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Abstract—This paper introduces a multilinear principal com-
ponent analysis (MPCA) framework for tensor object feature
extraction. Objects of interest in many computer vision and
pattern recognition applications, such as 2-D/3-D images and
video sequences are naturally described as tensors or multilinear
arrays. The proposed framework performs feature extraction
by determining a multilinear projection that captures most of
the original tensorial input variation. The solution is iterative in
nature and it proceeds by decomposing the original problem to a
series of multiple projection subproblems. As part of this work,
methods for subspace dimensionality determination are proposed
and analyzed. It is shown that the MPCA framework discussed in
this work supplants existing heterogeneous solutions such as the
classical principal component analysis (PCA) and its 2-D variant
(2-D PCA). Finally, a tensor object recognition system is proposed
with the introduction of a discriminative tensor feature selection
mechanism and a novel classification strategy, and applied to
the problem of gait recognition. Results presented here indicate
MPCA’s utility as a feature extraction tool. It is shown that even
without a fully optimized design, an MPCA-based gait recognition
module achieves highly competitive performance and compares
favorably to the state-of-the-art gait recognizers.

Index Terms—Dimensionality reduction, feature extraction, gait
recognition, multilinear principal component analysis (MPCA),
tensor objects.

I. INTRODUCTION

THE term tensor object is used here to denote a multidimen-
sional object, the elements of which are to be addressed

by more than two indices [1]. The number of indices used in the
description defines the order of the tensor object and each index
defines one of the so-called “modes.” Many image and video
data are naturally tensor objects. For example, color images
are 3-D (third-order tensor) objects with column, row, and
color modes [2]. Gait silhouette sequences, the input to most
if not all gait recognition algorithms [3]–[7], as well as other
grayscale video sequences can be viewed as third-order tensors
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with column, row, and time modes. Naturally, color video
sequences are fourth-order tensors with the addition of a color
mode. In the most active area of biometrics research, namely,
that of face recognition, 3-D face detection and recognition
using 3-D information with column, row, and depth modes, in
other words, a third-order tensor, has emerged as an important
research direction [8]–[10]. Moreover, the research problem of
matching still probe images to surveillance video sequences
can be viewed as a pattern recognition problem in a third-order
tensorial setting [11]. Beyond biometrics signal analysis, many
other computer vision and pattern recognition tasks can be
also viewed as problems in a multilinear domain. Such tasks
include 3-D object recognition tasks [12] in machine vision,
medical image analysis, and content-based retrieval, space-time
analysis of video sequences for gesture recognition [13] and
activity recognition [14] in human-computer interaction (HCI),
and space-time super resolution [15] for digital cameras with
limited spatial and temporal resolution. The wide range of
applications explains the authors’ belief that a comprehensive
study of a specialized feature extraction problem, such as
multilinear feature extraction, is worthwhile.

A typical tensor object in pattern recognition or machine vi-
sion applications is commonly specified in a high-dimensional
tensor space. Recognition methods operating directly on this
space suffer from the so-called curse of dimensionality [16]:
Handling high-dimensional samples is computationally expen-
sive and many classifiers perform poorly in high-dimensional
spaces given a small number of training samples. However,
since the entries of a tensor object are often highly correlated
with surrounding entries, it is reasonable to assume that the
tensor objects encountered in most applications of interest
are highly constrained and thus the tensors are confined to
a subspace, a manifold of intrinsically low dimension [16],
[17]. Feature extraction or dimensionality reduction is thus an
attempt to transform a high-dimensional data set into a low-di-
mensional equivalent representation while retaining most of
the information regarding the underlying structure or the actual
physical phenomenon [18].

Principal component analysis (PCA) is a well-known un-
supervised linear technique for dimensionality reduction. The
central idea behind PCA is to reduce the dimensionality of a
data set consisting of a larger number of interrelated variables,
while retaining as much as possible the variation present in
the original data set [19]. This is achieved by transforming
to a new set of variables, the so-called principal components
(PCs), which are uncorrelated, and ordered so that the first few
retain most of the original data variation. Naive application of
PCA to tensor objects requires their reshaping into vectors with
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high dimensionality (vectorization), which obviously results
in high processing cost in terms of increased computational
and memory demands. For example, vectorizing a typical
gait silhouette sequence of size (120 80 20) results in a
vector with dimensionality (192 000 1), the singular value
decomposition (SVD) or eigendecomposition processing of
which may be beyond the computing processing capabilities of
many computing devices. Beyond implementation issues, it is
well understood that reshaping breaks the natural structure and
correlation in the original data, removing redundancies and/or
higher order dependencies present in the original data set and
losing potentially more compact or useful representations that
can be obtained in the original form [20]. Vectorization as PCA
preprocessing ignores the fact that tensor objects are naturally
multidimensional objects, e.g., gait sequences are 3-D objects,
instead of 1-D objects. Therefore, a dimensionality reduction
algorithm operating directly on a tensor object rather than its
vectorized version is desirable.

Recently, dimensionality reduction solutions representing
images as matrices (second-order tensors) rather than vectors
(first-order tensors) have been introduced. A 2-D PCA algo-
rithm is proposed in [21], where the image covariance matrix is
constructed using image matrices as inputs. However, a linear
transformation is applied only to the right-hand side of the
input image matrices. As a result, image data is projected in
one mode only, resulting in poor dimensionality reduction. The
less restrictive 2-D PCA algorithm introduced in [20] takes
into account the spatial correlation of the image pixels within
a localized neighborhood. Two linear transforms are applied
to both the left- and the right-hand sides of the input image
matrices. Thus, projections in both modes are calculated and
better dimensionality reduction results are obtained according
to [22]. Similarly to the solutions introduced in [21] and [22],
the so-called tensor subspace analysis algorithm of [23] rep-
resents the input image as a matrix residing in a tensor space
and attempts to detect local geometrical structure in that tensor
space by learning a lower dimensional tensor subspace.

For the theoretically inclined reader, it should be noted that
there are some recent developments in the analysis of higher
order tensors. The higher order singular value decomposition
(HOSVD) solution, which extends SVD to higher order ten-
sors, was formulated in [24] and its computation leads to the
calculation of (the order) different matrix SVDs of unfolded
matrices. An alternating least square (ALS) algorithm for the
best rank- approximation of higher order ten-
sors was studied in [1], where tensor data was projected into
a lower dimensional tensor space iteratively. The application
of HOSVD truncation and the best rank- ap-
proximation to dimensionality reduction in independent com-
ponent analysis (ICA) was discussed in [25]. These multilinear
algorithms have been used routinely for multiple factor anal-
ysis [26], [27], where input data such as images are still repre-
sented as vectors but with these vectors arranged into a tensor
for the subsequent analysis of the multiple factors involved in
image/video formation. It should be added that in [25]–[27], the
tensor data under consideration is projected in the original coor-
dinate without data centering. However, for classification/recog-
nition applications where eigenproblem solutions are attempted,

the eigendecomposition in each mode can be influenced by the
mean (average) of the data set.

Recently, there have been several attempts to develop mul-
tilinear subspace algorithms for tensor object feature extraction
and classification. In [28], a heuristic MPCA approach based on
HOSVD was proposed. The MPCA formulation in [29] targets
optimal reconstruction applications (where data is not centered)
with a solution built in a manner similar to that of [1]. It should
be noted that the solution in [29] was focused on reconstruction
not recognition and that it did not cover a number of important
algorithmic issues, namely, initialization, termination, conver-
gence, and subspace dimensionality determination. When ap-
plied to the problem of tensor object recognition, the method-
ology described in [29] uses all the entries in the projected tensor
for recognition although the discrimination power of these en-
tries varies considerably. There is also a recent work on mul-
tilinear discriminant analysis (MLDA) [30], [31], named dis-
criminant analysis with tensor representation (DATER), where
an iterative algorithm similar to ALS of [1] is utilized in order to
maximize a tensor-based discriminant criterion. Unfortunately,
this MLDA variant does not converge and it appears to be ex-
tremely sensitive to parameter settings [32]. As the number of
possible subspace dimensions for tensor objects is extremely
high (e.g., there are 225 280 possible subspace dimensions for
the gait recognition problem considered in this work), exhaus-
tive testing for determination of parameters is not feasible. Con-
sequently, the algorithmic solution of [30] and [31] cannot be
used to effectively determine subspace dimensionality in a com-
prehensive and systematic manner.

Motivated by the works briefly reviewed here, this paper
introduces a new MPCA formulation for tensor object di-
mensionality reduction and feature extraction. The proposed
solution follows the classical PCA paradigm. Operating di-
rectly on the original tensorial data, the proposed MPCA is a
multilinear algorithm performing dimensionality reduction in
all tensor modes seeking those bases in each mode that allow
projected tensors to capture most of the variation present in the
original tensors.

The main contributions of this paper include the following.
1) The introduction of a new MPCA framework for tensor ob-

ject dimensionality reduction and feature extraction using
tensor representation. The framework is introduced from
the perspective of capturing the original tensors’ variation.
It provides a systematic procedure to determine effective
representations of tensor objects. This contrasts to previous
work such as those reported in [16], [26], and [27], where
vector, not tensor, representation was used, and the works
reported in [20], [21], and [23], where matrix representa-
tion was utilized. It also differs from the works reported
in [1], [24], and [25], where tensor data were processed as
part of a reconstruction/regression solution. Furthermore,
unlike previous attempts, such as the one in [29], design
issues of paramount importance in practical applications,
such as the initialization, termination, convergence of the
algorithm, and the determination of the subspace dimen-
sionality, are discussed in detail.

2) The definition of eigentensors and -mode eigenvalues as
counterparts of the eigenvectors and eigenvalues in clas-
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sical PCA. The geometrical interpretation of these con-
cepts is provided, enabling a deeper understanding of the
main principles and facilitating the application of multi-
linear feature extraction.

3) The presentation of a recognition system that selects dis-
criminative tensor features from tensor objects and uses
a novel weighting method for classification. This differs
from traditional vector-based object recognition systems
[16] that often encounter computational and memory diffi-
culties when dealing with tensor object inputs. It also dif-
fers from [29], where all of the projected features were used
for recognition.

4) The development of a solution to the gait recognizer by rep-
resenting gait sequences as tensor samples and extracting
discriminative features from them. This is a more natural
approach that differs from [3]–[7], where either silhouettes
or heuristic features derived from silhouettes were used as
features.

The rest of this paper is organized as follows. Section II in-
troduces basic multilinear algebra notations, concepts, and the
notion of multilinear projection for dimensionality reduction.
In Section III, the problem of MPCA is formulated and an it-
erative solution is presented. Initialization procedures, termina-
tion criteria, convergence, and subspace dimensionality are dis-
cussed in detail. The connection to PCA and 2-D PCA is illus-
trated. The computational aspects of the proposed framework
are also discussed in this section. The problem of tensor ob-
ject recognition is discussed in Section IV. Section V lists ex-
periments on both synthetic data sets and true application data.
Synthetic data sets are used to verify the properties of the pro-
posed methodology while gait data sets are used to demonstrate
performance on a recognition problem of particular importance.
Finally, Section VI summarizes the major findings of this work.

II. MULTILINEAR PROJECTION OF TENSOR OBJECTS

This section briefly reviews some basic multilinear concepts
used in the MPCA framework development and introduces the
multilinear projection of tensor objects for the purpose of di-
mensionality reduction.

A. Notations and Basic Multilinear Algebra

Table I lists the fundamental symbols defined in this paper.
The notations followed are those decreed by convention in the
multilinear algebra, pattern recognition, and adaptive learning
literature. Thus, in this paper, vectors are denoted by lowercase
boldface letters, e.g., , matrices by uppercase boldface, e.g., ,
and tensors by calligraphic letters, e.g., . Their elements are
denoted with indices in brackets. Indices are denoted by lower-
case letters and span the range from 1 to the uppercase letter of
the index, e.g., . To indicate part of a vector/ma-
trix/tensor, “:” denotes the full range of the corresponding index
and denotes indices ranging from to . Throughout
this paper, the discussion is restricted to real-valued vectors,
matrices, and tensors since the targeted applications, such as
holistic gait recognition using binary silhouettes, involve real
data only. The extension to the complex valued data sets is out
of the scope of this work and it will be the focus of a forthcoming
paper.

TABLE I
LIST OF SYMBOLS

An th-order tensor is denoted as .
It is addressed by indices , and each
addresses the -mode of . The -mode product of a tensor

by a matrix , denoted by , is a tensor
with entries

. The scalar product of two
tensors is defined as

and the
Frobenius norm of is defined as . The th
“ -mode slice” of is an th-order tensor obtained by
fixing the -mode index of to be : .
The “ -mode vectors” of are defined as the -dimensional
vectors obtained from by varying the index while keeping
all the other indices fixed. A rank-1 tensor equals to the outer
product of vectors , which means
that for
all values of indices. Unfolding along the -mode is denoted
as . The column vectors
of are the -mode vectors of . Fig. 1 illustrates the
1-mode (column mode) unfolding of a third-order tensor.

Following standard multilinear algebra, any tensor can be
expressed as the product

(1)

where and
is an orthogonal matrix. Since
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Fig. 1. Visual illustration of the 1-mode unfolding of a third-order tensor.

Fig. 2. Visual illustration of multilinear projection: (a) projection in the 1-mode vector space and (b) 2-mode and 3-mode vectors.

has orthonormal columns, [1]. A matrix repre-
sentation of this decomposition can be obtained by unfolding
and as

(2)

where denotes the Kronecker product. The decomposition
can also be written as

(3)

i.e., any tensor can be written as a linear combination of
rank-1 tensors. This decomposition is used in the

following to formulate multilinear projection for dimensionality
reduction.

B. Tensor Subspace Projection for Dimensionality Reduction

An th-order tensor resides in the tensor (multilinear)
space , where are the

vector (linear) spaces [23]. For typical image and video tensor
objects such as 3-D face images and gait sequences, although the
corresponding tensor space is of high dimensionality, tensor ob-
jects typically are embedded in a lower dimensional tensor sub-
space (or manifold), in analogy to the (vectorized) face image
embedding problem where vector image inputs reside in a low-
dimensional subspace of the original input space [33]. Thus, it
is possible to find a tensor subspace that captures most of the

variation in the input tensor objects and it can be used to ex-
tract features for recognition and classification applications. To
achieve this objective, orthonormal basis vectors (prin-
ciple axes) of the -mode linear space are sought for each
mode and a tensor subspace is formed
by these linear subspaces. Let denote the matrix
containing the orthornormal -mode basis vectors. The pro-
jection of onto the tensor subspace is
defined as .

The projection of an -mode vector of by is com-
puted as the inner product between the -mode vector and the
rows of . Fig. 2 provides a visual illustration of the multi-
linear projection. In Fig. 2(a), a third-order tensor
is projected in the 1-mode vector space by a projection matrix

, resulting in the projected tensor
. In the 1-mode projection, each 1-mode vector of of

length 10 is projected by to obtain a vector of length 5,
as the differently shaded vectors indicate in Fig. 2(a). Similarly,
Fig. 2(b) depicts the 2-mode and 3-mode vectors.

III. MULTILINEAR PRINCIPAL COMPONENT ANALYSIS

In this section, an MPCA solution to the problem of dimen-
sionality reduction for tensor objects is introduced, researched,
and analyzed. Before formally stating the objective, the fol-
lowing definition is needed.

Definition 1: Let be a set of tensor
samples in . The total scatter of these ten-
sors is defined as , where is
the mean tensor calculated as . The

-mode total scatter matrix of these samples is then defined as
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Fig. 3. Pseudocode implementation of the proposed MPCA algorithm.

, where
is the -mode unfolded matrix of .

The previous statement leads to the following formal defini-
tion of the problem to be solved.

A set of tensor objects is avail-
able for training. Each tensor object
assumes values in a tensor space ,
where is the -mode dimension of the tensor. The
MPCA objective is to define a multilinear transformation

that maps the original
tensor space into a tensor subspace

(with , for ):
,

such that
captures most of the variations observed in the original tensor
objects, assuming that these variations are measured by the
total tensor scatter.

In other words, the MPCA objective is the determination of
the projection matrices
that maximize the total tensor scatter

(4)

Here, the dimensionality for each mode is assumed to be
known or predetermined. Discussions on the adaptive determi-
nation of , when it is not known in advance, will be presented
in Section III-F.

A. MPCA Algorithm

To the best of the authors’ knowledge, there is no known
optimal solution which allows for the simultaneous optimiza-

tion of the projection matrices. Since the projection to an
th-order tensor subspace consists of projections to

vector subspaces, optimization subproblems can be solved
by finding the that maximizes the scatter in the -mode
vector subspace. This is discussed in Theorem 1.

Theorem 1: Let be the solu-
tion to (4). Then, given all the other projection matrices

, the matrix con-
sists of the eigenvectors corresponding to the largest
eigenvalues of the matrix

(5)

where

(6)

Proof: The proof of Theorem 1 is given in Appendix I-B.

Since the product depends on
, the optimization

of depends on the projections in other modes and there
is no closed-form solution to this maximization problem.
Instead, from Theorem 1, an iterative procedure can be
utilized to solve (4), along the lines of the pseudocode
summarized in Fig. 3. The input tensors are centered first:

. With initializations through
full projection truncation (FPT), which is to be discussed in
details in Section III-C, the projection matrices are computed
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Fig. 4. Visual illustration of (a) total scatter tensor, (b) 1-mode eigenvalues, (c) 2-mode eigenvalues, and (d) 3-mode eigenvalues.

one by one with all the others fixed (local optimization). The
local optimization procedure can be repeated, in a similar
fashion as the ALS method [34], until the result converges or a
maximum number of iterations is reached.

Remark 1: The issue of centering has been ignored in the ex-
isting tensor processing literature. In the authors’ opinion, the
main reason for the apparent lack of studies on the problem
of tensor data centering is due to the fact that previously pub-
lished works focused predominately on tensor approximation
and reconstruction. It should be pointed out that for the approx-
imation/reconstruction problem, centering is not essential, as
the (sample) mean is the main focus of attention. However, in
recognition applications where the solutions involve eigenprob-
lems, noncentering (in other words, an average different from
zero) can potentially affect the per-mode eigendecomposition
and lead to a solution that captures the variation with respect
to the origin rather than capturing the true variation of the data
(with respect to the data center).

Remark 2: The effects of the ordering of the projection ma-
trices to be computed have been studied empirically in this work
and simulation results presented in Section V indicate that al-
tering the ordering of the projection matrix computation does
not result in significant performance differences in practical sit-
uations.

In the following sections, several issues pertinent to the de-
velopment and implementation of the MPCA algorithm are dis-
cussed. First, in-depth understanding of the MPCA framework
is provided. The properties of full projection are analyzed, and
the geometric interpretation of the -mode eigenvalues is intro-
duced together with the concept of eigentensor. In the sequence,
the initialization method and the construction of termination cri-
teria are described and convergence issues are also discussed.
Finally, methods for subspace dimensionality determination are
proposed and the connection to PCA and 2-D PCA is discussed,
followed by computational issues.

B. Full Projection

With respect to this analysis, the term full projection refers
to the multilinear projection for MPCA with for

. In this case, is an identity matrix, as
it can be seen from the pertinent lemma listed in Appendix I-C.
As a result, reduces to

, with determined by the input tensor
samples only and independent of other projection matrices. The
optimal is then obtained as the matrix comprised
of the eigenvectors of directly without iteration, and the
total scatter in the original data is fully captured. However,

there is no dimensionality reduction through this full projection.
From the properties of eigendecomposition, it can be concluded
that if all eigenvalues (per mode) are distinct, the full projection
matrices (corresponding eigenvectors) are also distinct and that
the full projection is unique (up to sign) [35].

To interpret the geometric meanings of the -mode eigen-
values, the total scatter tensor of the full
projection is introduced as an extension of the total scatter ma-
trix [36]. Each entry of the tensor is defined as

(7)

where and
. Using the previous definition, it can be

shown that for the so-called full projection ( for all ),
the th -mode eigenvalue is the sum of all the entries
of the th -mode slice of

(8)

In this paper, the eigenvalues are all arranged in a decreasing
order. Fig. 4 shows visually what the -mode eigenvalues rep-
resent. In this graph, third-order tensors, e.g., short sequences
(three frames) of images with size 5 4, are projected to a tensor
space of size 5 4 3 (full projection) so that a total scatter
tensor is obtained.

Using (3), each tensor can be written as a linear com-
bination of rank-1 tensors

. These rank-1 tensors will be called, here-
after, eigentensors. Thus, the projected tensor can be viewed
as the projection onto these eigentensors, with each entry of
corresponding to one eigentensor. These definitions and illustra-
tions for MPCA help with understanding the MPCA framework
in the following discussions.

C. Initialization by Full Projection Truncation

FPT is used to initialize the iterative solution for MPCA,
where the first columns of the full projection matrix
is kept to give an initial projection matrix . The corre-
sponding total scatter is denoted as and this initialization is
equivalent to the HOSVD-based solution in [28]. Although this
FPT initialization is not the optimal solution to (4), it is bounded
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and is considered a good starting point for the iterative proce-
dure, as will be discussed in the following.

Remark 3: There are other choices of initialization such as
truncated identity matrices [20], [23], [31] (named as pseu-
doidentity matrices) and random matrices. Simulation studies
(reported in Section V) indicate that although in practical
applications, the initialization step may not have a significant
impact in terms of performance, it can affect the speed of
convergence of the iterative solution. Since FPT results in much
faster convergence, it is the one utilized throughout this work
for initialization purposes.

In studying the optimality, with respect to (4), of the initial-
ization procedure, let us assume, without loss of generality, that
the 1-mode eigenvectors are truncated, in other words, only the
first 1-mode eigenvectors are kept. In this case, The-
orem 2 applies.

Theorem 2: Let and
be the matrix of the eigenvectors of and the
eigenvalues of , respectively, and

. Keep only the
first eigenvectors with to
get , where

and . Let
correspond to , and the matrix of its eigenvectors and

its eigenvalues be and , respectively. Then

For (other modes), . Furthermore, for each

mode, at least for one value of .
Proof: The proof is given in Appendix I-D.

It can be seen from Theorem 2 that if a nonzero eigenvalue
is truncated in one mode, the eigenvalues in all the other modes
tend to decrease in magnitude and the corresponding eigenvec-
tors change accordingly. Thus, the eigendecomposition needs
to be recomputed in all the other modes, i.e., the projection
matrices in all the other modes need to be updated. Since from
Theorem 1 the computations of all the projection matrices are
interdependent, the update of a projection matrix up-
dates the matrices as well. Consequently, the
projection matrices in all the other modes are
no longer consisting of the eigenvectors of the corresponding
(updated) and they need to be updated. The update con-
tinues until the termination criterion, which is discussed in
Section III-D, is satisfied.

Fig. 4 provides a visual illustration of Theorem 2. Removal of
a basis vector in one mode results in eliminating a slice of .
In Fig. 4, if the last nonzero (fifth) 1-mode eigenvalue is dis-
carded [shaded in Fig. 4(b)], the corresponding (fifth) 1-mode
slice of is removed [shaded in Fig. 4(a)], resulting in a trun-
cated total scatter tensor . Discarding this slice
will affect all eigenvalues in the remaining modes, whose cor-
responding slices have a nonempty overlap with the discarded
1-mode slice. In Fig. 4(c) and (d), the shaded part indicates the
removed 1-mode slice corresponding to the discarded eigen-
value.

Having proven the nonoptimality of FPT with respect to the
objective function (4), we proceed to derive the bounds for FPT
in Theorem 3.

Theorem 3: Let denote the th -mode eigenvalue for
the -mode full projection matrix. The upper and lower bounds
for , the loss of variation due to the FPT (measured
by the total scatter), are derived as follows:

(9)

Proof: The proof is given in Appendix I-D.
From (9), it can be seen that the tightness of the bounds is

determined by the eigenvalues in each mode. The bounds can
be observed in Fig. 4. For instance, truncation of the last eigen-
vector in each of the three modes results in another truncated
total scatter tensor , and thus the difference be-
tween and (the sum of all entries in and ,
respectively) is upper bounded by the total of the sums of all the
entries in each truncated slice and lower bounded by the max-
imum sum of all the entries in each truncated slice. For FPT, the
gap between the actual loss of variation and the upper bound is
due to the multiple counts of the overlaps between the discarded
slice in one mode and the discarded slices in the other modes of

.
The tightness of the bounds and depends on the

order , the eigenvalue characteristics (distribution) such
as the number of zero-valued eigenvalues, and the degree of
truncation . For example, for , which is the case of
PCA, and the FPT is the optimal solution so no
iterations are necessary. Larger results in more terms in
the upper bound and tends to lead to looser bound, and vice
versa. In addition, if all the truncated eigenvectors correspond
to zero-valued eigenvalues, since ,
and the FPT results in the optimal solution.

D. Termination

The termination criterion is to be determined in this paper
using the objective function . In particular, the iterative pro-
cedure terminates if , where and

are the resulted total scatter from the th and th
iterations, respectively, and is a user-defined small number
threshold (e.g., ). In other words, the iterations stop if
there is little improvement in the resulted total scatter (the ob-
jective function). In addition, the maximum number of iterations
allowed is set to for computational consideration.

E. Convergence of the MPCA Algorithm

The derivation of Theorem 1 (Appendix I-B) implies that
per iteration, the total scatter is a nondecreasing function
(as it either remains the same or increases) since each update
of the projection matrix in a given mode maximizes

, while the projection matrices in all the other modes
are considered fixed. On the other hand,

is upper bounded by (the variation in the original samples)
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since the projection matrices consist of orthonormal
columns. Therefore, MPCA is expected to have good con-
vergence property. Empirical results presented in Section V
indicate that the proposed MPCA algorithm converges very fast
(within five iterations) for typical tensor objects. Furthermore,
when per-mode eigenvalues are all distinct (with multiplicity
1), which is the case for the simulated data as well as the gait
data, the projection matrices , which maximize the
objective function , are expected to converge as well. It
should be noted that the claimed convergence regarding the
projection matrices is under the condition that the sign
for the first component of each -mode eigenvector is fixed
since the eigenvector is unique up to sign. Simulation studies
show that the projection matrices do converge well.

F. Determination of the Tensor Subspace Dimensionality

When the targeted dimensionality is
not specified in advance, its value has to be determined. Con-
sequently, the objective function (4) needs to be revised to in-
clude a constraint on the desired dimensionality reduction. The
revised objective function is as follows:

subject to (10)

where the ratio between the targeted (reduced) dimensionality
and the original tensor space dimensionality is utilized to
measure the amount of dimensionality reduction, and is a
threshold to be specified by the user or determined based on
empirical studies.

The proposed tensor subspace dimensionality determination
solution is called sequential mode truncation (SMT). Starting
with for all at , at each subsequent step

, the SMT truncates, in a selected mode , the th -mode
eigenvector of the reconstructed input tensors. The truncation
could be interpreted as the elimination of the corresponding

th -mode slice of the total scatter tensor. For the mode se-
lection, the scatter loss rate due to the truncation of its th
eigenvector is calculated for each mode. is defined as fol-
lows:

(11)

where is the scatter obtained at step is the

amount of dimensionality reduction achieved, and , which
is the corresponding th -mode eigenvalue, is the loss of
variation due to truncating the th -mode eigenvector. The
mode with the smallest is selected for the step- truncation.
For the selected mode is decreased by 1:

and is tested. The truncation stops
when is satisfied. Otherwise, the
input tensors are reconstructed according to (1) using the cur-
rent truncated projection matrices and they are used to recom-
pute the -mode eigenvalues and eigenvectors corresponding to
full projection. Since eigenvalues in other modes are affected
by the eigenvector truncation in a given mode (see Theorem 2),
it is reasonable to assume that a procedure such as the SMT,
which takes into account this effect, constitutes a reasonable
good choice for determining in the sense of (10).

The -based method, a suboptimal, simplified dimension-
ality determination procedure that requires no recomputation,
can be also used in practice. Let us define the ratio

to be the remained portion of the
total scatter in the -mode after the truncation of the -mode
eigenvectors beyond the th, where is the th full-pro-
jection -mode eigenvalue. In the proposed -based method,
the first eigenvectors are kept in the -mode (for each ) so
that (the equality can hold
approximately since it is unlikely to find that gives the exact
equality in practice). It should be noted that
for all since from Theorem 1, the total scatter for the full pro-
jection was given as

. This method can be viewed as an
extension of the dimensionality selection strategy in traditional
PCA to the multilinear case. The reason behind this choice is
that loss of variation is (approximately) proportional to the sum
of the corresponding eigenvalues of the discarded eigenvectors.
By discarding the least significant eigenvectors in each mode,
the variation loss can be contained and a tighter lower bound
for is obtained. The empirical study reported in the exper-
imental section indicated that the -based method provides re-
sults similar to those obtained by SMT (as measured in terms of
the total scatter captured) and thus it can be safely used instead
of the more computationally expensive SMT alternative.

G. MPCA Versus PCA and 2-D PCA Solutions

It is not difficult to see that the MPCA framework generalizes
not only the classical PCA solution but also a number of the
so-called 2-D PCA algorithms.

Indeed, for , the input samples are vectors
. There is only one mode and MPCA is reduced to PCA.

For dimensionality reduction purposes, only one projection ma-
trix is needed in order to obtain . In
this case, there is only one

, which is the total scatter matrix of the input sam-
ples in PCA [36]. The projection matrix maximizing the total
scatter (variation) in the projected space is determined from the
eigenvectors of . Thus, MPCA subsumes PCA.

In the so-called 2-D PCA solutions, input samples are treated
as matrices, in other words second-order tensors. Two (left and
right) projection matrices are sought to maximize the captured
variation in the projected space. With , the proposed
MPCA algorithm (Fig. 3) is equivalent to the 2-D PCA solution
of [22], with the exception of the initialization procedure and
termination criterion. Other 2-D PCA algorithms such as those
discussed in [21] can be viewed as variations of the method in
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Fig. 5. Block diagram of the MPCA-based tensor object recognition system.

[22] and thus they can be considered special cases of MPCA
when second-order tensors are considered.

H. Computational Issues

Apart from the actual performance of any proposed algo-
rithm, its computational complexity, memory requirements, and
storage needs are relative measures of its practicality and useful-
ness as they determine the required computing power and pro-
cessing (execution) time. To this end, we examine MPCA-re-
lated computational issues in a fashion similar to that introduced
in [20].

Since this is an iterative solution, the computational com-
plexity analysis is performed for one iteration. For simplicity,
it is assumed that .
From a computational complexity point of view, the most de-
manding steps are the formation of the matrices , the eigen-
decomposition of , and the computation of the multilinear
projection . It should be noted that the use of multilinear mul-
tiplication and unfolding in order to compute is more effi-
cient comparing to the use of Kronecker products. The compu-
tations needed to determine , the eigenvectors of ,
and are in order of (upper bounded),

, and , respectively. The total complexity
is .

In MPCA, and can be computed incrementally by
reading or sequentially without loss of information.
Hence, memory requirements for the MPCA algorithm can be
as low as as MPCA computes the solution without
requiring all data samples in the memory. This is a major advan-
tage that MPCA enjoys over the HOSVD-based solutions [26],
[28], which requires the formation of an th-order tensor
when the input tensor samples are of th-order. This is of con-
siderable importance in applications with large data sets as the
size of the input database may lead to increased complexity and
high memory storage requirement.1

MPCA compresses each tensor sample of size
to , and it needs matrices
for compression and decompression. Thus, it requires

1As an iterative solution, MPCA has a higher input/output (I/O) cost than
a noniterative solution. Nevertheless, since solving for the projection matrices
using MPCA is only in the training phase of the targeted recognition tasks, it can
be done offline and the additional I/O (and computational) cost due to iterations
is not considered a disadvantage of the proposed MPCA solution.

scalars in the reduced
space by MPCA and the compression ratio (CR) is defined as
CR . In
studying the subspace dimensionality determination perfor-
mance in the experiments, algorithms are compared under the
same CR.

IV. MPCA-BASED TENSOR OBJECT RECOGNITION

The projection matrices , obtained
by maximizing the total scatter of the projected samples
(in a reduced tensor space) from a set of training tensor sam-
ples , can be used to extract features for
various applications such as data compression, object retrieval,
and pattern recognition. This section presents the MPCA-based
tensor object recognition framework depicted in Fig. 5. In typ-
ical pattern recognition problems, such as human identification
using fingerprints, face, or gait signals, there are two types of
data sets: the gallery and the probe [7]. The gallery set contains
the set of data samples with known identities and it is used for
training. The probe set is the testing set where data samples of
unknown identity are to be identified and classified via matching
with corresponding entries in the gallery set.

A. Preprocessing

MPCA accepts tensor samples of the same dimensions
for feature extraction. However, in practice, tensor

object samples are often of different dimensions. Therefore, the
input tensors need to be normalized to standard dimensions first,
and if they are noisy, a noise-removing preprocessing procedure
could follow. The normalized tensor samples are then centered
by subtracting the mean obtained from the gallery tensors.

B. Feature Extraction

From the gallery set, a set of eigentensors is obtained, with re-
duced dimensionality determined by a user-specified

, and each entry of a projected tensor feature can be viewed
as a (scalar) feature corresponding to a particular eigentensor.
Some of the small variation and noise are removed in the projec-
tion. For recognition, it should be noted that MPCA is an unsu-
pervised technique without taking class labels into account. As
a result, the variation captured in the projected tensor subspace
includes both the within-class variation and the between-class
variation. In the task of classification, a larger between-class
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TABLE II
SEVEN DISTANCE MEASURES TESTED FOR MPCA-BASED TENSOR OBJECT RECOGNITION

variation relative to the within-class variation indicates good
class separability, while a smaller between-class variation rel-
ative to the within-class variation indicates poor class separa-
bility. Hence, a feature selection strategy is proposed to select
eigentensors according to their class discrimination power [30],
[36], [37], which is defined to be the ratio of the between-class
scatter over the within-class scatter.

Definition 2: The class discriminability for an
eigentensor is defined as

(12)

where is the number of classes, is the number of samples
in the gallery set, is the number of samples for class , and

is the class label for the th gallery sample . is the
feature tensor of in the projected tensor subspace. The mean
feature tensor and the class mean feature
tensor .

For the eigentensor selection, the entries in the projected
tensor (from the gallery set) are rearranged into a feature
vector , ordered according to in descending order,
and only the first most discriminative components of
are kept for classification, with determined empirically
or user specified. By this selection, a more discriminating
subspace, compared to the MPCA projected tensor subspace
that includes both features with good and poor separability, is
resulted. Next, a weight tensor is formed with entries defined

as , where denotes the
th -mode eigenvalue corresponding to the projection matrix

. is rearranged into a vector in the same order as
and only the first components of will be used in

Section IV-C as weights in measuring distances.
The feature vector can be used directly for recognition,

and a classical linear discriminant analysis (LDA) can also
be applied to obtain an MPCA LDA approach for recog-
nition [36], similar to the popular approach of PCA LDA.
LDA seeks a projection to maximize the ratio of the
between-class scatter matrix to the within-class scatter
matrix , where ,

, and . The solution
,

where is the set of generalized eigen-
vectors of and corresponding to the

largest generalized eigenvalues [38]:
. Thus, the discriminant

feature vector is obtained as .

C. Feature Classification

In classification, the distance between feature vectors is of
paramount importance as it determines the performance of the
classification module. For the feature vectors discussed previ-
ously ( or ), seven distance measures are adapted from
[39] and tested: L1, L2, angle, modified Mahalanobis distance
(MMD), modified L1 (ML1), modified L2 (ML2), and modi-
fied angle distance (MAD), as listed in Table II, where is a
weight vector. The first four measures are commonly used for
measuring vector distances and the last three measures can be
viewed as the weighted versions of the first three measures. If

is the feature vector, and , which is
the simplified Mahalanobis distance introduced in [39]. If is
the feature vector, and , where was defined
previously.

To measure the similarity of one test sample feature (or )
against sample features (or ) of a class , the prin-
ciple of nearest neighbor classifier is applied in this work. The
matching score of (or ) with class is obtained as

(or ), using one
of the distance measures in Table II. Such a simple classifier
is selected to study the performance mainly contributed by the
MPCA-based feature extraction algorithm although better clas-
sifiers can be investigated.

V. EXPERIMENTAL RESULTS

This section summarizes a number of experiments performed
here in support of the following objectives: 1) investigate the
various properties of the MPCA algorithm on synthetically gen-
erated as well as real application data sets and 2) illustrate the
efficacy of MPCA in tensor object classification, by applying
MPCA to the very important problem of gait recognition and
comparing its performance against state-of-the-art gait recogni-
tion algorithms as well as the baseline algorithm.

A. Experimentation Using Synthetic Data

Three synthetic data sets are constructed in order to study
the behavior of the MPCA algorithm and, in particular, the fol-
lowing are discussed: 1) the effects of the initial conditions, 2)
the effects of the ordering of the projection matrix computation,
3) the evolution of the total scatter over iterations, 4) the
number of iterations needed for convergence, and 5) the per-
formance of the tensor subspace dimensionality determination
proposal.
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Fig. 6. Eigenvalue magnitudes and their cumulative distributions for the synthetic data sets db1, db2, and db3. (a) Distribution of eigenvalues. (b) Cumulative
distribution of eigenvalues.

1) Synthetic Data Generation: The core of the MPCA al-
gorithm is the eigendecomposition in each mode so the dis-
tribution of the eigenvalues is expected to impact significantly
the performance of the algorithm. To study the MPCA proper-
ties on data of different characteristics, three synthetic data sets
with eigenvalues in each mode spanning different magnitude
ranges are generated. In particular, third-order tensor sam-
ples are generated per set according to

, using a core tensor
-mode projection matrix

and a “noise” tensor . All entries in
are drawn from a zero-mean unit-variance Gaussian distribution
and are multiplied by . In this data
generation procedure, controls the eigenvalue distributions,
so that data sets are created having eigenvalues’ magnitudes in
different ranges. Smaller results in a narrower range of eigen-
value spread. The matrices are orthogonal
matrices obtained by applying SVD on random matrices with
entries drawn from zero-mean, unit-variance Gaussian distribu-
tion. All entries of are drawn from a zero-mean Gaussian
distribution with variance 0.01. Three synthetic data sets db1,
db2, and db3 of size 30 20 10 with and

, and , respectively, are created. Fig. 6(a) depicts
the spread of eigenvalue magnitudes and Fig. 6(b) depicts their
eigenvalue cumulative distribution.

2) MPCA Properties: First, the effects of the initial con-
ditions are tested using the synthetic data sets. Both random
matrices and pseudoidentity matrices (truncated identity ma-
trices) have been utilized. Typical examples are shown in Fig. 7.

From the simulation studies, it can be observed that despite
the different initializations, the algorithm, when applied on sets
db1 and db2, converges to the same point within three itera-
tions. On set db3, the algorithm with different initializations
converges to the same point within ten iterations for .
For small value of on set db3, the algorithm using
random matrices as initialization could converge to a point that
is different from (lower than) the point to which the algorithm
using the other two initialization methods converges, as shown
in Fig. 7(c), indicating that initialization methods could affect
the final results on data sets with similar characteristics as db3
when a small is used. In summary, initialization has little ef-
fect on the final results for synthetic data sets db1 and db2 with
all values of , and for synthetic data set db3 with .
In pattern recognition applications, it is often desired to keep
most of the variation/energy in the original data, and hence, the
proposed algorithm using different initializations is expected to
converge well since is easily satisfied in practice.
Since the algorithm using the proposed initialization FPT con-
verges faster than the algorithm using the other initialization
methods, the FPT is expected to be closer to the local maximum
point and it is used for initialization in this work.

Second, the effects of the ordering of the projection matrix
computation are studied through simulations on the synthetic
data sets. Simulation results indicate that there is no signifi-
cant difference in the captured total scatter for db1 and db2,
while there is some small difference for db3. For db3, the dif-
ference in total scatter captured using different orderings is neg-
ligible ( 0.01%) for and it increases as decreases,
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Fig. 7. Convergence plot for different initializations. (a) Convergence plot for db1 with Q = 0:75. (b) Convergence plot for db2 with Q = 0:75. (c) Convergence
plot for db3 with Q = 0:15. (d) Convergence plot for db3 with Q = 0:75.

Fig. 8. Illustration of various properties of MPCA on the synthetic data sets. (a) Evolution of 	 for Q = 0:2. (b) Evolution of 	 for Q = 0:8. (c) Number
of iterations to converge. (d) SMT versus Q-based selection of P .
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e.g., the difference is about 1% when . This observation
is consistent with the poorer convergence property of db3, espe-
cially for a small , in other experiments such as the previous
initialization study and the convergence study in the following.

To study the evolution of the total scatter over iterations,
the ratio of the value of over the initial value is plotted
against the number of iterations, as a function of dimensionality
reduction determined by . For illustration purpose, results ob-
tained for up to 15 iterations with and are
shown in Fig. 8(a) and (b), respectively. As it can be seen from
the figure, the first iteration results in the greatest increase in
while subsequent iterations result in smaller and smaller incre-
ments, especially for data sets db1 and db2. To study the em-
pirical convergence performance, the number of iterations for
convergence using a termination value of is plotted in
Fig. 8(c) as a function of the parameter . These figures demon-
strate that, in MPCA, the number of iterations needed to con-
verge decreases as the range spanned by the eigenvalues for the
data samples or the value of increases.

The dependency on can be explained from two aspects.
is closely related to the number of eigenvectors truncated. First,
from Theorem 3, the bounds on tend to become looser
when the number of eigenvectors truncated increases ( de-
creases), and vice versa. Looser (tighter) bounds tend to result in
a poorer (better) initialization and it takes more (less) iterations
to reach a local optimum. Second, by Theorem 2, more trun-
cation (smaller value of ) tends to decrease the eigenvalues
in the other modes more so that more iterations are needed
to converge, and vice versa. The dependency on the range of
eigenvalue spread is less obvious. Narrower range in a mode
means the variation along each eigenvector in this mode is sim-
ilar and each of the truncated eigenvectors tends to encode sim-
ilar amount of variation as each remaining one, which tends to
make the convergence harder. On the other hand, broader range
of the eigenvalue spread in a mode means that the energy is more
concentrated in this mode and, in this case, convergence is ex-
pected to be easier.

In practical recognition tasks, is commonly set to a large
value in order to capture most of the variations. Furthermore,
the eigenvalues of practical data samples usually spread a wide
range in each mode due to redundancy/correlation. Therefore,
in practice, the number of iterations can be set to a small value
such as 1 with little sacrifice in the variations captured while en-
joying significant gain in empirical efficiency. In the following
experiments, there is only one iteration in MPCA and,
in this case, the calculation of and is not needed in the
local optimization (Step 3) of Fig. 3.

To investigate the -based method and the SMT method for
subspace dimensionality determination, is determined for
each mode using these two methods with various degrees
of truncation across all the modes. The resulted total scatters
are compared under the same CR (the same reduced dimen-
sionality), as shown in Fig. 8(d). The figure indicates that these
two methods have very similar results for all the three data sets.
Hence, in practice, the -based method, which is more efficient,
is used to determine the tensor subspace dimensionality. In ad-
dition, it is also verified through experiments, which are not in-

cluded here due to space limitation, that truncation in all modes
is advantageous against truncation in only one or two modes.

B. MPCA-Based Gait Recognition

The emerging application of video-based gait recognition is
of particular interest in the context of surveillance-at-a-distance
applications [3]. Gait video is naturally a third-order tensor
with the column, row, and time mode. Most of the gait recog-
nition algorithms proposed in the literature extract features
using frame-by-frame processing and they did not fully utilize
the natural spatial and temporal correlations of the input data.
Unfortunately, the linear subspace algorithms that have been
successfully applied, adapted, or developed in other biometrics
applications, such as faces [16], are not directly applicable to
the gait recognition problem because the vectorization of gait
video input results in vectors with much higher dimensions
compared to that of vectorized face images, which are impos-
sible to process. For example, each gait silhouette sequence
from the standard University of South Florida (USF) data sets
has a frame size of 128 88 and each sequence contains ap-
proximately 180 frames. The dimensionality of such a sequence
is approximately two orders of magnitude higher to that of the
typical image dimensionality encountered in the National In-
stitute of Standards and Technology (NIST) facial recognition
technology (FERET) database [40]. By treating a number of
frames as a single tensor object from which features are to be
extracted, both the spatial and the temporal correlations of the
original information are fully preserved, and thus, a cost-ef-
fective feature extraction procedure can be obtained under
the framework of the MPCA-based tensor object recognition
in Section IV. With each gait half cycle treated as a tensor
sample, the proposed gait recognition solution introduces a
novel representation called EigenTensorGait (ETG) and it can
be extended readily to other recognition problems as well. A
gait recognition algorithm typically consists of the following
steps: algorithm to partition a gait sequence into cycles (or half
cycles), feature representation and extraction method, and the
matching algorithm. In addition, preprocessing may be applied
to further improve the quality of silhouette images for better
recognition results, which is not included in this paper.

1) Gait Challenge Data Sets: The experiments are carried
out on the USF HumanID “gait challenge” data sets version 1.7
[7]. This database consists of 452 sequences from 74 subjects
(persons) walking in elliptical paths in front of the camera. For
each subject, there are three covariates: viewpoint (left/right),
shoe type (two different types), and surface type (grass/con-
crete). The gallery set contains 71 sequences (subjects) and
seven experiments (probe sets) are designed for human iden-
tification as shown in Table III. The capturing condition for
each probe set is summarized in brackets after the probe name
in Table III, where C, G, A, B, L, and R stand for cement
surface, grass surface, shoe type A, shoe type B, left view,
and right view, respectively. The capturing condition of the
gallery set is grass surface, shoe type A, and right view (GAR).
Subjects are unique in the gallery and each probe set and there
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TABLE III
SEVEN EXPERIMENTS DESIGNED FOR HUMAN IDENTIFICATION IN USF HUMANID DATA SETS

Fig. 9. Illustration of the gait silhouette sequence as a third-order tensor.

are no common sequences between the gallery set and any of
the probe sets. Also, all the probe sets are distinct. A baseline
algorithm is proposed in [7] to extract human silhouettes and
recognize individuals in this database. The extracted silhouettes
data provided by them is widely used in the literature. For this
reason, it is considered as inputs to the experiments reported
here in order to facilitate a fair comparison among the gait
recognition algorithms considered here.

2) ETG Representation: While in many recognition prob-
lems, an input sample is unambiguously defined, such as iris,
face, or fingerprint images, there is no obvious definition of a
gait sample. The proposed method treats each half gait cycle as
a data sample. Thus, the input is a third-order tensor and the spa-
tial column space, row space, and the time space account for its
three modes, as shown in Fig. 9.

To obtain half cycles, a gait silhouette sequence is partitioned
in a way similar to that used in [7]. The number of foreground
pixels is counted in the bottom half of each silhouette since legs
are the major visible moving body parts from a distance. This
number will reach a maximum when the two legs are farthest
apart and drop to a minimum when the legs overlap. The se-
quence of numbers is smoothed with a running average filter and
the minimums in this number sequence partition the sequence
into several half gait cycles. Following the previous definition,
there are 731 gait samples in the gallery set and each subject has
an average of roughly ten samples available. This simple par-
tition method may be improved further by taking the periodic
nature of the gait cycles into account, such as the more robust
cycle partitioning algorithm in [6], which is not investigated in
this paper.

Each frame of the gait silhouette sequences from the USF
data sets is of standard size 128 88, but the number of frames
in each gait sample obtained through half cycle partition has
some variation. Before feeding the gait samples to MPCA, the

tensorial inputs need to be normalized to the same dimension
in each mode. Since the row and column dimensions are nor-
malized by default, only the time mode, i.e., the number of
frames in each gait sample, is subject to normalization. The
normalized time-mode dimension is chosen to be 20, which
is roughly the average number of frames in each gait sample.
Thus, each gait sample has a canonical representation of

, and feature vectors are extracted
according to the method described in Section IV for the gait
samples . In the following, a simple pro-
cedure for this time-mode normalization is described.

Consider one sample . While there are so-
phisticated algorithms available, such as mapping a gait cycle
to a unit circle using nonlinear interpolation [26], conventional
interpolation algorithms, such as linear interpolation, can be
applied to the time-mode normalization as well. In this paper,
each 3-mode (time-mode) vector is interpolated linearly to the
normal size , followed by binarization to get binary sil-
houettes.

The 1-mode unfolding, i.e., concatenating the frames of a se-
quence sequentially in a row, of a gait sample and the mean gait
sample, are shown in Fig. 10(a) and (b), respectively. Fig. 11
shows a plot of the eigenvalues in three modes and their cumu-
lative distributions. The 2-mode eigenvalues drop sharply after
the 20th eigenvalue, indicating high redundancy in the 2-mode
(row mode). The 1-mode (column mode) eigenvalues decrease
gradually except at the last point, which may be due to the cen-
tering.

The eigentensors obtained from the gallery gait sequences
through MPCA are named ETGs. This approach to gait analysis
is called the ETG approach and if LDA is subsequently applied,
the approach is called the ETG LDA (ETGLDA) approach.
Fig. 10(c) shows the 1-mode unfolding of the first, second, third,
45th, and 92th most discriminative ETGs for illustration. From
Fig. 10(c), it is observed that the ETGs act as a set of multireso-
lution filters, where each ETG can be viewed as a filter, and the
projection using them is very similar to a filtering process ap-
plying a filter bank in multiresolution analysis. Using the pro-
posed ETG representation, gait features are extracted from gait
sequences for recognition.

3) Gait Feature Matching for Recognition: In the ETG
approach, to obtain the matching score of a probe sequence

with samples against a gallery sequence with
samples, the approach in [4] is adopted, which proposed
that the distance calculation process should be symmetric
with respect to probe and gallery sequences. If the probe
and gallery sequences were interchanged, the computed
distance would be identical. The details are described as
follows: Each probe sample feature is matched against
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Fig. 10. Illustration of a gait sample, the mean gait sample, and a number of representative ETGs. (a) The 1-mode unfolding of a gait silhouette sample. (b) The
1-mode unfolding of the mean of the gait silhouette samples. (c) The first, second, third, 45th, and 92nd discriminative ETGs.

Fig. 11. Eigenvalue magnitudes and their cumulative distributions for the gallery set.

the gallery sequence to obtain and each gallery
sample feature is matched against the probe sequence
to obtain . The matching score between the probe
sequence and the gallery sequence is the sum of the mean
matching score of against and that of against

. The
identity of the gallery sequence with the highest matching score

is assigned to the probe sequence .
Feature matching in the ETGLDA approach is similar to that

in the ETG approach, with replaced by in the previous de-
scription. The identification performance is measured by the cu-
mulative match characteristic (CMC) [7], which plots identifi-
cation rates within a given rank (rank results report the
percentage of probe subjects whose true match in the gallery set
was in the top matches).

4) Effects of Centering on Recognition: To emphasize the
fact that centering is an important preprocessing in classifica-

tion/recognition applications, a simple example is shown here.
The proposed ETG approach is applied with and without cen-
tering of the input gait data. In both cases, the dimensionality
in each mode is reduced to half of the original:

. The rank 1 and rank 5 gait recognition results using
the angle distance measure and the MAD measure are shown
in Fig. 12, with the number of ETGs used ranging from
20 to 680. Results on centered data are significantly better than
the results on the data without centering, implying that variation
captured with respect to the data center is more powerful in dis-
criminating classes than variation captured with respect to the
origin.

5) Algorithm Comparison: As this paper focuses on fea-
ture extraction, different feature extraction methods need to be
compared first, with the other algorithmic components fixed, as
shown in Table IV. The following features used in the state-of-
the-art gait recognition algorithms are compared: silhouettes,
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Fig. 12. Gait recognition results with and without centering. (a) Rank 1 results with angle distance. (b) Rank 5 results with angle distance. (c) Rank 1 results with
MAD distance. (d) Rank 5 results with MAD distance.

TABLE IV
COMPARISON OF FEATURE EXTRACTION METHODS FOR GAIT RECOGNITION

features extracted by performing PCA LDA on averaged sil-
houettes, and features from the proposed ETGLDA approach.
Other heuristic features, such as widths of the outer contour
[6] and angular transforms [4], have been shown to be poorer
than silhouettes so they are not compared here. As shown in
Table IV, starting with the USF silhouettes, half cycles are par-
titioned by the method described in Section V-B2 and linear
interpolation is used for time-mode normalization. The frame

image size is resized to 64 44 for all the feature extraction
algorithms in this comparison and the matching algorithm de-
scribed in Section V-B3 is used with three distance measures:
L1, L2, and angle.

Next, the proposed ETG and ETGLDA algorithms are com-
pared against the state-of-the-art gait recognition algorithms,
with different processing steps, which is expected to have an
impact on the recognition results. Algorithms that underper-
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TABLE V
COMPARISON OF THE STATE-OF-THE-ART GAIT RECOGNITION ALGORITHMS

Fig. 13. Evolution of the objective criterion over iterations when the DATER
algorithm in [30] is applied on the gait data.

form, i.e., with average rank 1 identification rate lower
than 50%, are not included, with the exception of the baseline
algorithm [7]. Those included, as summarized in Table V in their
original formulations, are the baseline algorithm [7], the hidden
Markov model (HMM) framework [6], the linear time normal-
ization (LTN) algorithm [4], and the gait energy image (GEI)
algorithm [5]. For the HMM algorithm, the direct approach,
which uses the entire silhouette as the feature, is chosen for
comparison since the indirect approach, which uses the width
of the outer contour of the silhouette as the feature, has
46%. For the LTN algorithm, the LTN using the silhouette fea-
ture (LTN-S) is chosen for comparison since the LTN using the
angular feature (LTN-A) has 41%. For the GEI method,
the results involving the synthetic templates are not included for
fair comparison. Table V illustrates the differences between al-
gorithms. It should be pointed out that, in the HMM approach,
besides feature extraction and matching, HMM parameter es-
timation (training) is a major component as well and it is not
shown in the table.

In addition, there is a recent work applying the multilinear
LDA algorithm in [30] and [31] to the problem of gait recog-
nition using matrix representation (the average of silhouettes)
[32], which can be viewed as a second-order tensor representa-
tion where the time-mode information is ignored. This is fun-
damentally different from the natural third-order tensor repre-
sentation used in the MPCA-based approaches. As mentioned
before, the algorithm in [30] does not converge, as shown in
Fig. 13, and their results are shown to be very sensitive to pa-
rameter settings, as shown in [32, Fig. 4]. Furthermore, exhaus-
tive testing is used to determine the number of iterations and
the subspace dimension in [32], which is not practical due to its
high computational cost. The authors did their best to faithfully
implement the gait recognition algorithm in [32] based on [30]
and tested 2125 parameter configurations, evenly sampled from
the total 56 320 possible parameter configurations. The best re-
sult, obtained after five iterations with projected dimensions of
30 5, has (average) rank 1 and rank 5 recognition rates of 42%
and 57%, respectively, on the gait data sets used in this paper.
These results are poorer than the recognition rates obtained by
the baseline algorithm. Hence, the methods in [32] or [30] are
not included in the state-of-the-art gait recognition set used for
comparison purposes.

6) Gait Recognition Results and Discussions: In the gait
recognition experiments, the number of eigenvectors kept in
each mode is , and , and they are
determined by setting ,
which captures approximately 92% of the total energy variation
of the gallery gait samples in the projected tensor subspace. Al-
though with the same , similar amount of variation is kept in
each mode, the amount of dimensionality reduction in the image
spatial modes (52% for the column mode and 48% for the row
mode) is more significant than that in the time mode (15%). This
indicates that there are more redundancy in the spatial modes
than in the time mode. For the ETGLDA approach, the dimen-
sion of the feature vector is fixed to be the maximum that can
be obtained by classical LDA , where is
the number of gallery subjects (classes).

Two following key design factors are varied to study their
effects and to determine the best choices for them: the number
of selected ETGs and the distance measures. For different
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Fig. 14. Gait recognition results: dependency onH and the distance measure used and the CMC curves. (a) Rank 1 identification performance of ETG. (b) Rank
5 identification performance of ETG. (c) Rank 1 identification performance of ETGLDA. (d) Rank 5 identification performance of ETGLDA. (e) CMC curves up
to rank 20 for ETG. (f) CMC curves up to rank 20 for ETGLDA.

(up to 800) and for the distance measures listed in Table II,
the average rank 1 and rank 5 identification rates are plotted
in Fig. 14(a) and (b), respectively, for the ETG approach, and

in Fig. 14(c) and (d), respectively, for the ETGLDA approach.
For the ETG approach, the MAD measure, with the proposed
weight vector , significantly outperforms all the other dis-
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TABLE VI
COMPARISON OF FEATURE EXTRACTION METHODS

TABLE VII
COMPARISON OF THE MPCA-BASED AND THE STATE-OF-THE-ART GAIT RECOGNITION ALGORITHMS

tance measures for . For the ETGLDA approach, the
angle and MAD measures outperform all the other measures at
rank 1 and the MAD measure is better than the angle at rank
5 for . Thus, both approaches choose MAD as the
distance measure. With MAD, when more and more eigenten-
sors are included, i.e., increases, the ETG identification rate
keeps increasing first, except some small fluctuations, and be-
comes steady beyond a certain point, indicating that most of the
ETGs selected first are good features for classification. For the
ETGLDA approach, due to the LDA feature extraction process
where the feature vector length is , the performance against

is different: with the MAD measure, the identification rates
(rank 1 and 5) reach maximum around and drop at
a higher rate for , suggesting that more ETGs (more
than 200) may lower the performance of ETGLDA.

Table VI compares the feature extraction algorithms in
Table IV. The feature vector length is 70 for both
the GEI (PCA LDA on averaged silhouette) and ETGLDA
(MPCA LDA on gait tensor sample) approaches. The PCA in
the GEI approach results in a feature vector of length 142, as
recommended by the authors of [5], and the ETGLDA results
shown are obtained with , determined empirically.
The table shows that both the GEI and ETGLDA features out-
perform the silhouettes features significantly, and the proposed
ETGLDA features outperform the GEI features. Particularly,
in the average rank 1 identification rate, the ETGLDA fea-
tures with the (best-performing) angle distance measure result
in about 18% improvement over the GEI features with the
(best-performing) L1 distance measure, indicating that the pro-
posed MPCA-based approach is more powerful in recognition
than the PCA-based approach.

Based on empirical study, the best gait recognition perfor-
mance for the ETG and ETGLDA approaches is obtained with

and , respectively, using MAD. The de-
tailed results are depicted using the CMCs in Fig. 14(e) and (f),
and they are compared with the state-of-the-art gait recognition
algorithms in Table VII, where the rank 1 and rank 5 identi-
fication rates are listed for each probe (A to G) together with
their averages. The best results for all the probe and rank com-
binations are highlighted by boldface font in the table. From
Table VII, the HMM, LTN, GEI, ETG, and ETGLDA algo-
rithms have no significant difference in the rank 1 performance,
although LTN is slightly poorer, and they outperform the base-
line results by more than 19%. For the rank 5 performance, ET-
GLDA has the best performance.

From the comparisons in Table V, the performance of the
HMM framework is mainly contributed to the adaptive filter
used for cycle partition, the Viterbi algorithm used for proba-
bilistic matching, and the iterative training of the HMM param-
eters, while the performance of LTN is mainly contributed to
the silhouette refinement, the robust cycle partition procedure,
and the LTN distance matching strategy. Besides PCA LDA
in feature extraction, the GEI algorithm utilizes a robust esti-
mator as well for the cycle partition taking into account the pe-
riodic nature of the gait signal and it seems that this tends to
improve the recognition performance. To summarize, silhouette
refinement could be a beneficial step for gait recognition and
robust cycle partition seems to be an important component in
these start-of-the-art gait recognition algorithms. In addition, ro-
bust matching algorithms such as the Viterbi algorithm used in
HMM have great potential for gait recognition as well.

Finally, the ETGLDA approach has some small gain (about
4% improvement on average) over the ETG approach in rank 1
performance, especially on probes A and C. In rank 5 perfor-
mance, the ETGLDA approach has greater improvement (about
10% on average) over the ETG approach. Thus, the combination
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of the ETG approach with a classical LDA does result in better
recognition and the combination with other linear subspace
algorithms are promising future directions as well. On the
whole, despite a design without optimizing the preprocessing,
cycle partition, and matching algorithms, the MPCA-based
approaches to gait recognition are highly competitive against
the state-of-the-art gait recognition algorithms. The ETGs, and
EigenTensorObjects in general, are very promising features for
tensor object recognition.

VI. CONCLUSION

In this paper, a new MPCA framework is proposed for
analysis of tensor objects, such as 2-D/3-D images and video
sequences. MPCA determines a multilinear projection onto a
tensor subspace of lower dimensionality that captures most of
the signal variation present in the original tensorial represen-
tation. An iterative solution was formulated. Issues including
initialization, convergence, and subspace dimensionality de-
termination were discussed in detail. An MPCA-based tensor
object recognition framework was then introduced and applied
to the problem of gait recognition. Each half cycle of a gait
silhouette sequence was treated as a gait sample and the pro-
posed framework was used to devise a novel gait representation
called ETG. Comparisons with the start-of-the-art algorithms
indicated that the MPCA-based approach is a very promising
tool for gait recognition and its performance can be further
improved by silhouette refinement, robust cycle partition, and
more advanced matching algorithms.

APPENDIX I
PROOFS

A. Proof of Theorem 1

Proof: The mean tensor of all the projected samples is

. Write the objective function (4) in terms of the input
tensor samples as

(13)

From the definition of the Frobenius norm for a tensor and that
for a matrix, , and from (2), can be ex-
pressed using the equivalent matrix representation by -mode
unfolding as follows:

(14)

Since trace can be written in terms of the
-mode total scatter matrix of the projected tensor samples

trace

trace (15)

Therefore, for given ,
the total scatter is maximized if and only if trace

is maximized. The maximum of trace
is obtained if consists of the eigenvectors of the

matrix corresponding to the largest eigenvalues.

B. Proof of Lemma 4

Lemma 4: When for
is an identity matrix.

Proof: By successive application of the transpose property
of the Kronecker product [38]

(16)

By the Kronecker product theorem
[38]

(17)

For all , when is a square matrix and
, where is an identity ma-

trix. Then, and . Thus,
.

C. Proof of Theorem 2

The following lemma explains the relationship between the
eigenvalues of two covariance matrices that are closely related.

Lemma 5: Let be a sample matrix with sam-
ples. contains samples from , and

contains the rest. Let and denote
the th eigenvalues of and , respectively. Then,

, for .
Proof: Without loss of generality, let

and . and are both sample
covariance matrices and hence are symmetric. is related to
them by . is a covariance ma-
trix as well, and hence, it is positive semidefinite. From the
Weyl’s theorem [35], which is derived from the Courant–Fisher
“min–max theorem” [35], the eigenvalues of is not greater
than the corresponding eigenvalues of ,
i.e., , for .

The proof of Theorem 2 follows.
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Proof: For
. Thus

where results in an identity matrix. Since

is simply the first rows of for

, and for .
Similarly, for

. The columns of are a subset of the columns

of . Therefore, by Lemma 5, . Since

. Thus, for each mode, at least for one value of

.

D. Proof of Theorem 3

Proof: For the lower bound, considering the 1-mode eigen-
values first

(18)

where is the total scatter tensor (corresponding to the full
projection) defined in (7). Inequality (18) can be similarly de-
rived for the other -mode eigenvalues

for . Therefore

(19)

For the upper bound

(20)
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