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Distributed	Machine	Learning	(ML)

• Shift	from	a	centralized fashion	to	decentralized	ml
• Alleviate	the	problem	of	computation and	
communication bottleneck	at	a	central	parameter	server.

• In	each	training	iteration
• Each	worker	takes	a	weighted	average	of	the	models	
that	are	aggregated	from	its	neighbors.

• The	training	performance	is	affected	by	
• How	the	model	information	is	exchanged among	
neighboring	workers.
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Related	Work

• The	convergence	speed	is	governed	by																																							.
• The	second-largest	singular	value	of	the	consensus	weight	matrix.	

• Optimal	consensus	weight	matrix:
• Fastest	distributed	linear	averaging	(FDLA)	[4].

• Sparse	communication	graph:
• Standard	sparse	network	topologies,	e.g.,	a	ring	[15]	– [19].
• Maximize	the convergence rate s.t.	some	prescribed communication	cost [20]-[25].	
• Minimize	the communication	cost s.t.	a	prescribed convergence rate [4],	[26].

• This	work:
• Total	wall-clock	training	time.
• Efficient	communication	resource	allocation.
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System	Model
• Latency	in	each	training	iteration

3

latency	corresponding	to	the	link	from	worker	𝑖 to	𝑗
bandwidth	
allocation

whether	there	exists	information	exchange

dominated	by	the	stragglers

• #of	training	iterations	for	a	
desired	error	𝜖 is	[37]

• Joint	consensus	matrix	design and	communication	
resource	allocation

Resource	
constraints	

ML	convergence	
requirement
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Challenges	and	Design	Highlights
• Challenges

• 𝑊 and	𝐵 are	coupled and	restricted	by	the	physical	network	topology.
• Non-convex and	non-smooth	due	to	the	existence	of	the	indicator	function.
• Exhaustive	search	is	computationally	expensive	due	to	vast	search	space,	2'( .
• Existing	solutions	for multivariable	non-convex	function are not	applicable.

• Lemma:	Coordinate	descent	method	becomes	stuck	after	two	iterations.

• Motivation:
• Preserves	the	training	convergence	rate.	
• Reduces	latency	by	enforcing	communication	graph	sparsity	and	avoiding	selecting	
poor communication	links.
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Communication-Efficient	
Network	Topology

N

N

Input: Number of rounds 𝐾, device 𝑁, basic physical 
connected network topology 𝐴0, global latency function 𝐿.,0 , 
∀𝑖, 𝑗, bandwidth budget 𝐵2 , scaling coefficient matric B, ∆λ. 

Equal allocation among edges:

𝐵3 = 52

||78||
.

Solve 𝐏𝟏 for 𝑊3<= as follows:
𝐏𝟏:	min𝑾∈E

F8
𝜆3 𝑾 −

𝟏𝟏𝑻

𝑵 K
	+ 𝐿3 ⊗𝑾 =	 ,

where 𝟏 ≜ 1,… , 1 Q, and ⊗ is the Hadamard product of matrices.

Update the latency matrix with 𝐵3 :

𝐿3 =
𝐿=,=(𝐵3) ⋯ 𝐿=,'(𝐵3)

⋮ ⋱ ⋮
𝐿',=(𝐵3) ⋯ 𝐿','(𝐵3)

Calculate the corresponding adjacency matrix 𝐴3<= by replacing 
nonzero elements of 𝑊3<= with ones and diagonal elements with zeros.

𝑘 ≤ 𝐾?

Start

End

𝐴3<= = 𝐴3?

𝑘 = 𝑘 + 1.

𝜆3<= = 𝜆3 + Δ[.

𝑾 = 𝐹𝐷𝐿𝐴 𝐴^
𝑩 = 𝑀𝑖𝑛-𝑀𝑎𝑥- 𝑅𝐴(𝐴^)

𝜆3<= = 𝜆3.

Y

Y 5

Design	highlight	1:
• Given	the	optimal	sparse	topology,	
𝑊 and	𝐵 can	be	optimized	
independently.
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Communication-Efficient	
Network	Topology
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	+ 𝐿3 ⊗𝑾 =	 ,

where 𝟏 ≜ 1,… , 1 Q, and ⊗ is the Hadamard product of matrices.

Update the latency matrix with 𝐵3 :

𝐿3 =
𝐿=,=(𝐵3) ⋯ 𝐿=,'(𝐵3)

⋮ ⋱ ⋮
𝐿',=(𝐵3) ⋯ 𝐿','(𝐵3)

Calculate the corresponding adjacency matrix 𝐴3<= by replacing 
nonzero elements of 𝑊3<= with ones and diagonal elements with zeros.

𝑘 ≤ 𝐾?

Start

End

𝐴3<= = 𝐴3?

𝑘 = 𝑘 + 1.

𝜆3<= = 𝜆3 + Δ[.

𝑾 = 𝐹𝐷𝐿𝐴 𝐴^
𝑩 = 𝑀𝑖𝑛-𝑀𝑎𝑥- 𝑅𝐴(𝐴^)

𝜆3<= = 𝜆3.

Y

Y 6

Design	highlight	2:
• We use equal bandwidth allocation in the
intermediate	step to	capture	the	inherent	
goodness of	the	links.

Rationale:	If	optimal	resource	allocation
->	results	in	equal	latency.
->	Defeats	the	purpose	of	differentiating	links.	
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Communication-Efficient	
Network	Topology
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Y
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Design	highlight	3:
• We iteratively design	a trade-off	
factor to efficiently to	balance	the	
convergence	rate	and	the	sparsity	
of	the	consensus	weight	matrix.

• We solve a convex problem in the
intermediate	step.
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Theoretical	Analysis

• 𝜌(𝑊 3 ) 3gh is non-increasing and bounded below.

8

• 𝜌 𝑊i ≤ 𝜌 𝑊 ^ < 1.
• Communication	latency	in	each	training	iteration	is	finite.

Step 𝑘

𝜌(
𝑊

(3
) ) 1

𝑘h
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Evaluation

• MNIST	+	LeNet.
• 50	workers	uniformly	randomly	distributed	in	a		100	m	X	100	m	area.
• Each	realization	has	200	edges	[4].
• Benchmarks:

• FDLA[4]:	fastest convergence	rate	in	terms	of	the	number	of	training	iterations.
• Max-degree	[5]:	maximum degree	of	the	graph.
• Metropolis	[6]:	maximum	degree	of	its	two	adjacent workers.
• Best-constant	[7]:	the	eigenvalues	of	the	Laplacian matrix	of	the	graph.
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• CENT	requires	significantly	shorter	wall-clock	training	time	than	the	
other	methods,	while	retaining	𝜌(𝑊) as	FDLA.

Convergence	Factor	𝜌(𝑊)
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Training/Test	Accuracy	and Network	Scale	

• CENT	requires	less	time	achieving	the	same	level	of	training	accuracy.	
• CENT	excels	in	robustness	

• With	efficient	sparse	graph	design	and	bandwidth	allocation.

reduced	computational	
workload	at	each	worker

scarcity	of	the	
network	bandwidth	
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Takeaways
• Formulated the	problem	of	joint	consensus	weight	matrix	design	and	
communication	resource	allocation	in	decentralized	ML

• The	wall-clock	training	time:	
• Latency in	each	training	iteration	+	number	of	iterations	needed	to	reach	convergence.

• Proposed	CENT:
• Iteratively	enforces	graph	sparsity	while	retaining	the	convergence	rate.

• Analyzed	
• The	convergence of	CENT.	
• The	convergence of	decentralized	ML	while	applying	the	output	of	cent.

• Experiments:	significantly	faster wall-clock	training	time.
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