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Wireless Edge Learning

Integrate techniques from both machine learning and communications.
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N devices cooperate to find a global model x? from local datasets {Dn}.
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Federated Learning (FL) Objective

N devices cooperate to find a global model x? from local datasets {Dn}.

min
x

f (x) =
N∑

n=1

wnf n(x).

f n(x) = 1
|Dn|

∑|Dn|
i=1 l(x; un,i , vn,i): local loss function.

l(x; un,i , vn,i): sample-wise loss function.

(un,i , vn,i): data vector un,i with label vn,i .

wn = |Dn|
|D| : weight on mobile device n.
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Error-Free FL Algorithm
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Error-Free FL Algorithm

Does not consider the wireless communication layer.
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Reducing Communication Overhead

Machine learning

Quantization: certain levels to represent model values.
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Reducing Communication Overhead

Machine learning

Quantization: certain levels to represent model values.

Sparsification: set small model values to zero.

Local updates: multiple steps of gradient descent before aggregation.

Wireless communication

Digital communication: entropy coding.

Analog communication: over-the-air (OTA) computation.
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FL with OTA Analog Aggregation

Lower latency and bandwidth requirement than digital communication.
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Existing Works

All separately optimize model training and wireless transmission.
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Existing Works

All separately optimize model training and wireless transmission.

All focus on per-iteration optimization.
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Our Contributions

Online Model Updating with Analog Aggregation (OMUAA) Algorithm
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Jointly optimize model training and analog aggregation.

Online solution adapts to channel fluctuation under long-term power limit.

Performance bounds on both computation and communication metrics.
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Online Problem Formulation

P1 : min
{xn

t ∈X}
lim

T→∞

1
T

T∑

t=1

E{f (x̂t)}

s.t. lim
T→∞

1
T

T∑

t=1

E{gn
t (xn

t )} ≤ 0, ∀n.

gn
t (x) = (wn)2

λ2
t
‖bn

t ◦ x‖2 − P̄n: long-term transmit power function.

P̄n: average transmit power budget.

X = {x : −xmax � x � xmax}: possible short-term constraints.
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1
T
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E{gn
t (xn

t )} ≤ 0, ∀n.

gn
t (x) = (wn)2

λ2
t
‖bn

t ◦ x‖2 − P̄n: long-term transmit power function.

P̄n: average transmit power budget.

X = {x : −xmax � x � xmax}: possible short-term constraints.

Online algorithm with strong performance guarantees.
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Algorithm Intuition

Local virtual queue for long-term power constraint

Qn
t = max{Qn

t−1 + gn
t (xn

t ), 0}.
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Algorithm Intuition

Local virtual queue for long-term power constraint

Qn
t = max{Qn

t−1 + gn
t (xn

t ), 0}.

Maintain queue stability

T∑

t=1

gn
t (xn

t ) ≤ Qn
T .

Minimize an upper bound of a drift-plus-penalty metric

γ
[ 1

2
(Qn

t )2 −
1
2

(Qn
t−1)

2

︸ ︷︷ ︸
Lyapunov drift

]
+ 〈∇f n(x̂t−1), x − x̂t−1〉 +

1
2α

‖x − x̂t−1‖
2

︸ ︷︷ ︸
penalty on training loss

.

9 / 20



OMUAA: Mobile Device n’s Algorithm

1: Update local model xn
t by solving

P2n : min
x∈X

jointly optimize computation and communication
︷ ︸︸ ︷

〈∇f n(x̂t−1), x − x̂t−1〉 +
1

2α
‖x − x̂t−1‖

2

︸ ︷︷ ︸
training loss

+ γQn
t−1gn

t (x)
︸ ︷︷ ︸
power violation

.

10 / 20



OMUAA: Mobile Device n’s Algorithm

1: Update local model xn
t by solving

P2n : min
x∈X

jointly optimize computation and communication
︷ ︸︸ ︷

〈∇f n(x̂t−1), x − x̂t−1〉 +
1

2α
‖x − x̂t−1‖

2

︸ ︷︷ ︸
training loss

+ γQn
t−1gn

t (x)
︸ ︷︷ ︸
power violation

.

2: Update local virtual queue

Qn
t = max{Qn

t−1 + gn
t (xn

t ), 0}.

10 / 20



OMUAA: Mobile Device n’s Algorithm

1: Update local model xn
t by solving

P2n : min
x∈X

jointly optimize computation and communication
︷ ︸︸ ︷

〈∇f n(x̂t−1), x − x̂t−1〉 +
1

2α
‖x − x̂t−1‖

2

︸ ︷︷ ︸
training loss

+ γQn
t−1gn

t (x)
︸ ︷︷ ︸
power violation

.

2: Update local virtual queue

Qn
t = max{Qn

t−1 + gn
t (xn

t ), 0}.

3: Transmit signals sn
t = 1

λt
wnbn

t ◦ xt to the edge server.
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OMUAA: Edge Server’s Algorithm

1: Receive signals yt over the air as

yt =
N∑

n=1

hn
t ◦ sn

t + zt =
1
λt

N∑

n=1

wnxn
t + zt .
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OMUAA: Edge Server’s Algorithm

1: Receive signals yt over the air as

yt =
N∑

n=1

hn
t ◦ sn

t + zt =
1
λt

N∑

n=1

wnxn
t + zt .

2: Update noisy global model

x̂t = λt<{yt} = xt + λt<{zt}.

3: Broadcast x̂t to all mobile devices.
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Online Model Solution

Closed-form local model solution

xn
t =

[
(1 + αθn

t )
−1

︸ ︷︷ ︸
scaling

◦
(

x̂t−1 − α∇f n(x̂t−1︸ ︷︷ ︸
local gradient descent

)
)]xmax

−xmax

where the i-th entry of θn
t is

θn,i
t =

2γQn
t−1(w

n)2

λ2
t |h

n,i
t |2

.
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scaling

◦
(

x̂t−1 − α∇f n(x̂t−1︸ ︷︷ ︸
local gradient descent

)
)]xmax

−xmax

where the i-th entry of θn
t is

θn,i
t =

2γQn
t−1(w

n)2

λ2
t |h

n,i
t |2

.

Channel-aware: close to error-free when channel power |hn,i
t |2 is large.

Power-aware: less power when violation measured by Qn
t−1 is large.

12 / 20



Performance Bounds

Benchmark: optimal global solution {x?
t } to P1 over noiseless channel.
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Performance Bounds

Benchmark: optimal global solution {x?
t } to P1 over noiseless channel.

Theorem
For i.i.d. {ht}, given any ε > 0, set α = γ = ε and λt = ε2, ∀t , we have

1
T

T∑

t=1

E{f (x̂t)} ≤ f ? + O
(
(1 + ρ2 + ΠT ρ)ε

)
, ∀T ≥

1
ε2

,

1
T

T∑

t=1

gn
t (xn

t ) ≤ O
(
(1 + ρ2)ε

)
, ∀n, ∀T ≥

1
ε3

,

where ΠT ,
∑T

t=1 E{‖x?
t − x?

t+1‖} and ‖<{zt}‖ ≤ ρ, ∀t .
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Application to Image Classification Problem

MNIST dataset (hand written digits 0-9)

|D| = 6 × 104 training and |E| = 1 × 104 testing data samples.

u represents an image of 784 pixel with label v ∈ {1, . . . , 10}.
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Application to Image Classification Problem

MNIST dataset (hand written digits 0-9)

|D| = 6 × 104 training and |E| = 1 × 104 testing data samples.

u represents an image of 784 pixel with label v ∈ {1, . . . , 10}.

Cross-entropy training loss for multinomial logistic regression

l(x; u, v) = −
10∑

j=1

1{v = j} log
exp(〈x[j ], u〉)

∑10
k=1 exp(〈x[k ], u〉)

where x = [x[1]T , . . . , x[10]T ]T is of size 7840.
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System Setting

Computation system

Non-i.i.d. data among devices.

Batch dataset with |Bn
t | = 20 data samples each iteration.
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System Setting

Computation system

Non-i.i.d. data among devices.

Batch dataset with |Bn
t | = 20 data samples each iteration.

Communication system

N = 10 devices with 100 m to the edge server.

500 subchannels over d 7840
500 e = 16 transmission frames.

Each subchannel is of bandwidth 15 kHz.
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Performance Metrics & Benchmarks

Performance metrics

Time-averaged test accuracy over E

Ā(T ) =
1

T |E|

T∑

t=1

|E|∑

i=1

1

{

arg max
j

{
exp(〈x̂t [j], ui〉)

∑J
k=1 exp(〈x̂t [k ], ui〉)

}

= v i
}

.

Time-averaged training loss over {Bn
t }

f̄ (T ) =
1
T

T∑

t=1

N∑

n=1

1
|Bn

t |

|Bn
t |∑

i=1

wnl(x̂t ; un,i
t , vn,i

t ).
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Ā(T ) =
1

T |E|

T∑

t=1

|E|∑

i=1

1

{

arg max
j

{
exp(〈x̂t [j], ui〉)

∑J
k=1 exp(〈x̂t [k ], ui〉)

}

= v i
}

.

Time-averaged training loss over {Bn
t }

f̄ (T ) =
1
T

T∑

t=1

N∑

n=1

1
|Bn

t |

|Bn
t |∑

i=1

wnl(x̂t ; un,i
t , vn,i

t ).

Performance benchmarks

Error-free FL: performance upper bound for OMUAA.

OTA FL: current best alternatives with long-term power constraints.

R-OTA FL: additional regularization κ‖x‖2 for OTA-FL.
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Performance Comparison
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Impact of Average Transmit Power Limit
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Application to Neural Network
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Conclusions

FL at the edge over noisy wireless channels

Joint online optimization of model training and analog aggregation.

Minimize accumulated training loss subject to long-term power constraints.

OMUAA algorithm

Integration of FL, OTA computation, and power allocation.

Both channel- and power-aware closed-form online solution.

Performance bounds for both computation and communication metrics.

Simulation results

Substantial performance gain over the current best alternatives.
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