoted by γ(k), is
updated directly with the intermediate values of the objec-
tive function, i.e., ρ(W (k)) and ||L(k) � W (k)||1,1, without
introducing an increase in the computation complexity.

5.1 Dependence of Convergence on Step Sizes ∆λ

CENT is designed to iteratively increase the trade-off factor
λ(k) in (17) by a user-defined fixed step size ∆λ. As shown in
Theorem 8, CENT requires the number of iterations K to be
larger than a certain unknown integer k0 so as to guarantee
the convergence of decentralized ML. The hyperparameter
∆λ affects the performance of the solutions and needs to be
finely tuned. Fig. 3 illustrates the performance of CENT and
its dependence on the prescribed fixed step size ∆λ. CENT
with a large ∆λ might be advantageous at the beginning
by surpassing λ0 quickly but run the risk of overstepping
the minimum. However, when the step size ∆λ is small,
the convergence of CENT with respect to the value of the
objective function in (8) can be slow.

Such trade-off between some performance metric and
the convergence rate has been frequently witnessed in lit-
erature, e.g., gradient descent algorithm [52], [53], neural
networks training [54], and Kalman filtering [55]. We em-
phasize here that different from state-of-the-art where the
step size may act on the consecutive updates of the decision
variables, the step size in this work refers to the update on
the tradeoff factor λ(k) rather than the decision variables.

5.2 Design of CENT-A

Inspired by the application of Newton’s method to frac-
tional programming [56], we observe that the ratio between
the convergence factor 1 − ρ(W (k)) and the sparsity of the
topology ||L(k) � W (k)||1,1 at each step k is an important
quantity that can guide the selection of the trade-off factor in

𝛾(#)

𝐺
#
(𝛾
)

𝛾̂(#)

𝛾(#'()

Fig. 4. Illustration of the update on the tradeoff factor γ(k) at step k.

our design.1 Rather than updating the tradeoff factor with a
fixed step size as in CENT, we propose to adaptively choose
the trade-off factor based on this quantity.

The pseudocode of CENT-A is given in Algorithm 2,
where lines 2-12 extract a sparse graph A(K) and lines 13-14
compute the solution of consensus weight matrix design Ŵ
and bandwidth allocation B̂ based on the extracted graph.
At step k, we revisit the intermediate optimization problem
(17). By substituting λ(k) with 1

γ(k) , we shift the tradeoff
weight from the convergence factor ρ(W ) to the weighted
graph sparsity ||L(k)�W ||1,1. Problem (17) can be rewritten
as

max
W

1− ρ(W )− γ(k)||L(k) �W ||1,1, (24)

s.t. (12), (13), (18).

We emphasize here that, same as in CENT, constraint (11) is
not included in problem (24) but will be naturally guaran-
teed by our design, as shown in the next section.

After solving problem (24) and obtaining W (k), the ad-
jacency matrix A(k+1) is then updated by replacing nonzero
elements of the weight matrix with ones and diagonal
elements as zeros. We enforce graph sparsity by updating
γ(k+1) based on the ratio between the convergence factor
and the sparsity of the consensus weight matrix, i.e.,

γ(k+1) =
1− ρ(W (k))

||L(k) �W (k)||1,1
. (25)

The above procedure is repeated forK iterations. Then, with
the sparsity pattern A(K), the final solutions Ŵ and B̂ are
obtained by solving the convex optimization problems (20)
and (21).

Remark 4. As illustrated in Fig. 4, the rationale behind
γ(k+1) is to obtain a better approximation than γ(k) to the
root γ̂(k) of the function

G(k)(γ) := max
W∈W̃(k)

{
1− ρ(W )− γ||L(k) �W ||1,1

}
, (26)

where W̃(k) =W(k) \ {I}. Note that γ̂(k) represents the op-
timal objective function value of maxW∈W(k)

1−ρ(W )
||L(k)�W ||1,1

.
By approximating this root, we are enforcing graph spar-
sity with reduced communication latency and, meanwhile,

1. We remark that existing algorithms for fractional programming,
e.g., Dinkelbachs algorithm [56], require a concave-convex problem for
convergence. However, problem (8) does not satisfy this condition with
respect to the decision variables W and B.
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retain a comparable convergence rate. We will show some
important properties of G(k)(γ) and state in Lemma 13 that
−||L(k) �W (k)||1,1 is a subgradient of G(k)(γ) at γ(k), ∀k.
Therefore, the unique root of the linear approximation of
G(k)(γ) at γ(k) is

γ(k+1) = γ(k) − G(k)(γ(k))

−||L(k) �W (k)||1,1

= γ(k) −
maxW∈W(k)

{
1− ρ(W )− γ(k)||L(k) �W ||1,1

}
−||L(k) �W (k)||1,1

= γ(k) − 1− ρ(W (k))− γ(k)||L(k) �W (k)||1,1
−||L(k) �W (k)||1,1

=
1− ρ(W (k))

||L(k) �W (k)||1,1
.

We note that the intermediate problems (17) and (24)
are equivalent when the tradeoff parameter satisfies λ(k) =

1
γ(k) . However, CENT and CENT-A invoke two different
ways to update these parameters: CENT-A progressively
amplifies the importance of the weighted graph sparsity
||L(k) � W ||1,1 over steps k, whereas CENT takes the op-
posite approach. When compared with CENT, CENT-A iter-
atively updates the altered tradeoff factor γ(k) directly based
on the value of the objective function in (24). CENT-A enjoys
the convenience of eliminating the initialization of the step
size ∆λ, as well as removing the requirement of K ≥ k0

in the convergence analysis, as shown in the next section.
Furthermore, an outstanding feature of CENT-A is that by
adjusting the tradeoff parameter in the opposite manner to
CENT, CENT-A avoids generating a disconnected network,
ensuring ρ(W (k)) < 1, ∀k, and ρ(Ŵ ) < 1. Consequently,
constraint (11) is satisfied for any user-defined maximum
number of steps K .

5.3 Convergence Analysis of CENT-A

To guarantee the convergence of decentralized ML, we will
show that ρ(W (k)) < 1,∀k and then we conclude that
ρ(Ŵ ) < 1,∀K .

We note that L(k) and W(k) are the intermediate vari-
ables when running CENT-A at the k-th step. For any γ,
let W̃ (k)

γ denote a maximizer that gives G(k)(γ). We first
present some properties of the function G(k)(γ).

Lemma 9. G(k)(γ) is convex with respect to γ, ∀k.

This conclusion follows directly from the definition of
G(k)(γ) as the maximum of functions affine in γ.

Lemma 10. G(k)(γ(k)) ≤ G(k+1)(γ(k)),∀k.

Proof. For any k, if A(k+1) = A(k), then L(k+1) = L(k).
By the definition of G(k)(γ), we directly conclude that
G(k)(γ(k)) = G(k+1)(γ(k)). If A(k+1) 6= A(k), from Lemma
3, we have L(k)

i,j > L
(k+1)
i,j for any i and j such that L(k)

i,j 6= 0.
We further have

G(k)(γ(k)) = max
W∈W(k)

{
1− ρ(W )− γ(k)||L(k) �W ||1,1

}
= 1− ρ(W (k))− γ(k)||L(k) �W (k)||1,1
(a)

≤ 1− ρ(W (k))− γ(k)||L(k+1) �W (k)||1,1

(b)

≤ max
W∈W(k+1)

{
1− ρ(W )− γ(k)||L(k+1) �W ||1,1

}
= G(k+1)(γ(k)),

where (a) holds since ||L(k)�W (k)||1,1 ≥ ||L(k+1)�W (k)||1,1
and (b) holds since W (k) ∈ W(k+1) ⊆ W(k).

Lemma 11. G(k)(γ) is strictly decreasing with respect to γ, ∀k.
G(k)(γ) = 0 has a unique and positive solution, ∀k.

Proof. For any k, γ1, and γ2 such that γ1 < γ2, we have

G(k)(γ2) = max
W∈W(k)

{
1− ρ(W )− γ2||L(k) �W ||1,1

}
= 1− ρ(W̃ (k)

γ2 )− γ2||L(k) � W̃ (k)
γ2 ||1,1

< 1− ρ(W̃ (k)
γ2 )− γ1||L(k) � W̃ (k)

γ2 ||1,1
≤ 1− ρ(W̃ (k)

γ1 )− γ1||L(k) � W̃ (k)
γ1 ||1,1

= G(k)(γ1).

As γ approaches infinity, we have limγ→+∞G(k)(γ) =
−∞,∀k. Since G(k)(γ) is convex, we conlcude that G(k)(γ)
is strictly decreasing with respect to γ,∀k.

For k = 0 and γ = 0, we have G(0)(0) = maxW∈W(0) 1−
ρ(W ) > 0. Since the initial topology A(0) is connected,
W(0)

2 6= ∅ and we have G(0)(0) > 0. From Lemma 10,
we further have G(k)(0) > 0,∀k. Since limγ→+∞G(k)(γ) =
−∞,∀k, we conclude that the strictly decreasing G(0)(γ) =
0 has a unique and positive solution.

As illustrated in Fig. 4, let γ̂(k) denote the unique solu-
tion such that G(k)(γ) = 0,∀k.

Lemma 12. For any γ such that γ < γ̂(k), we have W̃ (k)
γ ∈

W(k)
2 and thus ρ(W̃

(k)
γ ) < 1,∀k.

Proof. For any k and γ such that γ < γ̂(k), from Lemma 11,
we have G(k)(γ) > 0.

We proceed to prove the lemma by contradiction. As-
sume that W̃ (k)

γ /∈ W(k)
2 , i.e., W̃ (k)

γ ∈ W(k)
1 , for any γ such

that 0 ≤ γ < γ̂(k). Let F (k)(W ) = 1 − ρ(W ) − γ||L(k) �
W ||1,1,∀k. We have F (k)(I) = 0 and we note that I ∈ W(k)

1 .
For any W ∈ W(k)

1 \ I , by the definition of W(k)
1 , we

have F (k)(W ) < F (k)(I) =0. This leads to a contradiction
with G(k)(γ) = F (k)(W̃

(k)
γ ) > 0 and thus we must have

W̃
(k)
γ ∈ W(k)

2 . We conclude that ρ(W̃
(k)
γ ) < 1,∀k.

From the properties of G(k)(γ) above, we can infer the
following properties of γ(k) and W (k).

Lemma 13. −||L(k) �W (k)||1,1 is a subgradient of G(k)(γ) at
γ(k), ∀k.

Proof. For any k and γ, we have

G(k)(γ) = max
W∈W(k)

{
1− ρ(W )− γ||L(k) �W ||1,1

}
= 1− ρ(W̃ (k)

γ )− γ||L(k) � W̃ (k)
γ ||1,1

≥ 1− ρ(W (k))− γ||L(k) �W (k)||1,1
= 1− ρ(W (k))− γ(k)||L(k) �W (k)||1,1

− (γ − γ(k))||L(k) �W (k)||1,1
= G(k)(γ(k))− (γ − γ(k))||L(k) �W (k)||1,1.

Lemma 14. γ(k)≤γ(k+1) < γ̂(k) and ρ(W (k)) < 1,∀k.
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Proof. We give a proof by induction. When k = 0, from
Lemma 11, we have γ̂(k) > 0. Since γ(0) = 0, γ(0) < γ̂(0)

is clearly true. Assume the induction hypothesis that for a
particular k, γ(k) < γ̂(k). We have two cases depending on
A(k+1) (lines 7-11 of Algorithm 2). If A(k+1) 6= A(k), then
γ(k) = γ(k+1). If A(k+1) = A(k), from Lemmas 9 and 13,
we have γ(k) < γ(k+1) < γ̂(k), as illustrated in Fig. 4. From
Lemmas 10 and 11, we further have γ(k+1) < γ̂(k+1). Since
both the base case and the induction step have been proved
as true, we conclude that γ(k) < γ̂(k),∀k. From Lemma 12,
we further have ρ(W (k)) = ρ(W̃

(k)

γ(k)) < 1,∀k.

Theorem 15. CENT-A converges as k approaches infinity.

Proof. Since the number of selected links ||A(k)||1,1 is de-
creasing over steps k and bounded below by N − 1, the
Monotone Convergence Theorem implies the convergence
of CENT-A.

Theorem 16. Under Assumptions 1–5, for any K , decentralized
ML converges when the output of CENT-A is applied.

Proof. In Lemma 14, we have ρ(W (k)) < 1,∀k. Therefore,
for any K , we have ρ(W (K)) < 1. By solving problem
(20), we further have ρ(Ŵ ) ≤ ρ(W (K)) < 1. We conclude
the proof by noting that the communication latency in each
training iteration is finite by solving problem (21).

Remark 5. If we consider the individual bandwidth con-
straint in (15), the hypothetical bandwidth allocation in
CENT (line 4 of Algorithm 1) and CENT-A (line 3 of
Algorithm 2) can be changed to B

(k)
i,j ← B̄i

||A(k)
i ||1

,∀(i, j),

where A(k)
i is the i-th row of matrix A(k) and || · ||1 denotes

the L1 norm of a vector. As we progressively prune the
network, fewer links are selected and more bandwidth is
hypothetically allocated to the links. In the extended system
settings in Remark 2, since the latency function decreases
with increased bandwidth usage in general, Lemma 3 re-
mains valid. Therefore, the convergence analysis of CENT
and CENT-A, as well as the convergence of decentralized
ML when applying the output of CENT and CENT-A, still
holds.

6 NUMERICAL PERFORMANCE EVALUATION

6.1 Decentralized Machine Learning Setup

In this section, we evaluate the performance of CENT and
CENT-A on decentralized convolutional neural network
(CNN) training over a decentralized network. Unless oth-
erwise specified, we place N = 50 workers randomly in a
100 m × 100 m area. Two workers are connected by an edge
if the distance between them is within the communication
range 60 m. We evaluate the performance of CENT and
CENT-A with 95% confidence intervals, over 100 realiza-
tions of the physical graphs. The total bandwidth budget
B̄ is 20 MHz. The transmission power of each worker is 1

W. The channel power gain h2
i,j(di,j) = γ0( d̂

di,j
)4 , where

γ0 = −40 dB is the path loss at the reference distance d̂ = 1
m [57].

We consider two ML tasks where N workers collectively
train CNNs on the MNIST dataset [58] and the CIFAR10
dataset [59]. The MNIST dataset consists of 60,000 train-
ing images and 10,000 testing images, each of which has
28× 28 pixels and is labeled between 0 and 9. The CIFAR10
dataset consists of 50,000 training images and 10,000 testing
images, each of which contains 32 × 32 colour images in
10 classes. We consider data heterogeneity among N = 50
workers. The training sets of the two datasets are divided
into N segments with comparable sizes, each consisting
of only p, where 1 ≤ p ≤ 10, randomly selected labels.
The segments are then randomly allocated to workers. By
default, we set p = 6. The subsets are randomly distributed
to workers. By default, we set p = 6. We consider LeNet [60]
as a representative of CNN, which is implemented with Py-
Torch. It is composed of two convolutional layers, followed
by two fully connected layers and a softmax classifier. It
has 61,706 trainable parameters and the size in memory
is 0.35 MB. It is trained with the cross-entropy loss and
Adam optimizer with the default learning rate of 0.001. The
minibatch size is set to 256 and 8 when training over MNIST
and CIFAR10, respectively. In each training iteration, each
worker processes a minibatch of the local dataset and then
communicates with the adjacent neighbors.

The decentralized CNN training is implemented with
torch.distributed and torch.multiprocessing in PyTorch. To
represent the heterogeneous computation capacities among
workers, we model the processing time of the workers as
lPi = l̄Pi ((1 − v) + vφ),∀i, where φ follows the uniform
distribution over [0, 2] and v = 0.8 [13]. The average pro-
cessing time for MNIST is l̄Pi = 5.231 s, which is measured
from processing a minibatch of MNIST data samples on a
2.9 GHz Intel Core i5 processor and 8 GB of memory. The
average processing time for CIFAR10 is l̄Pi = 0.494 s, which
is measured from processing a minibatch of CIFAR10 data
samples on an M2 Pro chip and 16 GB of memory.

We compare the performance of CENT and CENT-A
with that of the following benchmarks:

• FDLA [5]: The weights are calculated by solving the
spectral norm minimization problem. It gives the fastest
convergence rate in terms of the number of training
iterations.

• Max-degree (MD) [61]: Assign all edges the same
weight based on the maximum degree of the graph.

• MetropolisHastings (MH) [62]: Assign each edge a
weight based on the maximum degree of its two ad-
jacent workers.

• Best-constant (BC) [63]: Assign all edges the same
optimal constant weight based on the eigenvalues of
the Laplacian matrix of the graph.

• MATCHA [23]: Disjoint pairs of workers are randomly
selected based on the matchings’ selection probabili-
ties which optimize the algebraic connectivity of the
expected topology. Assign all links the same constant
weight by solving (15).

• MST [26]: First hypothetically distribute bandwidth
equally to all physical links, and run the minimum
spanning tree algorithm with minimal cycle time. Then,
assign consensus weight to the links in the tree by
running FDLA.
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(Ŵ

)

CENT without L(k)

CENT with -xed 6(k)

CENT
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2
over steps k.

We do not compare with the methods in [10]–[14], [16]–
[22], [24], [25], since they are incompatible with the wall-
clock training time and thus do not solve our problem.
For the above benchmarks, the corresponding bandwidth
allocation is calculated by solving Min-Max-RA subject to
the constraint of the corresponding network topology. For
CENT, by default, ∆λ is set to 10000.

6.2 Importance of L(k) and λ(k) in the Design of CENT

Figs. 5–7 show the impact of using L(k) and λ(k) in the de-
sign of CENT. We compare CENT with two naive variants:
1) CENT w/o L(k) refers to eliminating L(k) in Algorithm
1, i.e., L(k) is substituted by an all-ones N ×N matrix, and
2) CENT with fixed λ(k) refers to fixing λ(k) = 100000,∀k
as the algorithm processes. Fig. 5 shows the value of the
objective function g(Ŵ ,B̂)

1−ρ(Ŵ )
obtained by CENT under various

maximum number of stepsK . The selection ofK in CENT is
restricted by k0, which, in this case, equals 3. When K ≤ k0,
we obtain ρ(Ŵ ) = 1 indicating that the resulting network
topology is disconnected. This accords with the convergence
analysis in Section 4.2. When K > k0, we observe that
both variants result in an increase in the training time when
compared with CENT.

Figs. 6 and 7 show the convergence factor ρ(W (k)) and
the number of selected links ||A(k)||1,1 over steps k with
K = 10. When compared with CENT with fixed λ(k), CENT
enjoys a faster ML convergence rate, i.e., a smaller conver-
gence factor. When compared with CENT w/o L(k), CENT
achieves the same ML convergence rate with fewer selected
links, which significantly reduces the per-iteration training
latency. This is because the weights L(k) in CENT help

reveal the links that dominate the latency in each training
iteration, while the increasing sequence of λ(k) searches for
an appropriate weight on the convergence factor ρ(W (k)) to
improve the consensus among workers. By jointly consider-
ing the design of L(k) and λ(k), CENT accelerates the wall-
clock training time by removing congested communication
links while retaining a high convergence rate.

6.3 Impact of Step Size ∆λ

Figs. 8–10 compares the performance of CENT-A and CENT
under various step size ∆λ values. When ∆λ is small, the
convergence of CENT can be slow. When ∆λ is large, CENT
runs the risk of overstepping the minimum, resulting in a
higher objective function value. As shown in Fig. 8, CENT-
A converges faster and obtains a smaller objective function
value. Moreover, CENT-A not only enjoys a minimal need
for tuning the step sizes but also eliminates the requirement
on the selection on K, making it more robust under various
system setups.

CENT-A proceeds differently from CENT. As shown in
Figs. 9 and 10, CENT starts with an identity matrix and
stucks at ρ(W (k)) = 1 when k ≤ k0. However, CENT-
A starts with selecting all physical links. By increasing the
weight γ(k) on the graph sparsity, poor links are eliminated
step by step and CENT-A iteratively makes the network
topology sparser. With adaptive step sizes, CENT-A takes
larger steps to update the tradeoff factor when it is far
away from the optimum. When CENT-A approaches the
minimum, since the tradeoff factor is weighted on the graph
sparsity, CENT-A takes small steps to increase the tradeoff
factor and stops being aggressive on graph sparsification.
In our experiment, we observe that CENT-A outperforms
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Algorithm ρ(Ŵ )
g(Ŵ ,B̂)

1−ρ(Ŵ )

MST 0.8821 122.3
MD 0.9252 185.9
MH 0.9191 171.9
BC 0.8852 121.1
MATCHA 0.8895 125.9
FDLA 0.8563 96.7
CENT 0.8563 74.1
CENT-A 0.8563 74.1
OPT 0.8563 74.1 0 50 100
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TABLE 1
Comparison with optimal solution.

Fig. 14. Topology obtained by
CENT.

CENT on average, but there exist realizations of the system
where CENT performs better.

6.4 Comparison on Wall-Clock Training Time and Con-
vergence Factor ρ(Ŵ )

6.4.1 Comparison with Optimal Solution in Small-Scale
Networks
As shown in Fig. 14, we consider a small-scale network
which has N = 8 workers and 12 edges. The optimal
solution to Problem (8), denoted by OPT, is calculated
through exhaustive search. Table. 1 compares the perfor-
mance of various algorithms in terms of the convergence
factor ρ(Ŵ ) and the theoretical upper bound of the training
time g(Ŵ ,B̂)

1−ρ(Ŵ )
. We observe that CENT and CENT-A achieve

the optimal solution as OPT and obtain the same (fastest)
convergence rate as FDLA. With fewer edges selected for
communications, CENT and CENT-A significantly reduce
the latency in each training iteration.

6.4.2 Comparison in Large-Scale Networks
Figs. 11–13 show the theoretical upper bound of wall-
clock training time, the convergence factor ρ(Ŵ ), and the
number of selected links obtained by various methods,
respectively. Note that FDLA by design gives the minimum
possible ρ(Ŵ ). Since MATCHA randomly samples overlays
that could be sparse or even disconnected in each training
iteration, we present the value of the convergence factor on
the expected activated topology. MST reduces the commu-
nication latency in each training iteration by only obtaining

N−1 links at the expense of a high ρ(Ŵ ), resulting in a slow
ML convergence rate. CENT and CENT-A require signifi-
cantly shorter wall-clock training time than the other meth-
ods, while retaining similar ρ(Ŵ ) as FDLA. CENT reduces
the wall-clock training time by 89.8%, 78.4%, 71.3%, 65.5%,
58.7%, and 42%, respectively, when compared with MST,
MD, MH, BC, MATCHA, and FDLA. Furthermore, CENT-A
achieves shorter wall-clock training time than CENT while
maintaining a similar ρ(Ŵ ) value, i.e., a slightly faster ML
convergence rate in terms of the training iteration.

Figs. 15–17 show the impact of the physical topology
density by varying the communication range from 30 m to
60 m. The shorter the communication range is, the sparser
the original physical network topology is. Under different
settings, CENT and CENT-A consistently attain the lowest
objective function value while tracking closely with FDLA
in terms of the convergence factor ρ(Ŵ ). This suggests
that the communication links eliminated by our proposed
algorithms not only reduce communication costs but also do
not adversely affect the convergence of distributed training.
We observe that, as expected, more links are removed when
the initial network topology is dense. Overall, CENT and
CENT-A efficiently enforce graph sparsity with reduced
communication latency and, meanwhile, retain a compara-
ble convergence rate with FDLA.

6.5 Learning Accuracy over Wall-Clock Time
We consider the same graph model as in [5], which has
50 workers and 200 edges. The graph is generated by
uniformly distributing 50 workers and increasing the com-
munication range until the total number of edges reaches
200. Fig. 18 shows one realization of the random graphs as
well as the corresponding sparse graph extracted by CENT.

Figs. 19 and 20 show the test accuracy of the global
model, which is the average of all local CNN models, on the
MNIST dataset and CIFAR10 dataset over wall-clock time,
respectively. The experimental test accuracy measures the
generalization performance of the global model on the data
samples it has not seen before. It reflects the convergence
of the global averaged model to the optimal ML model
as well as the consensus achieved by all workers over
a decentralized topology. These figures confirm that even
though FDLA by design gives the fastest convergence rate
in terms of the training iteration, it does not lead to the
fastest convergence speed in terms of the wall-clock time.
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Fig. 19. Learning accuracy on MNIST in
wall-clock time with N = 50.
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Fig. 20. Learning accuracy on CIFAR10 in
wall-clock time with N = 50.
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Fig. 21. Learning accuracy in wall-clock time
with N = 20.
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Fig. 22. Learning accuracy in wall-clock time
with N = 100.
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Fig. 23. Learning accuracy in wall-clock time
with p = 10.

Moreover, the final test accuracy achieved by CENT and
CENT-A is comparable to the benchmarks that utilize all
physical links of the underlying network, demonstrating
the efficacy of the design network topology that retains a
favorable convergence rate.

6.5.1 Impact of Network Size

Figs. 21 and 22 show the test accuracy of the global model
on MNIST when the initial graph has N = 20 workers
with 80 edges and N = 100 with 400 edges, respectively.
With more workers sharing limited bandwidth, the com-
munication latency in each training iteration increases and
gradually overweighs the computation cost. Therefore, with
more workers engaged in decentralized training, the com-
munication bandwidth is emerging as a bottleneck. Blindly
increasing the number of workers and utilizing all physical
links among them can aggravate network congestion, can-
celing out the benefits of parallel computing. With fewer
edges selected for communications and the reduced latency
in each training iteration, CENT and CENT-A demonstrate

their performance advantage over the benchmarks in terms
of the wall-clock time.

6.5.2 Impact of Data Heterogeneity

Fig. 19 in the previous subsection gives the learning accu-
racy with p = 6, and we further present Figs. 23–26 for
p = 10, 8, 4, and 2, respectively. The smaller the p is, the
larger the variation is among the distributions of the local
training data. Highly heterogeneous data is known to create
more challenges for reaching consensus among workers. A
more heterogeneous data distribution aggravates the final
test accuracy achieved by all benchmarks. It requires more
iterations to reach consensus among workers and thus takes
a longer time to converge to the same level of test accuracy.
Therefore, in the presence of data heterogeneity, the learning
process of all methods inevitably slows down. However,
such slow-down can be compensated, to some extent, by
significantly reduced latency in each training iteration. We
observe the performance advantages of CENT and CENT-
A over the benchmarks, in terms of the wall-clock time,
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Fig. 24. Learning accuracy in wall-clock time
with p = 8.
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Fig. 25. Learning accuracy in wall-clock time
with p = 4.
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Fig. 26. Learning accuracy in wall-clock time
with p = 2.

0 1000 2000 3000 4000 5000

Time (s)

0

20

40

60

80

100

L
ea

rn
in

g
 a

cc
u
ra

cy
 (

%
)

MST

MD

MH

BC

MATCHA

FDLA

CENT

CENT-A

Fig. 27. Learning accuracy in wall-clock time
with learning rate 0.0005.
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Fig. 28. Learning accuracy in wall-clock time
with learning rate 0.01.
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Fig. 29. Learning accuracy in wall-clock time
with learning rate 0.02.

become even more substantial under higher data hetero-
geneity.

6.5.3 Impact of Learning Rate

We further conduct comparisons of different design algo-
rithms across additional learning rate values. As shown in
Figs. 27–29, we have considered learning rates of 0.005,
0.01, and 0.02. In further experiments we have observed
that for learning rates greater than 0.02, all methods start
to experience difficulty to converge. These figures show that
the proposed CENT and CENT-A consistently outperform
the other methods in all scenarios.

7 CONCLUSION AND FUTURE WORK

In this paper, we have explored communication design for
decentralized ML with bandwidth constraints and hetero-
geneous workers. By jointly designing a consensus matrix
and allocating bandwidth allocation to the communication
links, we propose a novel algorithm, termed CENT, as well
as a more adaptive variant that requires less parameter
tuning, termed CENT-A. Both algorithms speed up the
training process by eliminating unnecessary communication
links for more efficient bandwidth allocation. Numerical
studies on real-world decentralized CNN training show
that CENT and CENT-A require significantly shorter wall-
clock training time than the state of the art, while retaining
similar value for ρ(Ŵ ) as FDLA. For future work, efficient
consensus weight matrix design for dynamic networks can
be explored when further considering worker mobility and
heterogeneous resources.
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