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Distributed Machine Learning (ML)

* Shift from a centralized fashion to decentralized ml
* Alleviate the problem of computation and
communication bottleneck at a central parameter server.
* In each training iteration
e Each worker takes a weighted average of the models
that are aggregated from its neighbors.
* The training performance is affected by

 How the model information is exchanged among
neighboring workers.
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Related Work

* The convergence speed is governed by p(W) = [|[W — 1—||,.

* The second-largest singular value of the consensus weight matrix.

* Optimal consensus weight matrix:
* Fastest distributed linear averaging (FDLA) [4].

e Sparse communication graph:
» Standard sparse network topologies, e.g., aring [15] — [19].
* Maximize the convergence rate s.t. some prescribed communication cost [20]-[25].
* Minimize the communication cost s.t. a prescribed convergence rate [4], [26].

* This work:
 Total wall-clock training time.
e Efficient communication resource allocation.



System Model

* Latency in each training iteration * #of training iterations for a

| desired error € is [37]
dominated by the stragglers

g(W,B) = _11/.1%}4‘\(,{ 1w, ;+0} } 1

_ L) EN T. €O
bandwidth whether there exists information exchange (62(1 - P(W))>
allocation

* Joint consensus matrix design and communication
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Challenges and Design Highlights

* Challenges
« W and B are coupled and restricted by the physical network topology.
* Non-convex and non-smooth due to the existence of the indicator function.

. . . . 2
* Exhaustive search is computationally expensive due to vast search space, 2/V".
 Existing solutions for multivariable non-convex function are not applicable.

e Lemma: Coordinate descent method becomes stuck after two iterations.
* Motivation:

* Preserves the training convergence rate.

* Reduces latency by enforcing communication graph sparsity and avoiding selecting
poor communication links.
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CO m m u n i Cati O n - Effi C i e nt Input: Number of rounds K, device N, basic physical

connected network topology Ao, global latency function L; ;,
Vi, j, bandwidth budget B, scaling coefficient matric B, A.

Network Topology i

k < K? N
Y \ 4

Equal allocation among edges: W = FDLA(A®X)
gk—=_8 B = Min- Max- RA(AX)
IIA;II )
. . . Update the latency matrix with B*: End
Design highlight 1: LaBY) - Lyn(B
Lk = : :
. . k=k+1 na(B¥) - Lyn(B¥
* Given the optimal sparse topology, ) e

v
W and B can be optimized Solve P1 for W<*1 as follows:

independently. 0

P1: minWESAk Ak HW - T

+Hrr@wl,
2

where 1 2 [1,...,1]7, and ® is the Hadamard product of matrices.

!

Calculate the corresponding adjacency matrix A**1 by replacing
nonzero elements of W¥*+1 with ones and diagonal elements with zeros.
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CO m m u n i Cati O n - Effi C i e nt Input: Number of rounds K, device N, basic physical

connected network topology Ao, global latency function L; ;,
Vi, j, bandwidth budget B, scaling coefficient matric B, A.

Network Topology i

k < K? N
Y \ 4

Equal allocation among edges: W = FDLA(AX)
. . . . _ B B = Min- Max- RA(A¥
Design highlight 2: B¥ = . ‘”‘ e faw)
. L ¥
. We use egual bandwidth aIIocathn in the T — End
intermediate step to capture the inherent [P B LB
goodness of the links. k=k+1. Lya(B%) - Lyn(B%)
_ 7
Rationale: If optimal resource allocation Solve P1 for W*1 as follows:
P1: minyes , ¥ |w-lTlT Flrew],,

-> results in equal latency.

where 1 2 [1,...,1]7, and ® is the Hadamard product of matrices.

-> Defeats the purpose of differentiating links. :

Calculate the corresponding adjacency matrix A**1 by replacing
nonzero elements of W¥*+1 with ones and diagonal elements with zeros.
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Communication-Efficient
Network Topology

Design highlight 3:

 We iteratively design a trade-off
factor to efficiently to balance the
convergence rate and the sparsity
of the consensus weight matrix.

* We solve a convex problem in the
intermediate step.

Input: Number of rounds K, device N, basic physical
connected network topology Ao, global latency function L; ;,
Vi, j, bandwidth budget B, scaling coefficient matric B, A.

N]

k < K? N
Y

Equal allocation among edges:

W = FDLA(AX)

o k1 = )k

kK —_B B = Min- Max- RA(AX)
1IN
¥ v
Update the latency matrix with B*: End
Ly (B*) - Lin(BY)
Lk = : :
+1. Lyi(B¥) - Lyny(B¥)
v

o e k
P1: minyes A

Solve P1 for W**1 as follows:

w 117
N

+Hrewl,
2

where 1 2 [1,...,1]7, and ® is the Hadamard product of matrices.

!

Calculate the corresponding adjacency matrix A**1 by replacing
nonzero elements of W¥*+1 with ones and diagonal elements with zeros.

] /1k+1 = /lk + A/l'

!
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Theoretical Analysis

Theorem 6. CENT converges as k approaches infinity.
Furthermore, the objective W(k),B(k)) is non-

increasing in k for k > k.

1—9(%4/(’“))9(

. {p (W(R))} a0 1s non-increasing and bounded below.

Theorem 7. If K > kg, decentralized ML converges.

. p(W) < p(W(K)) < 1.

 Communication latency in each training iteration is finite.
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Evaluation

 MNIST + LeNet.
* 50 workers uniformly randomly distributed ina 100 m X 100 m area.
* Each realization has 200 edges [4].

* Benchmarks:
* FDLA[4]: fastest convergence rate in terms of the number of training iterations.
* Max-degree [5]: maximum degree of the graph.
* Metropolis [6]: maximum degree of its two adjacent workers.
* Best-constant [7]: the eigenvalues of the Laplacian matrix of the graph.



Convergence Factor p(IWW)
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Fig. 4. Convergence factor p(W). Fig. 5. Training time objective <(V>2B)
1-p(W)

 CENT requires significantly shorter wall-clock training time than the
other methods, while retaining p(W) as FDLA.
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Training/Test Accuracy and Network Scale
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Fig. 6. Accuracy vs. wall-clock time. Fig. 7. Wall-clock training time over NV.

* CENT requires less time achieving the same level of training accuracy.

* CENT excels in robustness
* With efficient sparse graph design and bandwidth allocation.
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Takeaways

* Formulated the problem of joint consensus weight matrix design and
communication resource allocation in decentralized ML

* The wall-clock training time:
* Latency in each training iteration + number of iterations needed to reach convergence.

* Proposed CENT:

* |teratively enforces graph sparsity while retaining the convergence rate.

* Analyzed
* The convergence of CENT.
* The convergence of decentralized ML while applying the output of cent.

* Experiments: significantly faster wall-clock training time.
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