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Centralized Optimization (e.g., Supervised Learning)

x: model parameters
ui : features of i-th data sample
v i : label of i-th data sample
D: set of all data samples
l(·): per-sample loss function
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Distributed Optimization (e.g., Federated Learning)

f n(x): local lost function of n-th device
wn: weight of n-th device
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FL Algorithm
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FL Algorithm
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Concern #1: Communication Efficiency
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Reduction of Communication Overhead
Quantization:

E.g.,

x̂n,i
t = xmax sign(xn,i

t )

⌊
|x |

xmax
(2b − 1) +

1
2

⌋
b: quantization bit length
xmax: maximum decision value

Conditional entropy coding:

Mutual information I(x̂n
t , x̂

n
t−1) is high due to correlation in time.
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Existing Works

Existing works separate the computation of {xn
t } from their

communication.

But the best xn
t for loss minimization (e.g., from gradient descent) usually

is not the most efficient for transmission!
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Our Approach

We jointly consider loss minimization and communication efficiency when
designing {xn

t }.

Online Distributed Optimization with Temporal Similarity (ODOTS)
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Concern #2: Time-Varying Lost Functions

f n
t (x) =

1
|Dn

t |
∑

i∈Dn
t

l(x;un,i
t , vn,i

t ): loss caused by time-varying local data.

wn
t : time-varying weight on device n.

ft(xt) =
∑N

n=1 wn
t f n

t (xt): time-varying global loss function.

Need to make a sequence of decisions {xt} without future information:

min
{xt}

1
T

T∑
t=1

ft(xt) ≈ min
{xt}

fT (xT )

Decisions are coupled over time by the communication-efficiency
requirement.
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Online Problem Formulation

P1 : min
{xn

t ∈X}

T∑
t=1

ft(x̂t)︸ ︷︷ ︸
computation

s.t.
1
N

T∑
t=1

N∑
n=1

gn
t (x

n
t ) ≤ 0︸ ︷︷ ︸

communication

.

x̂t ∈ Rd : global decision aggregated from quantized and coded versions
of local decisions xn

t ∈ Rd

gn
t (x) = ∥x − x̂n

t−1∥2 − ϵ: long-term decision dissimilarity function
It controls the communication overhead.

X = {x : −xmax1 ⪯ x ⪯ xmax1}: short-term constraints
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Proposed Algorithm

Online Distributed Optimization with
Temporal Similarity (ODOTS)
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ODOTS Algorithm Components

Tunable virtual queue:

Qn
t+1 = max

{
0, (1 − γ2)Qn

t + γηgn
t (x

n
t )
}

Does not require the Slater’s condition gn
t (x̃) < 0 for its upper bound.

But its stability does not exactly guarantee constraint satisfaction.

Modified family of Lyapunov drift functions for arbitrary U ≥ 0:

Θn
t =

1
2γ

(Qn
t+1 − U)2 − 1

2γ
(Qn

t − U)2.

Minimize an upper bound of the drift plus penalty plus violation

Θn
t︸︷︷︸

drift

+ ⟨∇f n
t (x̂t),x − x̂t⟩+ α∥x − x̂t∥2︸ ︷︷ ︸

penalty on loss

+Uηgn
t (x)︸ ︷︷ ︸

violation

.

Unlike the drift-plus-penalty algorithm, the penalty here is not exactly the
optimization objective.
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ODOTS: Device’s Algorithm

1: Update local decision xn
t by solving per-slot problem

P2n : min
x∈X

jointly optimize computation and communication︷ ︸︸ ︷
⟨∇f n

t (x̂t),x − x̂t⟩+ α∥x − x̂t∥2︸ ︷︷ ︸
loss

+ ηQn
t gn

t (x)︸ ︷︷ ︸
violation

.

Minimizes upper bound of drift plus penalty plus violation

Solution: xn
t =

[
α

α+ ηQn
t︸ ︷︷ ︸

scaling

( ηQn
t

α
x̂n

t−1︸ ︷︷ ︸
regularization

+ x̂t −
1

2α
∇f n

t (x̂t)︸ ︷︷ ︸
local gradient descent

)]xmax1

−xmax1

Independent of U!

2: Update local tunable virtual queue Qn
t .

3: Update quantized local decision x̂n
t .

4: Transmit x̂n
t via conditional entropy coding.
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ODOTS: Server’s Algorithm

1: Receive noisy local decisions x̂n
t .

2: Update noisy global decision x̂t+1 =
∑N

n=1 wn
t x̂n

t .

3: Broadcast x̂t+1 to all devices.
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Bounding Analysis

Performance Bound
Constraint Violation Bound
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Assumptions on P1 and Its Properties

Assumptions
The local loss function f n

t (x) is convex, i.e.,

f n
t (y) ≥ f n

t (x) + ⟨∇f n
t (x),y − x⟩, ∀x,y ∈ Rd , ∀n, ∀t .

The local loss function f n
t (x) has bounded gradient ∇f n

t (x): ∃D > 0, s.t.,

∥f n
t (x)∥ ≤ D, ∀x ∈ Rd , ∀n,∀t .

Lemma 1
P1 satisfies the following:

Bounded feasible set : ∥x − y∥ ≤ R, ∀x,y ∈ X ,
Bounded communication error : ∥x̂t − xt∥ ≤ δ, ∀t ,
Bounded constraint function : |gn

t (x)| ≤ G, ∀x ∈ X ,∀n,∀t .

where R = 2
√

dxmax, δ = R
4(2b−1) , and G = max{ϵ,R2 + δ2 − ϵ}.
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Tunable Virtual Queue & Modified Lyapunov Drift

Lemma 2
The tunable virtual queue is upper bounded (without Slater’s condition):

Qn
t ≤ ηG

γ
, ∀n,∀t .

Lemma 3
The modified Lyapunov drift is upper bounded:

Θn
t ≤ ηQn

t gn
t (x

n
t )︸ ︷︷ ︸

violation in P2n

− Uηgn
t (x

n
t )︸ ︷︷ ︸

“plus violation”

+2γη2G2 +
γ

2
U2︸ ︷︷ ︸

constants

, ∀n,∀t .
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Bound on Per-Slot Local Loss and Constraint Violation

Lemma 4
The per-slot local loss and constraint violation is upper bounded:

f n
t (x̂t) + Uηgn

t (x
n
t ) ≤ f n

t (x
ctr
t ) +

D2

4α
+ 2γη2G

2
+
γ

2
U2 −Θn

t

+ α
(
ϕt + ψn

t + ∥x̂t − xt∥2 + 2R(∥x̂t − xt∥+ πt)
)
, ∀n,∀t .

where
xctr

t ∈ argmin{ft(x)|gn
t (x) ≤ 0,∀n}

is the centralized per-slot optimizer;
ϕt = ∥xctr

t − xt∥2 − ∥xctr
t+1 − xt+1∥2

ψn
t = ∥xctr

t − xt+1∥2 − ∥xctr
t − xn

t ∥2

πt = ∥xctr
t − xctr

t+1∥
represent how dynamic P1 is.
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Bound on Performance Gap to {xctr
t }

Theorem 1

T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)
≤ D2T

4α
+ 2γη2G2T +

η2G2ΩT

2γ3

+ α
(
R2 + Λ2,T + 2R(ΛT +ΠT )

)
where we use these accumulated variation measures:

ΠT =
∑T

t=1 πt

ΩT =
∑T

t=1
∑N

n=1(w
n
t+1 − wn

t )

ΛT =
∑T

t=1 ∥x̂t − xt∥
Λ2,T =

∑T
t=1 ∥x̂t − xt∥2

Proved by setting U = 0 in modified Lyapunov drift.
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Bound on Constraint Violation

Theorem 2

1
N

T∑
t=1

N∑
n=1

gn
t (x

n
t ) ≤

(2γ2T + 2
γη2

) 1
2
(D2T

4α
+ 2γη2G2T + D(R + δ)T

+ α
(
R2(1 + ΞT ) + Λ2,T + 2R(ΛT +ΠT )

)) 1
2

where ΞT ≜
∑T

t=1
∑N

n=1

(
wn

t − 1
N

)
is the accumulated weight imbalance.

Proved by setting U = γη
γ2T+1 max{0, 1

N

∑T
t=1

∑N
n=1 gn

t (x
n
t )} in modified

Lyapunov drift.
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Sublinear Performance Gap and Constraint Violation

Corollary
Time-invariant equal weights: wn

t = 1
N ,∀n,∀t .

Let max{ΠT ,ΞT ,Λ2,T ,ΛT}=O(Tµ).

T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)
= O

(
T

1+µ
2
)
,

1
N

T∑
t=1

N∑
n=1

gn
t (x

n
t ) = O

(
T

3
4
)
.

Time-varying weights: ΩT =O(T ν).

T∑
t=1

(
ft(x̂t)− ft(xctr

t )
)
= O

(
max{T

1+µ
2 ,T

3+ν
4 }

)
,

1
N

T∑
t=1

N∑
n=1

gn
t (x

n
t ) = O

(
max{T

3+µ
4 ,T

7+ν
8 }

)
.
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Numerical Evaluation

Example Application in
Communication-Efficient Federated
Learning
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Experimental Setup and Benchmarks

Simulated online federated learning environment:

Image classification on MNIST dataset.

N = 10 devices, each holding data samples of one digit only.

In each slot, each device processes |Dn
t | = 20 non-i.i.d. data samples.

Performance benchmarks

Error-free FL: performance upper bound.

Primal-dual GD: current best for distributed constrained online optimization.

QFL-CE: quantized FL with the same conditional entropy coding as ODOTS.
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Performance Metrics

Time-averaged test accuracy:

Ā(T ) =
1

|E|T

T∑
t=1

|E|∑
i=1

1
{
argmax

j

{
exp(⟨x̂t [j],ui⟩)∑V

k=1 exp(⟨x̂t [k ],ui⟩)

}
= v i

}
.

Total transmitted bits:

B(T ) =
T∑

t=1

N∑
n=1

H(x̂n
t |x̂n

t−1).
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Convex Loss: Logistic Regression
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Test Accuracy vs. Transmitted Bits
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b: quantization bit length
ODOTS with varying ϵ (average decision dis-similarity constraint)
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Non-Convex Loss: Neural Network
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b: quantization bit length
ODOTS with varying ϵ (average decision dis-similarity constraint)
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Conclusions

Communication-efficient online distributed optimization

Time-varying loss functions and weights

Temporal decision similarity through conditional entropy coding

Online Distributed Optimization with Temporal Similarity (ODOTS)

Jointly considers loss minimization and communication efficiency;

Uses tunable virtual queue with modified Lyapunov drift analysis;

Provides performance bounds on both computation and communication;

Outperforms current best alternatives especially under low quantization bit
lengths.
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