Homework #4

- 1. Papoulis & Pillai 9-44, 11-11
- 2. (From ALG 6-93) Let Y(t) = X(t) + W(t), where X(t) and W(t) are orthogonal random processes, and W(t) is a WSS white Gaussian noise process. Let $\phi_n(t)$ be the eigenfunctions corresponding to $K_X(t_1, t_2)$. Show that $\phi_n(t)$ are also the eigenfunctions for $K_Y(t_1, t_2)$. What is the relation between the eigenvalues of $K_X(t_1, t_2)$ and $K_Y(t_1, t_2)$?
- 3. In a digital communication system, every n-bit codeword is encoded into a message represented by a discrete random variable M uniformly distributed between 0 and 2ⁿ 1. The continuous-time communication channel is modeled as signal plus an independent additive noise, i.e., Y(t) = S(t) + N(t). Suppose the noise N(t) is Gaussian with known K-L expansion {λ_k, φ_k(t)} for 0 < t < T. Then, one way to transmit the digital message is to send signals of the form S(t) = Mφ_{k₀}(t), for some choice of k₀. (This gives a data rate of n/T bits per second.) The receiver processes the received signal Y(t) to determine the value of M. Suppose that the receiver bases its decision exclusively on

$$Y_k = \int_0^T Y(t) \phi_k^*(t) dt \; ,$$

- a. Show that the receiver can safely ignore all Y_k 's except Y_{k_0} .
- b. How should we choose the best k_0 ?
- 4. Papoulis & Pillai 7-18, 7-19
- 5. (From ALG 4-105) Let Y = X + N where X and N are independent zero-mean Gaussian random variables with different variances.

a. Plot the correlation coefficient between the "observed signal" Y and the "desired signal" X as a function of the signal-to-noise ratio σ_X/σ_N .

b. Find the minimum mean square error estimator for X in terms of Y. Find the mean square error for the estimator.

- 6. (*From ALG 4-107*) Let X_1, X_2, X_3, \ldots be the samples of a speech waveform which is represented by a process with zero mean, variance σ^2 , and autocovariance $\rho_{|j-k|}\sigma^2$. Suppose we want to interpolate for the value of a sample in terms of the previous and the next sample; that is, we wish to find the best linear estimate for X_2 in terms of X_1 and X_3 .
 - a. Find the coefficients of the best linear estimator (interpolator).
 - b. Find the mean square error of the best linear interpolator.
 - c. Suppose that the samples are jointly Gaussian. Find the pdf of the interpolation error.
- 7. Papoulis & Pillai 13-1, 13-2, 13-3, 13-8