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@ Integrate techniques from both machine learning and communications.



Federated Learning (FL) Objective

@ N devices cooperate to find a global model x* from local datasets {D"}.
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@ N devices cooperate to find a global model x* from local datasets {D"}.
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® 11(x) = Ax S2I71 1% u™, v™): local loss function.

@ /(x;u™ v™'): sample-wise loss function.

@ (u™ v™: data vector u™’ with label v™'.
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Error-Free FL Algorithm
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Error-Free FL Algorithm

Model averaging
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Error-Free FL Algorithm
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Error-Free FL Algorithm
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@ Does not consider the wireless communication layer.
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Reducing Communication Overhead

@ Machine learning

@ Quantization: certain levels to represent model values.
@ Sparsification: set small model values to zero.
o Local updates: multiple steps of gradient descent before aggregation.

@ Wireless communication

o Digital communication: entropy coding.

@ Analog communication: over-the-air (OTA) computation.



FL with OTA Analog Aggregation
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FL with OTA Analog Aggregation
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FL with OTA Analog Aggregation
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FL with OTA Analog Aggregation
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FL with OTA Analog Aggregation
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Over-the-Air Computation

B

-

| ¥ .
p,nt 5 D", h} @ DY, h@“a .

Mobile device 1 Mobile device n Mobile device N

FL with OTA Analog Aggregation

20



FL with OTA Analog Aggregation
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@ Lower latency and bandwidth requirement than digital communication.
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Existing Works
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@ All separately optimize model training and wireless transmission.



Existing Works
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@ All separately optimize model training and wireless transmission.

@ All focus on per-iteration optimization.



Our Contributions

Mobile devices

o

. channel Edge server
Noisy
channel
Ry sy
Noisy global model Local model Transmit signal

@ Online Model Updating with Analog Aggregation (OMUAA) Algorithm
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@ Online Model Updating with Analog Aggregation (OMUAA) Algorithm

@ Jointly optimize model training and analog aggregation.
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@ Online Model Updating with Analog Aggregation (OMUAA) Algorithm

@ Jointly optimize model training and analog aggregation.

@ Online solutions adapt to channel fluctuation under long-term power limits.
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@ Online Model Updating with Analog Aggregation (OMUAA) Algorithm

@ Jointly optimize model training and analog aggregation.
@ Online solution adapts to channel fluctuation under long-term power limit.

@ Performance bounds on both computation and communication metrics.



Online Problem Formulation
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Online Problem Formulation

P1: min lim —Z]E{f

(xPex} T—ooo T

-
i <
st lim Zzz {gP(x"} <0, Vn.

° g'(x) =™ 7o x||? — P": long-term transmit power function.
@ P": average transmit power budget.

@ X = {X: —Xmax = X =< Xmax }: possible short-term constraints.

@ Online algorithm with strong performance guarantees.
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QF = max{Q 4 + gf(x{), 0}.
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Algorithm Intuition

@ Local virtual queue for long-term power constraint

QF = max{Q 4 + gf(x{), 0}.

@ Maintain queue stability

T

> gf(xf) < Qf.

t=1

@ Minimize an upper bound of a drift-plus-penalty metric

1 1 " N 1 <
7| 5@ = 5(QL4)? |+ {VF(Ret), X = Reot) + 5 X = Kea?.

Lyapunov drift penalty on training loss
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jointly optimize computation and communication

) . N 1 -
P2 min (VF"(Re1). X — X1} + 5%~ %1290 g (X).

training loss power violation

2. Update local virtual queue

QF = max{Q 4 + gf (x{), 0}.

3. Transmit signals sf = Altw”b;’ o X; to the edge server.
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OMUAA: Edge Server’s Algorithm

1:  Receive signals y; over the air as
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OMUAA: Edge Server’s Algorithm

1:  Receive signals y; over the air as

N
yt*Zh Ost'f‘zt*)\*z X?+Zt.

n=1

2:  Update noisy global model

f(t = )\t%{yt} = X; + )\[éR{Zt}.

3:  Broadcast X; to all mobile devices.
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Online Model Solution

@ Closed-form local model solution

Xmax
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Online Model Solution

@ Closed-form local model solution

Xmax

X7 = [(1+a0]) " o(Re1 — aVF (%))

scaling local gradient descent

—Xmax

where the i-th entry of 87 is

i 270 (W)
Lo

@ Channel-aware: close to error-free when channel power |h;"'|2 is large.

@ Power-aware: less power when violation measured by Qf , is large.
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Performance Bounds

@ Benchmark: optimal global solution {x}} to P1 over noiseless channel.
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Performance Bounds

@ Benchmark: optimal global solution {x}} to P1 over noiseless channel.

Fori.i.d. {h;}, given any e > 0, set a = v = e and \; = ¢, Vt, we have
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where M7 £ 3L, E{[x; — x;,4I|} and [R{z:}|| < p, V.
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Application to Image Classification Problem

@ MNIST dataset (hand written digits 0-9)

@ |D| =6 x 10* training and || = 1 x 10* testing data samples.

@ u represents an image of 784 pixel with label v € {1,...,10}.
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Application to Image Classification Problem

@ MNIST dataset (hand written digits 0-9)

o |D| =6 x 10* training and |£| = 1 x 10* testing data samples.
@ u represents an image of 784 pixel with label v € {1,...,10}.

@ Cross-entropy training loss for multinomial logistic regression

exp((x[j], u))
2 exp((x[k], u))

10
I(x;u,v) ==Y 1{v=j}log —
j=1 k

where x = [x[1]7,...,x[10]7]" is of size 7840.
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System Setting

@ Computation system

@ Non-i.i.d. data among devices.

@ Batch dataset with |B{| = 20 data samples each iteration.
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System Setting

@ Computation system

@ Non-i.i.d. data among devices.
@ Batch dataset with |B{| = 20 data samples each iteration.

® Communication system

@ N = 10 devices with 100 m to the edge server.

7840

@ 500 subchannels over [ %5

1 = 16 transmission frames.

@ Each subchannel is of bandwidth 15 kHz.
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Performance Metrics & Benchmarks

@ Performance metrics

o Time-averaged test accuracy over £
T €]

L L { e mp { ziefz(x(:(t?;;[ﬁ)uw) } - V}

t=1 =1

o Time-averaged training loss over {57}

|7

1 G 1 "
f(T) = ZZW Zwl(x, u’ v,

t=1 n=1

16/20
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@ Performance metrics

o Time-averaged test accuracy over £
T €]
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t=1 =1

o Time-averaged training loss over {57}

|7

HT) = 1 ZZW S Wk Ul v,

t=1 n=1 i=1

@ Performance benchmarks

o Error-free FL: performance upper bound for OMUAA.
@ OTA FL: current best alternatives with long-term power constraints.

o R-OTA FL: additional regularization «||x||? for OTA-FL.
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Performance Comparison
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Impact of Average Transmit Power Limit
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Application to Neural Network
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Conclusions

@ FL at the edge over noisy wireless channels

@ Joint online optimization of model training and analog aggregation.
@ Minimize accumulated training loss subject to long-term power constraints.

@ OMUAA algorithm

@ Integration of FL, OTA computation, and power allocation.
@ Both channel- and power-aware closed-form online solution.
@ Performance bounds for both computation and communication metrics.

@ Simulation results

@ Substantial performance gain over the current best alternatives.

20/20



