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Federated Learning

Federated Learning (FL): collaborative model training using local
datasets.

Protects data privacy of local worker devices.
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Federated Learning Algorithm

Step 1: Worker devices download current global model parameters.
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Federated Learning Algorithm

Step 2: Worker devices generate updated local parameters using local
datasets.
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Federated Learning Algorithm

Step 3: Worker devices upload their locally updated model parameters.
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Federated Learning Algorithm

Step 4: Central server aggregates received local models to update global
model parameters.
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Wireless Federated Learning

Parameter server: hosted by base station (BS).

Model parameter exchange: over downlink/uplink wireless channels.
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Existing Works

Transmission design to improve FL communication efficiency

Uplink design assuming error-free downlink (Yang&etal’20, Zhu&etal’20,
Zhang&Tao’21).

Downlink design assuming error-free uplink (Amiri&etal’22).

Analog schemes outperform digital schemes in both downlink and uplink.

Joint Downlink-Uplink Transmission

Training convergence analysis using a generic receiver noise model
(Wei&Shen’22).

Design assuming single-antenna BSs in single-cell (Guo&etal’22) or
multi-cell (Wang&etal’22).

Goal of this work: joint downlink-uplink beamforming with a multi-antenna
BS to improve wireless FL performance.
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FL System Model

At device 

• Data sample set :  sample , , label ,

• Number of samples:   

• Training loss function:  ( )

• Local loss function

( ) =  ( ;  , , , )

Model parameter vector: θ ∈ RD

— D: number of model parameters.

Global loss function: F (θ) =
∑K

k=1
Sk
S Fk (θ).

Goal: find optimal global model θ? that minimizes global loss F (θ).

Iteratively update θt ∈ RD

— t : FL round index.

9 / 30



FL System Model

At device 

• Data sample set :  sample , , label ,

• Number of samples:   

• Training loss function:  ( )

• Local loss function

( ) =  ( ;  , , , )

Model parameter vector: θ ∈ RD

— D: number of model parameters.

Global loss function: F (θ) =
∑K

k=1
Sk
S Fk (θ).

Goal: find optimal global model θ? that minimizes global loss F (θ).

Iteratively update θt ∈ RD

— t : FL round index.

9 / 30



FL System Model

At device 

• Data sample set :  sample , , label ,

• Number of samples:   

• Training loss function:  ( )

• Local loss function

( ) =  ( ;  , , , )

Model parameter vector: θ ∈ RD

— D: number of model parameters.

Global loss function: F (θ) =
∑K

k=1
Sk
S Fk (θ).

Goal: find optimal global model θ? that minimizes global loss F (θ).

Iteratively update θt ∈ RD

— t : FL round index.

9 / 30



Downlink Broadcast at Communication Round t

BS broadcasts current global model to K devices via multicast
beamforming.

For efficient transmission: convert real θt ∈ RD ⇒ complex θ̃t ∈ C D
2 .

θt = [(θ̃re
t )T , (θ̃im

t )T ]T ⇔ θ̃t = θ̃re
t + jθ̃im

t .

Channel between BS and device k : hk,t
— unchanged during round t .

Downlink multicast beamformer: wdl
t .
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Downlink Broadcast at Communication Round t
Transmitted complex signal vector at BS: θ̃t = θ̃re

t + j θ̃im
t ∈ C D

2 .

Received signal at device k

uk,t = (wdl
t )Hhk,t θ̃t + ndl

k,t︸︷︷︸
noise vector

.

Post-processed received signal at device k

ˆ̃θk,t =
hH

k,tw
dl
t

|hH
k,tw

dl
t |2

uk,t = θ̃t + ñdl
k,t .

where ñdl
k,t ,

hH
k,t w

dl
t

|hH
k,t w

dl
t |2

ndl
k,t .

Convert to real-valued estimate of global model θt

θ̂k,t =
[
Re
{ˆ̃θk,t

}T
, Im

{ˆ̃θk,t
}T ]T

= θt + n̂dl
k,t .

where n̂dl
k,t , [Re{ñdl

k,t}T , Im{ñdl
k,t}T ]T .
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k,t}T , Im{ñdl
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Local Model Update at Communication Round t

J mini-batch stochastic gradient descent (SGD) iterations at device k

θτ+1
k,t = θτk,t − ηt∇Fk (θτk,t ;Bτk,t )

= θτk,t −
ηt

|Bτk,t |
∑

(s,v)∈Bτk,t

∇L(θτk,t ; s, v).

SGD iteration index: τ .
Initial point: θ0

k,t = θ̂k,t .
Mini-batch: Bτk,t .
Learning rate: ηt .
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Uplink Aggregation at Communication Round t

Over-the-air aggregation: BS aggregates local models via receive
beamforming.

• Convert real 
,

 
 complex 

,

 

• At device : transmit beamforming weight ,

• Form distributed transmit beamforming 

among devices

BS receive beamformer: wul
t .

Post-processed received aggregated signal:

zt =
K∑

k=1

(wul
t )Hhk,tak,t θ̃

J
k,t + nul

t︸︷︷︸
noise vector

.
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Over-the-Air Aggregation: Transmit Phase Alignment

Post-processed received signal: zt =
∑K

k=1(wul
t )Hhk,tak,t θ̃

J
k,t + nul

t .

At devices: transmit phase alignment for uplink distributed transmit
beamforming

Transmit weight at device k

ak,t =
√

pk,t
hH

k,tw
ul
t

|hH
k,tw

ul
t |
. ⇒ (wul

t )
Hhk,tak,t =

√
pk,t |hH

k,tw
ul
t |.

— pk,t : transmit power scaling factor at device k .

At BS: scale zt to obtain complex equivalent global model update

θ̃t+1 =
zt∑K

k=1
√

pk,t |hH
k,tw

ul
t |

=
K∑

k=1

ρk,t θ̃
J
k,t + ñul

t .

— ρk,t,
√

pk,t |h
H
k,t wul

t |∑K
j=1
√

pj,t |h
H
j,t wul

t |
, ñul

t ,
nul

t∑K
j=1
√

pj,t |h
H
j,t wul

t |
.
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Global Model Updating Equation

Round-trip model update at communication round t

θ̃t+1 = θ̃t +
K∑

k=1

ρk,t ∆θ̃k,t +
K∑

k=1

ρk,t ñdl
k,t + ñul

t .

∆θ̃k,t : Equivalent (complex) local model change at device k .
ñdl

k,t : Post-processed downlink receiver noise at device k .

ñul
t : Post-processed uplink receiver noise at BS.

Recovered real-valued global model update

θt+1 =[Re{θ̃t+1}T , Im{θ̃t+1}T ]T .
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Global Model Updating Equation

Round-trip model update at communication round t

θ̃t+1 = θ̃t +
K∑

k=1

ρk,t ∆θ̃k,t +
K∑

k=1

ρk,t ñdl
k,t + ñul

t .

∆θ̃k,t : Equivalent complex local model change at device k .
ñdl

k,t : Post-processed downlink receiver noise at device k .

ñul
t : Post-processed uplink receiver noise at BS.

Obtained from round-trip wireless FL procedure

Downlink-uplink transmission.

Local device model update.

Reflects noisy communication and transmitter-receiver processing effect.
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Joint Downlink-Uplink Beamforming Design

Objective: minimize expected global loss function after T rounds through
joint downlink-uplink beamforming design.

Po : min
{wdl

t ,w
ul
t ,pt}t∈T

E[F (θT )]

s.t. ‖wdl
t ‖2‖θt‖2 ≤ DPdl, t ∈ T , (DL transmit power constraint)

pk,t‖θJ
k,t‖2 ≤ DPul

k , k ∈ K, t ∈ T , (UL transmit power constraint)

‖wul
t ‖2 = 1, t ∈ T .

pt , [p1,t , . . . ,pK ,t ]
T .

E[·]: over receiver noise and mini-batch sampling in local training.
Pdl: maximum downlink transmit power limit.
Pul

k : maximum uplink transmit power limit of device k .

DL/UL power constraints: power budgets for sending θ̃t (DL) or θ̃J
k,t (UL)

in D channel uses.
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Upper Bound of Expected Optimality Gap

Common assumptions for convergence analysis of FL model training

Local loss function Fk (θ) is differentiable, L-smooth, and strongly convex.

Unbiasedness and bounded gradient variance of mini-batch SGD.

Bounded gradient difference between global and weighted average of local
loss functions.

Bound of expected change of F (θt )

E[F (θt+1)− F (θt )]≤ Re{E[(
K∑

k=1

ρk,t ∆θ̃k,t +
K∑

k=1

ρk,t ñdl
k,t + ñul

t )H∇F̃ (θt )]}︸ ︷︷ ︸
,A1,t

+
L
2
E[‖

K∑
k=1

ρk,t ∆θ̃k,t +
K∑

k=1

ρk,t ñdl
k,t + ñul

t ‖
2]︸ ︷︷ ︸

,A2,t

.
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Upper Bound of Expected Optimality Gap

Lemma 1: Under Assumptions 1–3, A1,t is upper bounded as

A1,t ≤ ηt J
(

2
Qt
−

5
2

)
E
[
‖∇F (θt )‖2

]
+

D(1− Qt )

4ηt JQt

K∑
k=1

ρk,tσ
2
d

|hH
k,t w

dl
t |2

+
ηt J
2

(
δ + µ

Qt
+

δ − µ

2

)

— Qt , 1− 4η2
t J2L2 and assume ηtJ < 1

2L .

Lemma 2: Under Assumptions 1–3, A2,t is upper bounded as

A2,t ≤
2
L2

(
1− Qt

Qt

)
E
[
‖∇F (θt )‖2

]
+ D

1− Qt

Qt

K∑
k=1

ρk,t

|hH
k,t w

dl
t |2

+
K∑

k=1

ρ2
k,tσ

2
d

|hH
k,t w

dl
t |2


+

Dσ2
u

2(
∑K

k=1 α
ul
k,t )

2
+

1− Qt

2L2Qt

((
1− Qt +

Qt

J

)
µ + 4δ

)

where σ2
d /σ2

u is device/BS receiver noise variance.
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Upper Bound of Expected Optimality Gap

Proposition 1
For the FL system described above, under the assumptions and for

1
10L ≤ ηtJ < 1

2L , ∀ t ∈ T , the expected gap E[F (θT )]− F ? after T
communication rounds is upper bounded by

E[F (θT )]− F ?≤ Γ
T−1∏
t=0

Gt + Λ +
T−2∑
t=0

H(wdl
t ,w

ul
t ,pt )

T−1∏
s=t+1

Gs

+ H(wdl
T−1,w

ul
T−1,pT−1)

where Γ , E[F (θ0)]− F ?, Λ ,
∑T−2

t=0 Ct
(∏T−1

s=t+1 Gs
)

+ CT−1 with

Gt ,
1− Qt

4ηt JλQt

(
5(1− Qt ) + 4

√
1− Qt − 1

)
+ 1,

Ct ,
ηt J
2

( δ + µ

Qt
+

δ−µ
2

)
+

1−Qt

2L2Qt

((
1−Qt +

Qt

J

)
µ+4δ

)
.

H(wdl
t ,w

ul
t ,pt ): function of joint DL-UL beamforming design.
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Upper Bound of Expected Optimality Gap

H(wdl
t ,w

ul
t ,pt ) is given by

H(wdl
t ,w

ul
t , pt ),

LD
2

(
1−Qt +

√
1− Qt

Qt

)σ2
d

(∑K
k=1

√
pk,t |h

H
k,t wul

t |

|hH
k,t wdl

t |2

)
K∑

k=1

√
pk,t |hH

k,t w
ul
t |

+
LD
2

σ2
d

(∑K
k=1

pk,t |h
H
k,t wul

t |2

|hH
k,t wdl

t |2

)
+
σ2

u
2( K∑

k=1

√
pk,t |hH

k,t w
ul
t |
)2

A weighted sum of the inverse of two types of SNRs.

Post-processing SNR at BS receiver due to downlink noise.

Post-processing SNR at BS receiver due to uplink noise.
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Joint Downlink-Uplink Beamforming Design

Po : min
{wdl

t ,w
ul
t ,pt}t∈T

E[F (θT )]

s.t. ‖wdl
t ‖2‖θt‖2 ≤ DPdl, t ∈ T , (DL transmit power constraint)

pk,t‖θJ
k,t‖2 ≤ DPul

k , k ∈ K, t ∈ T , (UL transmit power constraint)

‖wul
t ‖2 = 1, t ∈ T .

Minimizing the upper bound of optimality gap E[F (θT )]− F ?, subject to
transmit power constraints:

P1 : min
{wdl

t ,w
ul
t ,pt}t∈T

T−2∑
t=0

H(wdl
t ,w

ul
t ,pt )

T−1∏
s=t+1

Gs + H(wdl
T−1,w

ul
T−1,pT−1)

s.t. ‖wdl
t ‖2‖θt‖2 ≤ DPdl, t ∈ T ,

pk,t‖θJ
k,t‖2 ≤ DPul

k , k ∈ K, t ∈ T ,

‖wul
t ‖2 = 1, t ∈ T .
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T -horizon joint optimization.

By Proposition 1, Gt > 0, ∀ t ∈ T .

P1 can be decomposed into T subproblems, one for each communication
round t .

24 / 30



Joint Downlink-Uplink Beamforming Design

Minimizing the upper bound of optimality gap E[F (θT )]− F ?, subject to
transmit power constraints:

P1 : min
{wdl

t ,w
ul
t ,pt}t∈T

T−2∑
t=0

H(wdl
t ,w

ul
t ,pt )

T−1∏
s=t+1

Gs + H(wdl
T−1,w

ul
T−1,pT−1)

s.t. ‖wdl
t ‖2‖θt‖2 ≤ DPdl, t ∈ T ,

pk,t‖θJ
k,t‖2 ≤ DPul

k , k ∈ K, t ∈ T ,

‖wul
t ‖2 = 1, t ∈ T .

T -horizon joint optimization.

By Proposition 1, Gt > 0, ∀ t ∈ T .

P1 can be decomposed into T subproblems, one for each communication
round t .

24 / 30



Per-Round Beamforming Optimization

Joint downlink-uplink beamforming optimization at round t :

P t
2 : min

wdl
t ,w

ul
t ,pt

H(wdl
t ,w

ul
t ,pt ) (weighted sum of the inverse of SNRs)

s.t. ‖wdl
t ‖2‖θt‖2 ≤ DPdl,

pk,t‖θJ
k,t‖2 ≤ DPul

k , k ∈ K,

‖wul
t ‖2 = 1.

Proposed Algorithm: alternating optimization (AO) approach.

DL multicast beamforming subproblem.

UL beamforming and power optimization subproblem.

Each subproblem is solved by projected gradient descent (PGD).
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Proposed Algorithm for Per-Round Optimization P t
2
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Simulation Settings

Typical LTE wireless system settings

Bandwidth: 10 MHz.

Max BS transmit power: 47 dBm.

Max device transmit power 23 dBm.

Randomly located devices with pathloss channel.

Image classification using a CNN based on MNIST dataset.

No. parameters No. training samples
at each device Batch size Learning rate

1.361× 104 6×104

K
2×103

K
1

10JL
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Simulation Settings

Proposed method:

JDU-BF: joint DL-UL beamforming design by minimizing the upper bound on
optimality gap after T rounds.

Benchmark comparison methods:

Ideal FL: perform FL, assuming error-free DL/UL and perfect recovery of
model parameters at the receivers.

SDU-BF: separate DL/UL beamforming design by maximizing received SNR
at the receiver of each link.

RBF: perform FL with random DL/UL beamforming.
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Test Accuracy vs. Communication Round T

JDU-BF outperforms SDUBF and nearly attains ideal FL performance.
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Conclusions
Wireless multi-antenna FL

Noisy DL/UL wireless channels.

Transmit/receive beamforming for model parameter transmission/reception.

Obtain round-trip closed-form global model update under the noisy channel
and transmitter/receiver processing.

Derive impact of imperfect communication/processing on the global model
update.

Joint DL-UL beamforming design

Minimizing expected global loss after T rounds.

Obtain an upper bound on the expected optimality gap.

AO-based fast first-order algorithm to solve joint optimization problem.

Substantially outperforms the separate-link design approach.

Provides near-optimal learning performance for wireless FL.
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