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Abstract. This paper introduces a new nonlinear filter for a discrete time, linear system which is
observed in additive non-Gaussian measurement noise. The new filter is recursive, computationally
efficient and has significantly improved performance over other linear and nonlinear schemes. The
problem of narrowband interference suppression in additive noise is considered as an important
example of non-Gaussian noise filtering. It is shown that the new filter outperforms currently used
approaches and at the same time offers simplicity in the design.
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List of Symbols

x(k+ 1) = system state
Φ(k + 1, k) = state transition matrix
w(k) = state noise
z(k) = measurement vector
H(k) = measurement matrix
v(k) = measurement noise
Q(k) = state noise covariance
R(k) = measurement noise covariance
x̂(0) = mean value of the initial state vector
P (0) = covariance of the initial state vector
x̂(k | k) = estimate of the system state x(k) utilizing measurements up to time instant k
P (k | k) = estimation covariance
K(k) = filter gain at time index k
x̂(k | k − 1) = one-step ahead state prediction
ẑ(k | k − 1) = innovation sequence
Pz(k | k − 1) = innovation covariance
f(·) = probability density
N(µ,B) = Gaussian density with mean value µand covariance B

1. Introduction

Estimation (filtering) theory has received considerable attention in the past four
decades, primarily due to its practical significance in solving engineering and
scientific problems. As a result of the combined research efforts of many scientists
in the field, numerous estimation algorithms have been developed. These can
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208 K. N. PLATANIOTIS ET AL.

be classified into two major categories, namely linear and nonlinear filtering
algorithms, corresponding to linear (or linearized) physical dynamic models with
Gaussian noise statistics and to nonlinear or non-Gaussian physical models.

The linear estimation problem, in particular, has attracted considerable atten-
tion, as can be seen in books and surveys of the subject [1]. The discrete linear,
state estimation problem is described by the following model equations and state-
ment of objective:

x(k + 1) = Φ(k + 1, k)x(k) + w(k), (1)

z(k + 1) = H(k + 1)x(k + 1) + v(k + 1), (2)

where x(k) is the n-dimensional state process, Φ(k + 1, k) is the (n × n) state
transition matrix describing the transition of the state from time-step (k + 1) to
time-step (k), z(k) is the m-dimensional measurement process and H(k + 1)
is an (m × n) matrix which relates the observations (measurements) z to the
state x. The associated state noise w(k), is modeled as white Gaussian sequence
with covariance Q(k).

The observation noise v(k) is considered white Gaussian with covariance
R(k) and uncorrelated to the state noise process, that is E(v(k)w(j)) = 0,
∀k, j. The matrices Φ, H , Q and R are assumed known. The initial state vector
x(0), which is in general unknown, is modeled as a random variable, Gaus-
sian distributed with mean value x̂(0) and covariance P (0), and is considered
uncorrelated to the noise processes ∀k > 0.

Given the set of measurements Zk = [z(1), z(2), . . . , z(k − 1), z(k)], we
desire the mean-squared-error optimal filtered estimate x̂(k | k) of x(k):

x̂(k | k) = E
(
x(k) | Zk

)
. (3)

The above problem was first solved by Kalman with his well known filter [1]. The
Kalman filter is the optimal recursive estimator for the above problem. It must
be emphasized that the Kalman filter is the optimal estimator if the processes
w(k) and v(k) are Gaussian. Hence, if either of noise processes in (1)–(2) are
non-Gaussian, the measurement z(k) will be non-Gaussian, and the degradation
in the performance of the Kalman filter will be rather dramatic.

In most cases, w(k), which is in fact a tuning parameter that greatly depends
on the filter designer, can be modeled as a Gaussian process. On the other hand,
this is not the case for the observation noise v(k). Despite the fact that most
engineering systems in control, communication and intelligent signal processing
are developed under the assumption that the interfering noise is Gaussian, many
physical environments can be modeled more accurately as non-Gaussian rather
than Gaussian observation channels and are characterized by heavy-tailed non-
Gaussian distributions. Examples include, among others, natural phenomena, such
as atmospheric noise, lightning spikes and ice cracking, and a great variety of
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NONLINEAR FILTERING OF NON-GAUSSIAN NOISE 209

man-made noise sources, such as electronic devices, neon lights, relay switching
noise in telephone channels and automatic ignition systems [2, 3].

In such an environment, the Kalman filter cannot provide the optimal solution
due to the Gaussian assumption in which it is based. Since non-Gaussian measure-
ment noise is usually non-stationary, very dependent on the physical environment,
and may be of infrequent occurrence, an intelligent adaptive estimator which can
continuously adjust its structure to match changing noise characteristics is of
paramount importance.

Such a filter is introduced and analyzed in this paper. The new filter utilizes an
intelligent adjustment mechanism which monitors the changes in the noise source
and adaptively adjusts its parameters to maintain the required performance.

The rest of the paper is organized as follows: in Section 2 mathematical mod-
els for non-Gaussian noise environments are discussed. In Section 3 we briefly
review previous approaches to the problem. The new estimator is introduced in
this section. Motivation and implementation issues are also discussed there. In
Section 4 simulation results are presented and the performance of the proposed
adaptive filter is described. Finally, Section 5 summarizes our conclusions.

2. Non-Gaussian Noise Modeling

Several models have been used to date to model non-Gaussian noise environ-
ments. Some of these models have been developed directly from the underlying
physical phenomenon, most notably the Middleton Class A, B and C model
[4, 5]. On the other hand, empirically devised noise models have been used
over the years to approximate many non-Gaussian noise distributions. Based
on the Wiener approximation theorem, any non-Gaussian noise distribution can
be expressed as, or approximated sufficiently well by, a finite sum of known
Gaussian distributions.

This so-called ‘Gaussian sum’ approach is summarized in the following lemma
[6, 7]:

LEMMA. Any density f(x) associated with an n-dimensional vector x can be
approximated as closely as desired by a density of the form

fA(x) =
l∑
i=1

aiN(µi, Bi) (4)

for some integer l, and positive scalars ai with
∑l
i=1 ai = 1, where N( · ) is a

Gaussian density with mean value µi and covariance matrix Bi:

N(µi, Bi) =
1

(2π)n
|Bi|−0.5 exp

(
−0.5‖x− µi‖2

B−1
i

)
. (5)
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210 K. N. PLATANIOTIS ET AL.

It can be shown that the density fA(x) can converge uniformly to any density
function of practical interest by letting the number of terms increase and each
elemental covariance approach the zero matrix [6].

This approximation procedure has been used to develop empirical distribu-
tions which relate to many physical non-Gaussian phenomena. A special case of
the Gaussian sum approach, the ε-mixture is of particular interest. The ε-mixture
noise model has been extensively used to describe a non-Gaussian noise envi-
ronment in many communication and control systems, such as spread-spectrum
communication systems, target tracking in the presence of glint noise, jamming
or clutter suppression, outlier rejection in image processing applications and
intelligent processing in interferometric and multi-range measurement systems.

The probability density function for such a model is of the following form:

f(x) = (1− ε)fG(x) + εfnG(x), (6)

where ε ∈ (0, 1), fG is the pdf of the nominal or background Gaussian density
function, and fnG is the pdf of the dominant non-Gaussian noise, often taken to
be a heavy-tailed density, such as a Laplacian density or a Gaussian density with
a large variance (covariance). The mixing parameter ε regulates the contribution
of the non-Gaussian component. Usually it varies between 0.01 and 0.25 [8].
When a Gaussian density with large variance is used to emulate the non-Gaussian
dominant component, the ratio of the dominant to nominal density variances λ
is on the order of 10 to 10 000 [8, 9].

3. Filtering in Non-Gaussian Noise

3.1. RELATED PREVIOUS WORK

A number of filtering techniques utilize empirical models, such as the Gaussian-
sum or the ε-mixture noise model to tackle the problem of estimating the state
of a linear system in a non-Gaussian environment.

For a state space model, such as the one described in (1)–(2) a Gaussian-sum
additive measurement noise of the form:

f(v(k)) =
l∑
i=1

aiN(µi, Ri) (7)

results in a predictive measurement density f(z(k) | x(k), Zk−1) which has a
similar form [10].

Based on this observation Sorenson and Alspach had developed a mean-
squared state estimator for a non-Gaussian noise environment [10, 11]. They
assumed that the noise sequences have a uniformly convergent series expression
in terms of known Gaussian distributions. A fixed number of Gaussian terms with
known moments is then used to develop an optimal (under these assumptions),
minimum-mean-square-error filtering algorithm. The output of their so-called
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‘Gaussian sum’ filter is formed by combining elemental estimates from a bank
of Kalman filters, each one matched to a specific term of the Gaussian sum.

Their methodology has a major drawback, namely its computational complex-
ity since the numerical computations in the filter increase almost exponentially
in time. For the case of additive Gaussian noise, the number of terms involved in
the derivation of the optimal Kalman filter remain constant. In their filter, how-
ever, for any time index (k) the predictive measurement density f(x(k) | Zk−1)
is a Gaussian mixture of (l1) components with (l1 > l), and since the noise
distribution v(k) of (7) contains (l) components, the combined density needed
for the next step calculations is a mixture with (l1xl) components. Thus, the
computational burden at each stage becomes larger as the number of terms in
the mixtures increases. Hence, due to its computational complexity the ‘Gaussian
sum’ filter is not practical and in many applications not feasible.

In an attempt to alleviate the computational burden associated with the ‘Gaus-
sian sum’ filters, Masreliez introduced a new filter which is more robust than
the Kalman filter [12, 14]. His methodology is based on the so-called ‘score-
function’. This function is a custom-tailored nonlinearity, used in a Kalman-like
recursive filter to de-emphasize the effect of large noise residuals on the state
estimate. The filter designer has to decide on the form of the nonlinearity based
knowledge on about the noise characteristics which must be available a priori. It
is obvious, that since its ‘score function’ is custom-tailored to fit a specific noise
form, the Masreliez filter cannot operate in a changing noise environment and
cannot adjust its characteristics on-line to match changing noise sources. Thus,
although is more robust than the linear Kalman filter in a fixed nonlinear envi-
ronment it cannot be classified as an ‘intelligent’ (adaptive) filtering algorithm
[12, 13].

In addition, despite the fact that is computationally more efficient than the
Alspach and Sorenson filter, it still requires a rather demanding convolution
operation in the evaluation of the nonlinear score function. In summary, the need
of an ‘appropriate’ nonlinearity and the calculations required for its evaluation
often limits the practicality of this method in many engineering applications.

3.2. THE NEW FILTER

Thus, a new adaptive filter is needed that is computationally attractive and does
not require any problem-dependent nonlinearities in its design. To this end, such
a filter is introduced here. The new filter utilizes the same methodology with that
of the ‘Gaussian sum filter’ [10, 11]. However, in order for the procedure to be
practical, the number of terms in the Gaussian mixture is controlled adaptively at
each step. A Bayesian learning technique is utilized to collapse, in an intelligent
way, the resulting non-Gaussian sum mixture to an equivalent Gaussian term.
Thus, at the end of the current cycle of the filter, the resulting Gaussian mixture
f(z(k) | x(k), Zk−1) is collapsed and approximately represented with only one
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equivalent Gaussian term. In the next filtering cycle the calculations involve only
the l terms used in the representation of the measurement noise resulting in fixed
complexity. In this way, the new filter resolves the computational burden of the
‘Gaussian sum’ approach without the use of problem dependent nonlinearities,
such as those required by the Masreliez filter.

The main points of our strategy can be summarized as follows:

1. For each Gaussian term in (7), which describes the observation noise, a
dedicated Kalman filter is employed. These filters can operate in parallel to
reduce the processing time.

2. Based on the interim results from these dedicated Kalman filters we
obtain a Bayesian a posteriori approximation of the Gaussian mixture
f(z(k) | x(k), Zk−1) required in the filtering process. It should be noted
at this point that the filter adaptively approximates the predictive measure-
ment density at every filter cycle.

3. Thus, through the Bayesian adaptation, the optimal (in the minimum mean
square error sense) Gaussian approximation for the above mixture can be
obtained. Then, the first two moments of this equivalent Gaussian term are
used to complete the filtering cycle of a recursive, Kalman-like filter.

The equations of the new filter are summarized in the following theorem.

THEOREM (The adaptive filter). For the linear dynamic system described in (1)–
(2), if the additive measurement noise is modeled by (7), the estimate x̂(k | k)
of the system state x(k) at time step k can be computed recursively as follows:

x̂(k | k) = x̂(k | k − 1) +K(k)(z(k) − ẑ(k | k − 1)), (8)

P (k | k) = (I −K(k)H(k))P (k | k − 1), (9)

x̂(k | k − 1) = Φ(k, k − 1)x̂(k − 1 | k − 1), (10)

P (k | k − 1) = Φ(k, k − 1)P (k − 1 | k − 1)Φ(k, k − 1)τ +Q(k − 1), (11)

with initial conditions x̂(0 | 0) = x̂(0) and P (0 | 0) = P (0).

K(k) = P (k | k − 1)Hτ (k | k − 1)P−1
z (k | k − 1), (12)

ẑ(k | k − 1) =
l∑
i=1

wi(k)ẑi(k | k − 1), (13)

ẑi(k | k − 1) = H(k)x̂(k | k − 1) + µi, (14)

Pzi(k | k − 1) = H(k)P (k | k − 1)Hτ (k) +Ri, (15)
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with the corresponding innovation covariance and the a posteriori weights used
in the Bayesian approximation defined as:

Pz(k | k − 1) =
l∑
i=1

(
Pzi(k | k − 1) +

(
ẑ(k | k − 1)− ẑi(k | k − 1)

)
×

×
(
ẑ(k | k − 1)− ẑi(k | k − 1)

)τ)
wi(k), (16)

wi(k)

=

(
(2π)−m|Pzi|−1 exp

(
−0.5

(
‖z(k)− ẑi(k | k − 1)‖2

P−1
zi (k|k−1)

)))
ai

c(k)
, (17)

where | · | denotes the determinant of the matrix, ‖ · ‖ is the inner product in
the Euclidean space Rm, ai are the initial weighting coefficients used in (7) and
c(k) is a normalization factor defined as follows:

c(k) =
l∑
i=1

(
(2π)

−m
|Pzi|−1 ×

× exp
(
−0.5

(
‖z(k) − ẑi(k | k − 1)‖2

P−1
zi (k|k−1)

)))
ai. (18)

Proof. The proof is given in the appendix.

3.3. COMMENTS

• The new filter is easy to implement, requires no special information and can
adapt to changes in the noise environment. Through the intelligent re-evaluation
of its a posteriori weights in (16)–(18), the filter can follow the true underlying
noise conditions coping with uncertainties which may occur due to large varia-
tions in the noise signal. As such, our approach constitutes a form of intelligent
signal processing since we can identify in it characteristics unique on intelligent
mechanisms, namely:

1. ‘self-learning’: the filter utilizes a self-learning mechanism (the Bayesian
adaptation of (16)–(18)) in order to track changes in a non-stationary noise
environment.

2. ‘robust performance’: its performance is insensitive in extreme values (out-
liers).

• The collapsed density, which is used to approximate f(z(k) | x(k), Zk−1),
has only one Gaussian term, thus it can be incorporated in the recursive form of
the usual Kalman filter. The nonlinear weights ensure that the collapsed equiva-
lent density captures any skewness or bimodality existing in the original nonlinear
mixture.
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214 K. N. PLATANIOTIS ET AL.

• The performance of the nonlinear filter depends on the approximation of the
Gaussian mixture by the single Gaussian term. The rationale of this approxima-
tion lies in the fact that some of the members in the original density have small
mixing weights at a particular time instant and hence the information that they
carry can safely be ignored for practical purposes. The Bhattacharyya coefficient,
which is defined as:

ρij =

∫
[fi(x)fj(x)]0.5 dx (19)

with 0 6 ρij 6 1 and ρij = 1 if fi(x) = fj(x) [15], can be used to measure
the validity of the approximation by calculating the distance between the actu-
al Gaussian mixture and the Gaussian term resulting after the collapse of the
mixture.
• It can be seen in the theorem above that the density f(z(k) | x(k), Zk−1)

is represented by a finite number of parameters (ẑi(k | k − 1), Pzi(k | k − 1))
which are obtained using recursive Kalman filters, each matched to a specific
set of initial conditions (µi, Ri), i = 1, 2, . . . , l. Thus, the Gaussian sum density
is formed as the combination of the output of a number of linear filters operat-
ing in parallel, resulting in a nonlinear filter with considerable implementation
advantages due to its partitioned structure. Namely, its naturally decoupled par-
allel structure lends to parallel processing, since its parts consist of the set or
recursive linear (Kalman) filters which are easily implementable, and the set of
a posteriori coefficients used in the adaptive density approximation which are
easily obtained by the recursive Bayes algorithm of (16)–(18). This decoupled
parallel structure of the new algorithm lends it well to easy implementation in
term of array processors. With the advent of inexpensive processors, the decou-
pled, parallel-processing nature of the new algorithm is of substantial practical
importance since it affords inexpensive realizations of an nonlinear estimator. In
practical terms, due to its parallel, decoupled structure the new filter has compu-
tational complexity similar to that of the simple Kalman (linear) filter (Figure 1).

By contrast, other nonlinear filters, such as the Masreliez filter or filters with
pre-processing nonlinearities are computationally expensive. Such designs do not
allow for off-line gain computations and require expensive numerical evaluations
of convolutions in the realization of the specialized nonlinear functions which
they use. To emphasize the difference between the proposed here approach and
the Masreliez filter we consider a system similar to the one described in (1)–(2)
with state and measurement dimension (n×1) when the observation noise given
as a Gaussian mixture. For such a system the Kalman filter, and thus our approach
through its parallel implementation, requires 2n3 + 3n2 + 2n+ 3 multiplications
and one division per recursion. The Masreliez filter requires 2n3 + 3n2 + 2n+ 9
multiplications, seven divisions, one exponential and one square root operations
in addition to the numerical method required for the evaluation of the score
function. Therefore, we can conclude that the Masreliez filter requires more
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Figure 1. The new nonlinear filter.

computations than our methodology. A detailed analysis of the computations
involved in the implementation of recursive filters is provided in [17].

The interested reader can refer to it for more information on the subject.
• Finally, the filter proposed here has a robust nature. This can be demonstrated

by noting that its decoupled (parallel) structure (Figure 1) has a natural ‘failure
detection’ mechanism built into its weighted-sum adaptation mechanism of (16)–
(18). If one of the mixture component conditional filter fails, its estimate ẑi(k |
k − 1) will be inferior to those of the other filters. This, in turn, will make
the corresponding adaptation weight tend to 0, as can been seen from (16)–
(18), which will cut off the diverging component from the mixture, in essence,
correcting the filter malfunction.

4. Application to Narrowband Interference Suppression in Impulsive
Channels

The adaptive nonlinear filter proposed here can successfully be applied for
smoothing out non-Gaussian measurement noise in a plethora of engineering
applications. The problem of narrowband interference rejection is discussed in
this section as an important example [16].

In many communication and control systems the accurate estimation of an
unknown narrowband signal is needed. The nonlinear filters discussed in the
previous sections can be used to reject autoregressive interference in a non-
Gaussian channel. Spread-spectrum techniques provide an effective way to cope
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with narrowband interference. The basic idea is to spread the bandwidths of
transmitting signals so that they are much greater than the information rate. The
problem of interest in this paper is the suppression of a narrowband interferer
in a direct-sequence spread-spectrum (DSSS) system operating as an N th-order
autoregressive process of the form:

ik =
N∑
n=1

Φnik−n + ek, (20)

where ek is a zero mean white Gaussian noise process and Φ1,Φ2, . . . ,ΦN−1,ΦN

are the autoregressive parameters known to the receiver.
The Direct Sequence Spread Spectrum (DSSS) modulation waveform is writ-

ten as:

m(t) =
Nc−1∑
k=0

ckq(t− kτc), (21)

where Nc is the pseudonoise chip sequence used to spread the transmitted signal
and q(·) is a rectangular pulse of duration τc. The transmitted signal can be then
expressed as:

s(t) =
∑
k

bkm(t− kTb), (22)

where b(k) is the binary information sequence and Tb = Ncτc is the bit duration.
Based on that, the received signal is defined as:

z(t) = as(t− τ) + n(t) + i(t), (23)

where a is an attenuation factor, τ is a delay offset, n(t) is wideband Gaussian
noise and i(t) is narrowband interference. Assuming that n(t) is band limited and
hence white after sampling, with τ = 0 and a = 1 for simplicity, if the received
signal is chip-matched and sampled at the chip rate of the pseudonoise sequence,
the discrete time sequence resulting from (23) can be written as follows:

z(k) = s(k) + n(k) + i(k). (24)

Given these assumptions, we can safely consider s(k) to be a sequence of inde-
pendent identically distributed (i.i.d.) samples taking values +1 or −1.

Using the model in (24) a state space representation for the received signal
and the interference can be constructed as follows:

x(k) = Φx(k − 1) + w(k),

z(k) = Hx(k) + v(k) (25)
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with x(k) = [ik, ik−1, . . . , ik−N+1]τ , w(k) = [ek, 0, . . . , 0]τ , H = [1, 0, . . . , 0],
and

Φ =

∣∣∣∣∣∣∣∣∣∣

Φ1 Φ2 · · · ΦN

1. 0. · · · 0.

. . . . . . . . . . . . . .

0. 0. · · · 1.

∣∣∣∣∣∣∣∣∣∣
.

The additive observation noise v(k) in the state space model is defined as:

v(k) = n(k) + s(k).

Since the first component of the system state x(k) is the interference i(k),
an estimate of the state contains an estimate of i(k) which can be subtracted
from the received signal in order to increase the system’s performance. For the
case of v(k) being a Gaussian process the optimal estimator is the Kalman filter.
However, in the problem under consideration the measurement noise v(k) is the
sum of two independent variables, one is Gaussian distributed and the other takes
on values −1 or +1. This is a non-Gaussian sequence with probability density:

f(v(k)) = (1− ε)N(µ, σ2
n) + εN(−µ, λσ2

n) (26)

with µ = 1 for the case under consideration. In the simulation studies reported
here, the interferer is found by channeling white noise through a second-order
infinite-duration impulse response (IIR) filter with two poles at 0.99:

ik = 1.98ik−1 − 0.9801ik−2 + ek, (27)

where ek is zero mean white Gaussian noise with variance 0.01.
To study the applicability of the proposed algorithm in a non-Gaussian envi-

ronment the regulatory coefficient ε is set to be ε = 0.2 and the ratio λ is taken
to be λ = 10 or λ = 10 000 with σn = 1.0.

The following algorithms are used in the simulation studies reported here:

1. Kalman Filter – I
This linear (Kalman) filter assumes that the measurement noise is Gaussian with
mean value µ1 = 1 and covariance R1 = 1.0. In other words, this filter is
matched to the ‘nominal’ Gaussian component of the noise model in (26).

2. Kalman Filter – II
This linear (Kalman) filter assumes that the measurement noise is Gaussian with
mean value µ2 = −1 and covariance R2 = λR1. In other words, the filter is
matched to the ‘dominant’ noise component.

3. Adaptive Filter
The proposed here adaptive filter of Theorem 1 is the third filter considered. The
filter utilizes two elemental Kalman filters to calculate its adaptive weights.
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Figure 2. Measurement noise profile (ε = 0.2, λ = 10).

4. Masreliez Filter
The Masreliez filter with a nonlinear function, defined in [16] to fit the noise
model in (26) is the last filter included in the comparison.

All four filters require an initial filtered estimate x̂(0 | 0) and an initial error
covariance P (0 | 0). The values used in this experiment are; mean value 0.01
and covariance 1.0. In addition, the values of autoregressive parameters of (20)
are assumed to be known to the filters.

The normalized mean square error (NMSE) is utilized for filter comparison
purposes in all experiments. The data were averaged through Monte Carlo tech-
niques. Given the form of the state vector in (25) the first component of x(k) is
used in the evaluation analysis. The NMSE is therefore defined as:

NMSE =
1

MCRs

MCRs∑
k=1

(xk1r − x̂k1j)
2

xk1r
2

 , (28)

where MCRs is the number of Monte Carlo runs, x1r the actual value and x̂1j

is the outcome of the j-filter under consideration.
In this experiment, 50 independent runs were processed, each 1000 samples in

length. The non-Gaussian measurement noise profile, for a single run, is depicted
in Figure 2 (λ = 10) and in Figure 5 for λ = 10 000.

To quantitatively assess the performance of the different filters we compare
their performance against the Kalman filter which is matched to the nominal
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Table I. Performance evaluation: µ1 = 1,
R1 = 1, µ2 = 1, R2 = 10, ε = 0.05

Filter NMSE Improvement

KF-I 233.79 –
KF-II 6159.5 No improvement
Adaptive 181.85 22.3%
Masreliez 602.09 No improvement

Table II. Performance evaluation: µ1 = 1,
R1 = 1, µ2 = 1, R2 = 10000, ε = 0.05

Filter NMSE Improvement

KF-I 15786.3 –
KF-II 385191.7 No improvement
Adaptive 208.04 98%
Masreliez 7804.7 50.56%

Table III. Performance evaluation: µ1 = 1,
R1 = 1, µ2 = 1, R2 = 10, ε = 0.1

Filter NMSE Improvement

KF-I 321.7 –
KF-II 4555.24 No improvement
Adaptive 177.67 44.8%
Masreliez 482.96 No improvement

observation noise conditions (KF-I). The Measure of Improvement is defined as
follows:

MI =
NMSE(KF-I) − NMSE(filter)

NMSE(KF-I)
. (29)

Tables I–VI summarize the experimental results obtained for different noise sce-
narios.

In order to facilitate the performance of the new scheme in a heavy-tailed
non-Gaussian noise environment, a second simulation experiment is performed.
In this second experiment, the observation noise is assumed to have the following
probability density:

f(v(k)) = 0.5
[
(1− ε)[N(−µ, σ2

n) +N(µ, σ2
n)] +

+ ε[N(−µ, kσ2
n) +N(µ, kσ2

n)]
]

(30)

JINT1367.tex; 17/06/1997; 20:18; v.7; p.13



220 K. N. PLATANIOTIS ET AL.

Table IV. Performance evaluation: µ1 = 1,
R1 = 1, µ2 = 1, R2 = 10000, ε = 0.1

Filter NMSE Improvement

KF-I 54874.8 –
KF-II 382408.16 No improvement
Adaptive 186.447 99%
Masreliez 2576.46 95%

Table V. Performance evaluation: µ1 = 1,
R1 = 1, µ2 = 1, R2 = 10, ε = 0.2

Filter NMSE Improvement

KF-I 307.14 –
KF-II 5111.49 No improvement
Adaptive 253.013 17.5%
Masreliez 299.17 2.6%

Table VI. Performance evaluation: µ1 = 1, R1 = 1,
µ2 = 1, R2 = 10000, ε = 0.2

Filter NMSE Improvement

KF-I 189938.85 –
KF-II 54239115.3 No improvement
Adaptive 179.8737 99%
Masreliez 2065.71 89%

with ε = 0.2, µ = 5, λ = 100 and σn = 1.0. In the context of narrowband
interference suppression, this noise model corresponds to transmission of binary
direct-sequence spread-spectrum over an impulsive channel.

In this experiment, 100 independent runs (Monte Carlo runs), each 1000 sam-
ples in length were considered. Due to its high complexity and the unavailability
of suitable nonlinear transformation for the ‘score function’ the Masreliez filter
was not included in these simulation studies.

Two different plot types are reported in the paper. First, state estimation plots
for single Monte Carlo runs are included to facilitate the performance of the
different estimation schemes. In addition, the normalized mean square error plots
for all the simulation studies are also reported.

Significant findings and corresponding remarks are here organized in a series
of comments, which are supported by the appropriate figures.
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Figure 3. State estimation results (ε = 0.2, λ = 10).

1. Due to the independence of the Kalman filter calculations from the actu-
al noise distribution shape, the performance of the optimal linear filter in the
presence of non-Gaussian measurement noise is not satisfactory. The outliers
generated by the heavy-tails of the non-Gaussian noise distribution result in
erroneous estimates of the prediction measurement covariance Pz(k | k − 1).
The divergence from the theoretical covariances involved in the calculations of
the Kalman filter gain leads to unacceptable estimation results.

2. The nonlinear Masreliez filter performs relatively well in some non-
Gaussian channels. Given its complexity, the need for customized, problem
dependent nonlinearities in the ‘score-function’ and the inconsistency in its per-
formance (see Tables I–VI) this filter cannot be considered as a general purpose
robust recursive estimator.

3. The new filter performed well under all the different noise scenarios
selected. From the tables and plots included in the paper we can clearly see the
improvement accomplished by the utilization of the new filter versus the Kalman
filter and the Masreliez filter (see Tables I–VI). The effects have appeared more
pronounced at more dense non-Gaussian (impulsive) environments. This trend
was also verified during the error analysis utilizing the Monte Carlo error plots.

4. The new filter is computationally more efficient than the Masreliez fil-
ter. No a priori defined score function is needed in its implementation. The new
filter has a natural decoupled structure which makes it suitable for parallel imple-
mentation in real time. On the contrary the Masreliez filter requires numerical
methods, such as the iterative Newton method for the evaluation of the non-
linearities used. It is widely accepted that such iterative processes have heavy
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Figure 4. State estimation results (ε = 0.2, λ = 10).
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Figure 5. Measurement noise profile (ε = 0.2, λ = 10 000).

computational requirements and usually their real-time implementation is not fea-
sible. Furthermore, the development of multidimensional score functions cannot,
in general, be handled analytically and often approximation formulas have to be
used. On the contrary, the new filter has the same structure in any dimension and
no modification is necessary.
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Figure 6. Nonlinear Filters: state estimation results (ε = 0.2, λ = 10 000).
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Figure 7. Linear Filters: state estimation results (ε = 0.2, λ = 10 000).

In conclusion, comparing nonlinear filters it is obvious that for the case of additive
non-Gaussian observation noise the proposed here adaptive filter should be used
instead of the Masreliez filter since it delivers better results exhibiting at the
same time significantly less computational complexity.

However, the question to be answered at this point is if one should use a
nonlinear filter instead of a linear (e.g. Kalman) filter based on a fixed a priori
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Figure 8. State estimation error analysis (ε = 0.2, λ = 10 000).
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Figure 9. Measurement noise profile (ε = 0.2, λ = 100, m = 5).

Gaussian approximation to the non-Gaussian measurement noise. This question
may be answered via Monte Carlo simulation of the systems that represent the
particular design problems. As an example, Monte Carlo studies have been made
on the linear Kalman filters, the Masreliez filter and the new filter when the
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Figure 10. Nonlinear Filter: state estimation results (ε = 0.2, λ = 100, m = 5).
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Figure 11. Linear Filters: state estimation results (ε = 0.2, λ = 100, m = 5).

observation noise is modeled by (26). For this case if the maximum allowable
mean square deviation from the best achieved estimate is δ,

(‖x̂b(k | k)− x̂s(k | k)‖)2 6 δ

one may switch from the nonlinear filter to a single Kalman filter without sacri-
ficing performance. Performance look-up tables, such as the Tables I–VI included
here can be used to guide the designer.
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Figure 12. State estimation error analysis (ε = 0.2, λ = 100, m = 5).

Table VII. Figure of merit

a Impulsive channel No DSSS signal present
b Intense impulsive channel No DSSS signal present
c Intense impulsive channel DSSS signal present
d Computational complexity

Table VIII. Filter comparison

Filter a b c d

Kalman 0 0 0 2
Masreliez 2 1 – 0
Bayesian adaptive 2 2 2 0

In general, from the simulation studies reported here we can conclude that the
performance of the different linear or nonlinear filter depends on the departure
from the normality of the measurement noise and of course the signal-to-noise
ratio (SNR). For low SNR and strong non-Gaussian measurement noise the non-
linear filters outperform the linear suboptimal estimators (Table VIII).

5. Conclusions

The paper has addressed the important problem of state estimation in non-
Gaussian observation channels. A new, intelligent, robust and computationally
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efficient filter was introduced. The proposed design constitutes a form of intel-
ligent signal processing system. Characteristics unique to intelligent designs can
be identified in our estimator. Namely,

• it is able to cope with uncertainties which may occur due to large variations
in the parameter values, environmental conditions and signal (noise) inputs;
• can adapt to changing conditions through its Bayesian, adaptive (self learn-

ing) module of (16)–(18);
• is robust in the sense that its performance is insensitive to changes in the

environment (noise outliers);
• it can resist failures due to its natural decoupled structure.

The problem of narrowband interfere suppression in impulsive noise channels has
been also discussed. Extensive experimentation has been introduced to demon-
strate the effectiveness of the new filter in this problem. Results indicate that
the new filter performs better than presently available linear or nonlinear filters.
In addition, the new adaptive filter is computationally attractive, has a natural
decoupled structure suitable for parallel processing and does not require any
problem-dependent nonlinearities in its design. As such the new filter consti-
tutes an excellent general purpose real-time filtering system which can deliver
acceptable results in a variety of noise filtering applications.

Appendix

In this appendix we outline the derivation of the new filter. We start with some
results used in the derivation of the optimal estimator and the linear Kalman
filter.

The probabilistic description of the optimal filter is as follows:

f(x(k), z(k) | Zk−1) = f(x(k) | z(k), Zk−1)f(z(k) | Zk−1)

= f(z(k) | x(k), Zk−1)f(x(k) | Zk−1), (31)

or

f(x(k) | z(k), Zk−1) =
f(z(k) | x(k), Zk−1)f(x(k) | Zk−1)

f(z(k) | Zk−1)

=
f(z(k) | x(k), Zk−1)f(x(k) | Zk−1)∫

f(z(k) | x(k), Zk−1)f(x(k) | Zk−1) dx(k)
. (32)

Let us assume that a linear, discrete time, time varying system, such as the
one described in (1)–(2) is available. Let us for a moment also assume that the
measurement noise f(v(k)) is a white Gaussian density,

N(µ,R) =
1

(2π)m
|R|−0.5 exp(−0.5‖v(k)− µ‖2

R−1), (33)
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where E[(v(k) − µ)(v(j) − µ)τ ] = Rδij . For such a model the predicted mea-
surement density f(z(k) | x(k), Zk−1) required for the implementation of the
estimator can be defined as:

f(z(k) | x(k), Zk−1) = f(z(k) | x(k)) = fv|x(z(k) − x(k))

= fv(z(k)− x(k))

= N(ẑ(k | k − 1), Pz(k | k − 1)), (34)

where fv|x(·) denotes the conditional pdf of v given x and fv|x(·) = fv(·) when
v and x are independent. The predicted measurement is defined as:

ẑ(k | k − 1) = E(z(k) | Zk−1)

= E(H(k)x(k) + v(k) | Zk−1)

= H(k)x̂(k | k − 1), (35)

yielding the measurement prediction error

z̃(k | k − 1) = z(k)− ẑ(k | k − 1)

= H(k)(x(k) − x̂(k | k − 1)) + v(k) (36)

with the corresponding measurement prediction covariance

Pz(k | k − 1) = H(k)P (k | k − 1)Hτ (k) +R(k) (37)

with all the quantities defined in the Theorem. These two moments sufficiently
describe the density f(z(k) | x(k), Zk−1) and are used in the recursive calcula-
tions involved in the derivation of the Kalman filter.

However, in our case f(v(k)) is not simply one Gaussian density, but a linear
combination of such densities resulting in a density f(z(k) | x(k), Zk−1) which
can be similarly expressed. Let us denote f(v(k)) as:

f(v(k)) =
l∑
i=1

aiN(µi, Ri) (38)

with µi, Ri known means and covariance matrices, and ai weighting coefficients
in the mixture defined in the closed interval [0, 1].

For the same reasoning as in the Gaussian case, the density f(z(k) | x(k),
Zk−1) can now be expressed as a linear combination of l Gaussian terms each one
of which corresponds to a density in the definition of f(v(k)). We now examine
the question of defining the mixture regulating weights when a measurement z(k)
becomes available. From the Bayes’ rule the posterior, after the measurement
z(k) is available, probability which describes the contribution of the ith elemental
Gaussian term to the density f(z(k) | x(k), Zk−1) is given as:

α(k) = f(z(k) | x(k), Zk−1, bi)f(bi | x(k), Zk−1), (39)
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ατ (k) =
l∑
i=1

f(z(k) | x(k), Zk−1, bi)f(bi | x(k), Zk−1), (40)

f(bi | z(k), x(k), Zk−1) =
α(k)

ατ (k)
. (41)

However, conditioned on bi (the indicator which defines the ith member) the
density f(z(k) | x(k), Zk−1, bi) is a Gaussian density defined as:

f(z(k) | x(k), Zk−1, bi) = N(ẑi(k | k − 1), Pzi(k | k − 1)), (42)

where the elemental mean and covariance are calculated through an elemental
Kalman filter as follows:

ẑi(k | k − 1) = H(k)x̂(k | k − 1) + µi, (43)

Pzi(k | k − 1) = H(k)P (k | k − 1)Hτ (k) +Ri. (44)

The a priori density f(bi | x(k), Zk−1) reflects the prior knowledge we have
about the weighting coefficient before the measurement z(k) becomes available.
Since we assume that at each time instant a mixture of white Gaussian densi-
ties with fixed regulators ai used to model f(v(k)) the probability reduces to
f(bi | x(k), Zk−1) = ai. Thus, the Bayesian estimate of the density after the
measurement z(k) has become available is given as:

f̂B(z(k) | x(k), Zk−1)

=
l∑
i=1

f(z(k) | x(k), Zk−1, bi)f(bi | z(k), x(k), Zk−1), (45)

where f̂B(·) stands for the a posteriori Bayesian estimate of the density f(z(k) |
x(k), Zk−1).

However, a Gaussian sum like this can not be easily accommodated in a
recursive Kalman like filter. Thus, it has to be replaced by an equivalent Gaussian
term.

The best mean-square approximation of the f(z(k) | x(k), Zk−1) is a Gaus-
sian density with mean:

ẑ(k | k − 1) =
l∑
i=1

ẑi(k | k − 1)f(bi | z(k), x(k), Zk−1), (46)

covariance:

b(k) = (ẑ(k | k − 1)− ẑi(k | k − 1)), (47)

ba(k) = Pzi(k | k − 1) + b(k)b(k)τ , (48)
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Pz(k | k − 1) =
l∑
i=1

ba(k)f(bi | z(k), x(k), Zk−1). (49)

The above equations are obtained by applying the smoothing property of the
conditional expectation operator on the predicted measurements resulting from
each member of the Gaussian mixture. Specifically:

ẑ(k | k − 1) = E(z(k) | Zk−1)

= E(E(z(k) | bi) | Zk−1)

=
l∑
i=1

ẑi(k | k − 1)f(bi | Zk−1), (50)

assuming that the weighting coefficient is also used to indicate the ith member
of the mixture. Similarly, the error covariance is calculated as:

Pz(k | k − 1) = E(z̃(k | k − 1)z̃τ (k | k − 1) | Zk−1)

=
l∑
i=1

Pzbi(k | k − 1)f(bi | Zk−1) (51)

and

Pzbi(k | k − 1)

= E(z̃(k | k − 1)z̃τ (k | k − 1) | Zk−1, bi)

= E((z(k) − ẑ(k | k − 1))(z(k) − ẑ(k | k − 1))τ | Zk−1, bi)

= E(z(k)zτ (k) | Zk−1, bi)−E(ẑ(k | k − 1)z(k) | Zk−1, bi)−

−E(z(k)ẑτ (k | k − 1) | Zk−1, bi) +

+E(ẑ(k | k − 1)ẑτ (k | k − 1) | Zk−1, bi)

= E(z(k)zτ (k) | Zk−1, bi) + ẑ(k | k − 1)ẑτ (k | k − 1)−

− ẑ(k | k − 1)ẑτi (k | k − 1)− ẑτi (k | k − 1)ẑ(k | k − 1)

= E((z(k) − ẑi(k | k − 1))(z(k) − ẑi(k | k − 1))τ | Zk−1, bi) +

+ (ẑi(k | k − 1)− ẑ(k | k − 1))(ẑi(k | k − 1)− ẑ(k | k − 1))τ

= Pzi(k | k − 1) + (ẑi(k | k − 1)− ẑ(k | k − 1))×

× (ẑi(k | k − 1)− ẑ(k | k − 1))τ (52)

with the weighting coefficients defined above.
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