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Centralized Optimization (e.g., Supervised Learning)

]
i f(x),D E E i Central server
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Global loss and data
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m,icn fx) = WZ l(x; ul,vl)
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x: model parameters

u': features of j-th data sample
V' label of i-th data sample

D: set of all data samples

I(-): per-sample loss function
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Distributed Optimization (e.g., Federated Learning)
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Local loss and data

____________

Local device 1 Local device n Local device N

e f7(x): local lost function of n-th device
o w": weight of n-th device
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FL Algorithm
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Local gradient descent  x}
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Local device 1 Local device n Local device N
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FL Algorithm

Model averaging
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Concern #1: Communication Efficiency

Communication-efficient

distributed optimization

Local device 1 Local device n Local device N
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Reduction of Communication Overhead

@ Quantization:

E.g.,

M 221+

on,i ; n,i
X =X S|gn(X’){
t max t
Xmax 2

@ b: quantization bit length
@ Xmax: maximum decision value

@ Conditional entropy coding:

H(xZ)

Mutual information /(X7,X7_,) is high due to correlation in time.
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Existing Works

@ Existing works separate the computation of {x/'} from their

communication.

Devices

Separate

Gradient

Source

.
= descent
> X, X}

coding
> X |~

Decoding
___G

Central server

]

@ But the best x{ for loss minimization (e.g., from gradient descent) usually

is not the most efficient for transmission!
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Our Approach

@ We jointly consider loss minimization and communication efficiency when
designing {x{}.

Devices

IS 1
ot

Conditional Central server

ODOTS entropy coding Decoding ~
L s ]

Online Distributed Optimization with Temporal Similarity (ODOTS)
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Concern #2: Time-Varying Lost Functions

fita(xe2)  fiti(xe—1)  fi(xe)

® 1(X) = 2 Sjepr (X uf’, v™): loss caused by time-varying local data.
t
@ w{': time-varying weight on device n.

@ fi(x;) = EL w{fl'(x;): time-varying global loss function.
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Concern #2: Time-Varying Lost Functions

fita(xe2)  fiti(xe—1)  fi(xe)

17(X) = [y Siey (X uf', v{*"): loss caused by time-varying local data.

w{': time-varying weight on device n.
fi(Xt) = Eg:1 w{fl'(x;): time-varying global loss function.

Need to make a sequence of decisions {x;} without future information:

-
1
min  — fi(x ~ min fr(X
min T; t(Xt) min T(X7)

Decisions are coupled over time by the communication-efficiency
requirement.
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Online Problem Formulation

T
P1: min Z ft(ﬁt)
t=1

{xfex}

N—_——
computation

st — Z Z gr(x!) <

t—1 n=1

communication

@ X; € RY: global decision aggregated from quantized and coded versions
of local decisions x! € RY

@ g/'(x) = ||x — X! ,||> — e: long-term decision dissimilarity function
@ It controls the communication overhead.

@ X = {X: —Xmax1 X X < Xmax1}: short-term constraints
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Proposed Algorithm

Online Distributed Optimization with
Temporal Similarity (ODOTS)




ODOQOTS Algorithm Components

@ Tunable virtual queue:

Q. = max {0, (1 —+*)Qf +vngf(x])}

e Does not require the Slater’s condition gf(X) < 0 for its upper bound.
o But its stability does not exactly guarantee constraint satisfaction.
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ODOQOTS Algorithm Components

@ Tunable virtual queue:

Q. = max {0, (1 —+*)Qf +vngf(x])}

e Does not require the Slater’s condition gf(X) < 0 for its upper bound.
o But its stability does not exactly guarantee constraint satisfaction.

@ Modified family of Lyapunov drift functions for arbitrary U > 0:
1

’
of = 2 Py — U)? — Z(Or” - U2

@ Minimize an upper bound of the drift plus penalty plus violation

Of + (VI(Re), X — Xe) + X — %¢|% + Ungf(x) .
—~ —

drift penalty on loss violation

@ Unlike the drift-plus-penalty algorithm, the penalty here is not exactly the
optimization objective.
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ODOQOTS: Device’s Algorithm

1: Update local decision x{ by solving per-slot problem

jointly optimize computation and communication

P2": min (V(X), X —X¢) + af[x — X¢|* + nQ g7 (x) .
XEX N———

loss violation

@ Minimizes upper bound of drift plus penalty plus violation

Xmax 1

—Xmax 1

. ! Qr., N 1 N
@ Solution: X} = | ———- ( 1 LXD |+ % — —Vf,”(xt))
a+nQf ! 2«
—_— ———
scaling regularization  local gradient descent

@ Independent of U!
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ODOQOTS: Device’s Algorithm

1: Update local decision x{ by solving per-slot problem

jointly optimize computation and communication

P2": min (V(X), X —X¢) + af[x — X¢|* + nQ g7 (x) .
XEX N———

loss violation

@ Minimizes upper bound of drift plus penalty plus violation

Xmax 1

—Xmax 1

. ! Qr., N 1 N
@ Solution: X} = | ———- ( 1 LXD |+ % — —Vf,”(xt))
a+nQf ! 20
—_— ———
scaling regularization  local gradient descent

@ Independent of U!

2: Update local tunable virtual queue Q7.
3: Update quantized local decision X7.

4: Transmit X} via conditional entropy coding.
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ODOQOTS: Server’s Algorithm

1: Receive noisy local decisions X}.
2: Update noisy global decision X;, 1 = zL wX].

3: Broadcast X;, 1 to all devices.
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Bounding Analysis

» Performance Bound
o Constraint Violation Bound
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Assumptions on P1 and Its Properties

Assumptions

The local loss function f(x) is convex, i.e.,

f(y) = f(x) + (VE(X),y —X), ¥x,y € R?, vn, Vt.

The local loss function f/(x) has bounded gradient V£(x): 3D > 0, s.t.,

If7(x)|| < D, ¥x € RY, V¥n, V.
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Assumptions on P1 and Its Properties

The local loss function f(x) is convex, i.e.,

f(y) = (%) + (V£(X),y — X), Vx,y € R?, Vn, Vt.
The local loss function f/(x) has bounded gradient V£(x): 3D > 0, s.t.,

|f7(x)|| < D, ¥x € RY, Vn,vt.

P1 satisfies the following:

Bounded feasible set : [|[x —y|| < R, Vx,y € X,
Bounded communication error : ||X; — X;|| < 4, Vt,
Bounded constraint function : |gf(x)| < G, Vx € X,Vn, Vt.

where R = 2v/dXmax, 0 = 2b ry» and G = max{e, R? + 6% — €}
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Tunable Virtual Queue & Modified Lyapunov Drift

The tunable virtual queue is upper bounded (without Slater’s condition):

Q< %3 vn, Vit.
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Tunable Virtual Queue & Modified Lyapunov Drift

The tunable virtual queue is upper bounded (without Slater’s condition):

Q< %3 vn, Vit.

The modified Lyapunov drift is upper bounded:

OF < nQPgl(x7) — Ungf(x7) +2yn°G? + %Uz, vn,vt.
—_————— N——
—— —

. . . n « ; inn”
violation in P2 plus violation constants
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Bound on Per-Slot Local Loss and Constraint Violation

The per-slot local loss and constraint violation is upper bounded:

N D?
(%) + Ungf(x]) < (") + 7= + 2y G + U2 - ©f

+a(fr + of + 1% — xi||* + 2R(th — X¢|| + 7)), Vn,vit.

where

@ x € arg min{f(x)|g(x) < 0,Vn}
is the centralized per-slot optimizer;

© 01 = I — x| = T, —xeos
OF = X" Xy 2= 6" 7
T = ||XCF XCI‘1 H

represent how dynamic P1 is.
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Bound on Performance Gap to {x‘;”}

2 T 7]2 GZQ T
243

+ a(R? + Ao,7 + 2R(A7 + 7))

! D
_ f ctr 2 2 2T
; ft Xt )) 4a + 2vn G aF

where we use these accumulated variation measures:
Nr= ZtT:1 Tt
Qr = Y04 Lpoy (Wi — wy)
Ar = %= x|
Nt =Yy % = %]
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Bound on Performance Gap to {x‘;”}

2 T 7]2 GZQ T
243

+ a(R? + Ao,7 + 2R(A7 + 7))

! D
_ f ctr 2 2 2T
; ft Xt )) 4a + 2vn G aF

where we use these accumulated variation measures:
Nr= ZtT:1 Tt
Qr = Y04 Lpoy (Wi — wy)
Ar = %= x|
Nt =Yy % = %]

@ Proved by setting U = 0 in modified Lyapunov drift.
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Bound on Constraint Violation

T N 2 1 M2
> > 9t(xp) < (27;;2)2([1(; +2v2GPT + D(R+0)T

+a(R(1+Z1) + Ao.7 +2R(Ar +117)) )

where =7 2 Y2 SN (wp — 1) is the accumulated weight imbalance.
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Bound on Constraint Violation

T N 2 1P
LS 3™ gr ) < (277;;2)2(20? + 2912 GPT + D(R+6)T

o=

a(RA(1+Z7) + Ao,y + 2R(A7 + 7))

where =7 2 Y2 SN (wp — 1) is the accumulated weight imbalance.

@ Proved by setting U = 2”1 max{0, t 1 Zn 1 97 (x7)} in modified
Lyapunov drift.
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Sublinear Performance Gap and Constraint Violation

Corollary

Time-invariant equal weights: w{ = 1N,Vn, Vi
Let max{I'IT,ET,/\gyr,/\T}:O(T”).
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Corollary

Time-invariant equal weights: w{ = 1N,Vn, Vi
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Numerical Evaluation

Example Application in

Communication-Efficient Federated
Learning
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Experimental Setup and Benchmarks

@ Simulated online federated learning environment:

o Image classification on MNIST dataset.
e N = 10 devices, each holding data samples of one digit only.

@ In each slot, each device processes |D;f| = 20 non-i.i.d. data samples.
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Experimental Setup and Benchmarks

@ Simulated online federated learning environment:

o Image classification on MNIST dataset.
e N = 10 devices, each holding data samples of one digit only.
@ In each slot, each device processes |D;f| = 20 non-i.i.d. data samples.

@ Performance benchmarks

e Error-free FL: performance upper bound.
e Primal-dual GD: current best for distributed constrained online optimization.

e QFL-CE: quantized FL with the same conditional entropy coding as ODOTS.
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Performance Metrics

@ Time-averaged test accuracy:

Z‘(T):g]réé{afgmﬂ{ Vexp(<ﬁtuj,uf>) ’>)}:V,}_

> k—1 exp((X¢[K], !

@ Total transmitted bits:

T N
:ZZHxﬂxt 1

t=1 n=1
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A(T) (%

)
o

Convex Loss: Logistic Regression
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Test Accuracy vs. Transmitted Bits

— 100
=
—~ 90+
&

< |

.80
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2 70t < [~e—ODOTS, b= 5|1
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8 b=2 wue QFL-CE

H 50 1 1

0.01 0.1 1 5

Transmitted bits B(T") (Mb)

@ b: quantization bit length
@ ODOTS with varying e (average decision dis-similarity constraint)
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Non-Convex Loss: Neural Network
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@ b: quantization bit length
@ ODOTS with varying e (average decision dis-similarity constraint)
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Conclusions

@ Communication-efficient online distributed optimization

e Time-varying loss functions and weights

e Temporal decision similarity through conditional entropy coding
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Conclusions

@ Communication-efficient online distributed optimization

e Time-varying loss functions and weights
e Temporal decision similarity through conditional entropy coding

@ Online Distributed Optimization with Temporal Similarity (ODOTS)

e Jointly considers loss minimization and communication efficiency;
e Uses tunable virtual queue with modified Lyapunov drift analysis;
e Provides performance bounds on both computation and communication;

e Outperforms current best alternatives especially under low quantization bit
lengths.
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