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Abstract— We study the dynamic regret in online convex
optimization (OCO), where the cost functions are revealed
sequentially over time. Prior studies on the dynamic regret
of OCO algorithms often require the cost functions to be
Lipschitz continuous. However, the costs functions that arise
in many applications may not satisfy this condition. In this
work, we analyze the performance of Online Multiple Mirror
Descent (OMMD), which can handle non-Lipschitz cost func-
tions. OMMD is based on mirror descent but uses multiple
mirror descent steps per online round. We first derive two
upper bounds on the dynamic regret based on the path length
and squared path length, and we further derive a third upper
bound based on the cumulative optimal cost, which can be much
smaller than the path length or squared path length especially
when the sequence of minimizers fluctuates over time. We show
that the dynamic regret of OMMD scales linearly with the
minimum among the path length, squared path length, and
cumulative optimal cost.

I. INTRODUCTION

Online optimization refers to the design of sequential
decisions where system parameters and cost functions vary
with time. It has important applications to various classes
of problems in control and learning [1]-[4]. In this work,
we consider the problem of online convex optimization
(OCO), which can be formulated as a discrete-time sequen-
tial learning process as follows. At each round ¢, the learner
first makes a decision z; € X, where X is a convex set
representing the solution space. The learner then receives
a convex cost function f;(-) : X — R and suffers the
corresponding cost of f;(x;) associated with the submitted
decision. The goal of the online learner is to minimize the
total accrued cost over a finite number of rounds, denoted
by T'. For performance evaluation, prior studies on online
learning often focus on the static regret, defined as the
difference between the learner’s accumulated cost and that of
an optimal fixed offline decision, which is made in hindsight
with knowledge of f;(-) for all ¢:
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A successful online algorithm closes the gap between the
online decisions and the offline counterpart when normalized
by T, i.e., sustaining sublinear static regret in 7. In the
literature, there are various online algorithms [5]-[7] that
guarantee a sublinear bound on the static regret.
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However, the static regret fails to accurately reflect the
quality of decisions in many practical scenarios, e.g., the
object tracking application where we aim to follow the
movement of some target over time. Therefore, the dynamic
regret has been proposed to allow comparison against an
arbitrary comparator sequence [5]. In more recent literature,
the learner performance is commonly measured relative to
the best comparator sequence [1], [8]-[12], i.e.,
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where x} = argmin,y f;(x) is a minimizer of the cost at
round ¢.

It is well-known that the online optimization problem
may be intractable in a dynamic setting, due to arbitrary
fluctuation in the cost functions. Hence, achieving a sublinear
bound on the dynamic regret may be impossible. However,
it is possible to upper bound the dynamic regret in terms of
certain regularity measures. The regularity measures reflect
how fast an environment evolves as time progresses. Prior
studies [5], [9]-[14] have utilized a variety of regularity
measures to bound the dynamic regret. One of the measures
to represent regularity is the path length, defined by
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which illustrates the accumulative variation in the minimizer
sequence. For instance, the dynamic regret of online gradient
descent (OGD) for convex cost functions can be bounded by
O(VT(1 + Cr)) [5). For strongly convex cost functions,
the dynamic regret of OGD can be reduced to O(Cr)
[10]. Another regularity measure based on the sequence of
minimizers is the squared path length, i.e.,
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which can be smaller than the path length when the distance
between successive minimizers is small. Another metric
to represent problem regularity is the cumulative cost of
the optimizers. In particular, it has been shown that the
static regret of online mirror descent (OMD) is bounded by
O(V/Fr), where Fr = ZtT:l fi(x*) is the cumulative cost
of a fixed minimizer x* = argmin,, » Z;‘FZI fi(z) [15]. To
bound the dynamic regret, a natural extension is to replace
the fixed minimizer by a sequence of per round minimizers,



defined by
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The measure in (5) has been used under various names in
the analysis of regret in the literature of online optimization
[16].

All prior studies on the dynamic regret of OCO algorithms
require the cost functions to be Lipschitz continuous [5].
Thus, their analyses fails to bound the dynamic regret of
many important cost functions do not satisfy this condition,
e.g., broad class of quadratic programming problems, and
support vector machine training. Therefore, we investigate
whether it is possible to bound the dynamic regret while
relaxing the Lipschitz continuity condition on the cost func-
tions.

To this end, in this work, we analyze the dynamic regret
of the Online Multiple Mirror Descent (OMMD) algorithm,
which is a natural extension to OMD but allows multiple
steps of mirror descent per round. A salient feature of
OMMD is that it does not require the cost functions to be
Lipschitz continuous. We derive three upper bounds on the
dynamic regret based on the path length Crp, the squared
path length S, and the cumulative optimal cost Fr, for
smooth and strongly convex functions. We note that F’r can
be much smaller than both C'y and S, especially when the
sequence of minimizers fluctuate drastically over time. Thus,
we obtain an overall regret bound of O(min(Cr, St, Fr)).
Furthermore, we conduct numerical simulations to reveal
that OMMD can achieve substantial improvement in the
dynamic regret, in an object tracking application, compared
with single-step dynamic mirror descent [13], online multiple
gradient descent (OMGD) [11], and OGD [5].

II. RELATED WORKS

There is a rich body of works in the literature of online
learning devoted to studying the dynamic regret of OGD
and its variants [5], [8]-[12]. In contrast, only a few studies
are based on the mirror descent method [13], [14]. Here we
review the most relevant works on the dynamic regret of
these two popular online optimization methods.

Dynamic regret of OGD: Dynamic regret was first intro-
duced in [5] for the analysis of OGD, where an O(v/T'(1 +
Cr)) bound on the dynamic regret was derived for convex
functions'. To obtain stronger regret bounds, recent works
often focus on the dynamic regret of form (2). Dynamic
regret of different variants of OGD under various settings
is studied in [8]-[10].

The above works make only a single query to the gradient
of the cost functions in every round. Recent studies have
shown that the dynamic regret of OGD can be improved
when the learner access the gradients of the cost functions
more than once [11], [12]. For strongly convex and smooth

'A more general definition of the dynamic regret was introduced in [5],
which allows comparison against an arbitrary sequence {ut}z;l. We note
that the regret bounds developed in [5] also hold for the specific case of
ur = xj.

online optimization in an unconstrained setup, it has been
proved that OGD with preconditioned gradients and multiple
queries of gradients have regret bounds of O(Sr) and
O(min(Crp, Vr)), respectively [12].

Finally, online multiple gradient descent was analyzed in
[11], where the learner makes a fixed number of gradient
queries in every round. It is shown that the dynamic regret
is upper bounded by O(min(Cr, St)) when the cost func-
tions are Lipschitz continuous, strongly convex, and smooth
[11]. In contrast, our analysis is focused on OMD, where
the distance between two points in measured via Bregman
divergence, which generalizes the Euclidean distance. Fur-
thermore, we relax the Lipschitz continuity requirement. We
show that even after such relaxation, the dynamic regret
bound can be improved to O(min(Cr, St, Fr)).

Dynamic Regret of OMD: The dynamic regret of online
single-step mirror descent was studied in [13], where an
upper bound of O(v/T(1 4 C7r)) was derived for convex
and Lipschitz continuous cost functions. To take advantage
of smoothness in cost functions, an adaptive algorithm based
on optimistic mirror descent [17] was proposed in [14],
which contains two steps of mirror descent per online round.
However, different from our work, in that variant the learner
is allowed to make only a single query about the gradient.
The algorithm further requires some prior prediction of the
gradient in each round, which is used in the first mirror
descent step. The dynamic regret bound was given in terms
of a combination of the path length C7p, deviation between
the predictions and the actual gradients D/, and functional
variation Vr under the condition that these regularity mea-
sures can be computed by the learner on-the-fly. In particular,
to achieve this bound, the algorithm requires the design of a
time-varying step size that depends on the optimal solution
in the previous step.

All aforementioned works on OMD make only a single
query to the gradient of the cost functions in every round. In
contrast, in this work, we study the dynamic regret of OMD
when the learner makes multiple gradient queries per round.
Furthermore, we show that even after relaxing the Lipschitz
continuity requirement that was commonly assumed in the
aforementioned studies, the upper bound on the dynamic
regret can be improved to O(min(Cr, St, Fr)) when the
learner can access the gradients of the cost functions multiple
times.

IIT. ONLINE MULTIPLE MIRROR DESCENT

In this section, we describe OMMD and discuss how
the learner can improve the dynamic regret by performing
multiple mirror descent steps per round.

We consider online optimization over a finite number of
rounds, denoted by 7. At the beginning of every round ¢, the
learner submits a decision represented by x;, which is taken
from a convex and compact set X'. Then, the cost function
f#(+) is revealed and the learner suffers the corresponding
cost fi(z:). The learner then updates its decision in the next



round. With standard mirror descent, this is given by
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where « is a fixed step size, and D,.(-,-) is the Bregman
divergence corresponding to the regularization function ().
The update in (6) suggests that the learner aims to stay
close to the current decision x; as measured by the Bregman
divergence, while taking a step in a direction close to the
negative gradient to reduce the current cost at round £.

OMMD uses mirror descent in its core as the optimization
workhorse. However, in contrast to classical OMD, where the
learner queries the gradient of each cost function only once,
OMMD is designed to take advantage of the curvature of cost
functions by allowing the learner to make multiple queries
to the gradient in each round. This is especially important
when the successive cost functions have similar curvatures.
In particular, in order to track z; the learner needs to access
the gradient of the cost function, i.e., V fi(-). Unfortunately,
this information is not available until the end of round ft.
However, if the successive functions have similar curvatures,
the gradient of f;_1(-) is a reasonably accurate estimate for
the gradient of f;(-). In this case, every time that the learner
queries the gradient of f;_;(-), it finds a point that is likely
to be closer to the minimizer of f;(). Hence, it may benefit
the learner to perform multiple mirror descent steps in each
round.

Thus, the learner generates a series of decisions, repre-
sented by 2y}, ..., yi", via the following updates:
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Then, by setting z; = y;", the learner proceeds to the

next round, and the procedure continues. Note that m is
independent of T'.

Applying multiple steps of mirror descent can reveal
more information about the sequence of minimizers. It can
reduce the dynamic regret, but only if the series of decisions
in (7) helps decrease the distance to the minimizer xj.
Therefore, quantifying the benefit of OMMD over standard
mirror descent requires careful analysis on the impact of the
fluctuation of f;(-) over time. To this end, we analyze and
bound the dynamic regret of OMMD in the next section.

IV. BOUNDING THE DYNAMIC REGRET OF OMMD

Following previous works on mirror descent [18], [19], we
introduce the following assumption.

Assumption 1. The cost functions f;(-) are A-strongly con-
vex and L-smooth with respect to a differentiable function
r(), ie.,

f@W) +(Vfy),z—y) + ADr(2,y) < f(z), Yo,y € X.
fy) < f(x) +(Vf(z),y —x) + LD, (y, ), Yo,y € X.
)

Furthermore, the regularization function r(-) is u-strongly
convex and p’-smooth with respect to some norm.

Algorithm 1 Online Multiple Mirror Descent
Input: Arbitrary initialization of x; € X; step size «;
time horizon 7.
Output: Sequence of decisions {x; : 1 <t <T}.
l:fort=1,2,....,T do

submit z; € X and receive fi(-)

set yf = x¢_1

fori=1,2,....,mdo ‘
yi = argmin{(V f; 1 (y; "), 9) + 2 Dr(y, 5,1}

3
4
5
yexX
6: end for
7
8:

set z; =y
end for

We note that these are standard assumptions commonly
used in the literature after the group of studies began by
[6], [20], to provide stronger regret bounds by constraining
the curvature of cost functions. Example cost functions that
are not Lipschitz continuous but satisfy the conditions in
Assumption 1 are given in [21], [22].

Assumption 2. We further make a standard assumption that
the Bregman divergence is Lipschitz continuous as follows:

|DT(va)_DT(y72)| SKHx_yH’ Vx,y,zeé\,’, (8)

where K is a positive constant. When the function r(-) is
Lipschitz continuous on the feasibility domain, the Lips-
chitz condition on the Bregman divergence is automatically
satisfied. Popular choices of () that satisfy the condition
in Assumption 2 are provided in [1]. This condition is
commonly assumed in the study of OMD [1], [14], [23],
[24].

In this work, we do not require the cost functions to
be Lipschitz continuous. Thus, the condition stated in (8)
can be viewed as a replacement for imposing Lipschitz
continuity on the cost functions. Since the sequence of cost
functions are revealed to the learner, the learner has no
control over it. In contrast, the learner can design and control
the regularization function. Hence, if the cost functions
happen to not meet the Lipschitz condition, the learner can
benefit from carefully choosing a regularization function that
is Lipschitz continuous. Therefore, the condition in (8) is
indeed a milder requirement compared with the assumption
of Lipschitz continuity of the cost functions. In the context
of this work, it can be viewed as a small price that the learner
pays to deal with non-Lipschitz cost functions.

The following lemma paves the way for the proposed
analysis on the dynamic regret of OMMD. It bounds the
distance of the learner’s future decision from the current
optimal solution, after a single step of mirror descent.

Lemma 1: Assume that f;(-) is A-strongly convex and L-
smooth with respect to a differentiable function r(-). Single-
step mirror descent with a fixed step size o < % guarantees
the following:

Dr(x;fkyxt+1> S ﬂDT(x:7xt)7
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where z} is the minimizer of f;(-), and =1 —



Remark 1. Lemma 1 states that a mirror descent step
reduces the distance (measured by the Bregman divergence)
of the learner’s decisions to the current minimizer. This
generalizes the results in [10], [11], where similar bounds
were derived for OGD when the distance was measured
in Euclidean norms. In particular, those results correspond
to the special choice of r(z) = ||z||3, which reduces the
Bregman divergence to Euclidean distance, i.e., D,(z,y) =
e — yl2.

Lemma 1 indicates that the distance between the next
decision ;41 and the minimizer x} is strictly smaller than
the distance between the current decision z; and xj. This
implies that in a slowly changing environment, where the
minimizers of the functions f;(-) and f;41(+) are not far from
each other, applying mirror descent multiple times enables
the online learner to more accurately track the sequence of
optimal solutions zj.

The following theorems provide three separate upper
bounds on the dynamic regret of OMMD, based on path
length C'r, squared path length S7, and cumulative optimal
cost Fr.

Theorem 2: Under Assumptions 1 and 2, let x; be the
sequence of dec1510ns generated by OMMD w1th a fixed step
size 5 < a < 1. When m > [0 log(4- '), the dynamic
regret 1s upper bounded by

Regt <5 /\—1(1+ e )(”I“IT'HCT)'

m o,/

Remark 2. It has been shown 1/51 [13] that single-step mirror
descent guarantees an upper bound of O(v/T(1 + C7r)) on
the dynamic regret for convex and Lipschitz cost functions.
With that bound, a sublinear path length is not sufficient to
guarantee sublinear dynamic regret. In contrast, Theorem 2
implies that OMMD reduces the upper bound to O(CT)
when the cost functions are strongly convex and smooth,
which implies that a sublinear path length is sufficient to
yield sublinear dynamic regret.

Theorem 3: Under Assumptions 1 and 2, let x; be the
sequence of decisions generated by OMMD with a fixed step
size @ < 1. When m > [1E22 Jog (£ ﬂ the dynamic regret
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Since éﬁe gradient at xf is zero if x} is in the relative
interior of the feasibility set X, i.e., ||V fi(z})|| = O, the
above theorem can be simplified to the following corollary.

Corollary 4: If =i belongs to the relative interior of the
feasibility set X for all ¢, the dynamic regret bound in
Theorem 3 is of order O(St).

When the cost functions drift slowly, the distances between
successive minimizers are small. Hence, the squared path
length S7, which relies on the square of those distances,
can be significantly smaller than the path length C'z. In this
case, Theorem 3 and Corollary 4 can provide a tighter regret
bound than Theorem 2.

Theorem 5: Under Assumptions 1 and 2, let x; be the
sequence of decisions generated by OMMD with arbitrary

m > 1 and a fixed step size % <a<, /%ﬂ,. The dynamic
regret satisfies
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Remark 3. Interestingly, Theorem 5 implies that the dy-
namic regret can be bounded by the cumulative cost of a
sequence of minimizers, i.e., iy = Zthl fe(x}). This bound
is especially important when the sequence of minimizers
drastically fluctuates over time. In this scenario, the path
length Cr and squared path length S may grow linearly,
whereas the third regret bound based on F7r could be smaller.

Theorem 2, Corollary 4, and Theorem 5, respectively, state
that the dynamic regret of OMMD is upper bounded linearly
by path length C'r, squared path length S, and cumulative
optimal cost Frp. This immediately leads to the following
result.

Corollary 6: Under the conditions stated in Assump-
tions 1 and 2, the dynamic regret of OMMD with suitably
chosen « has an upper bound of O(min(Cr, St, Fr)).

Remark 4. We note that [10] and [11] provide upper
bounds of O(Cr) and O(min(Cr, St)), respectively, on the
dynamic regret of OGD with single and multiple gradient
queries, while [13] presents an upper bound of O(v/T'(1 +
Cr)) on the dynamic regret of OMD with a single gradient
query per round. Corollary 6 shows that OMMD can improve
the dynamic regret bound to O(min(Cr, St, Frr)). Further-
more, in contrast to the previous studies, our analysis does
not require the cost functions to be Lipschitz continuous.

Regf <

V. OMMD WITH TIME-VARYING NUMBER OF MIRROR
DESCENT STEPS

In practice, it may not be possible to maintain the same
number of gradient computation in every round due to, e.g.,
the potentially time-varying processing speed in computing
systems. In this case, the number of queries to the gradients
of the cost functions and mirror descent updates could vary
over time. We denote by m; the number of mirror descent
steps at round ¢ and assume m; > 1 for all ¢. In this case,
my can be modeled by a random variable, which depends
on the amount of available processing resources to compute
the gradients of the cost function at round ¢. The following
theorem bounds the expected dynamic regret of OMMD with
time-varying mirror descent steps.

Theorem 7: Under Assumptions 1 and 2, let x; be the
sequence of decisions generated by OMMD with a fixed step
size % <a< % Let myin = min{m,} be the minimum
number of mirror descent steps. If E[32"] < /u/u/, the
expected dynamic regret satisfies

]E{Reg‘%} <
203\[(; 1 ( 1 +EW> (||ac — il + CT)

Furthermore, if E[5™t] < pu/2u/, the expected dynamic



regret is upper bounded by
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Tﬁe1 proof scheme is similar to the proof of Theorems 2
and 3, and is omitted for brevity.

Remark 5. An instructive example for the above conditions
is when m; has a Poisson distribution with mean v. In this
case, both conditions can be equivalently expressed in terms
of a lower bound on v.

The results of Theorem 7 shows that even when it is not
possible to compute the same number of gradients in every
round, the dynamic regret of OMMD is still bounded in
expectation. Furthermore, Theorem 5 show that the dynamic
regret of OMMD is upper bounded by O(Fr) when m >
1. It can be shown that the same upper bound holds on
the expected dynamic regret of OMMD with time-varying
number of mirror descent steps as long as m; > 1. This
immediately leads to the following results.

Corollary 8: Under the conditions stated in Theorem 7,
the expected dynamic regret of OMMD with time-
varying mirror descent steps has an upper bound of
O(min(CT, ST, FT))

VI. SIMULATIONS

We investigate the performance of OMMD via numerical
experiments, in two different scenarios. We compare OMMD
with the following alternatives: Online Gradient Descent
(OGD) [5], Online Multiple Gradient Descent (OMGD) [11],
and Dynamic Mirror Descent (DMD) [13].

First, we consider an online object tracking problem,
where the object can randomly move on a 2-D plane. Similar
to [1], we have used the Euclidean distance as the Bregman
divergence, which turns our framework to state estimation
and tracking. We note that although OMMD reduces to
OMGTD [11] in this special case, but unlike [11], our analysis
does not require the cost functions to be Lipschitz continu-
ous, and our bound is stronger.

Let us consider a maneuvering target in the 2-D plane
and assume that each position component of the online
target evolves independently according to a constant-velocity
model [25]. The state of the target at each round consists
of four components: horizontal position, vertical position,
horizontal velocity, and vertical velocity. Therefore, with
x; € R* representing the state at round ¢, the state-space
model takes the form

ri = Az} + vy,
where v, € R? is the system noise, and
1 e
0 1

where 5 is the identity matrix, ® is the Kronecker product,
and e represents the sampling interval. For our experiment,

A=1®

Fig. 1. Trajectory of the moving object is compared with the trajectory of
the estimator obtained by DMD and OMMD for different values of m.
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Fig. 2. Dynamic regret comparison for object tracking.

we generate noise according to a zero-mean Gaussian dis-
tribution with unit variance, and we set ¢ = 0.1 seconds.
At round ¢, the learner observes a noisy version of xj as
follows:

*
2t = Ty + Ny,

where n; denotes the observation noise, generated indepen-
dently from a uniform distribution on [—0.5,0.5]. We use a
squared cost function f;(x) = ||z; — x||?. Then, the dynamic
regret reflects the accumulated tracking error over time.

Fig. 1 plots the target trajectory versus the estimator
trajectory obtained by DMD, and OMMD, for m = 2,5, 10.
The trajectory estimators obtained by OMMD with higher
m values closely follow the moving target trajectory. Fur-
thermore, in Fig. 2, we compare the performance of OMMD
and DMD in terms of the dynamic regret. We see that, for
m = 10, OMMD can reduce the dynamic regret up to 70%
after 350 rounds.

Next, we study the performance of OMMD in solving a
sequence of quadratic programming problems of the form
fe(x1,22) = pllz1 — ar||* + ||x2 — b ||%, where p is a positive
constant, a; and b; are time-variant vectors, and the decision
variable are z; € R, 25 € R, such that dy + ds = d.
In our experiment, we set p = 10, dy = 500, and d =
1000. We assume that b; is time-invariant and for all rounds
t we have b, = 2, while a; satisfies the recursive formula
atr1 = a; + 1/4/t with initial value a; = —1.5. For this
example, we consider a fixed number M of mirror descent
steps. We further set the step size o = 0.03. We use the same
regularization function and constraint set as in the previous
experiment.

Fig. 3 shows the dynamic regret of a sequence of slowly
moving cost functions for OGD, DMD, OMGD and OMMD
with m = 2,5, 10. As time progresses and the difference be-
tween the successive cost functions becomes less significant,
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Fig. 3. Dynamic regret comparison for slowly drifting cost functions.

the difference between the minimizers decreases. In this case,
OMMD can significantly improve the performance of online
optimization by reducing the gap between the learner’s deci-
sions and the minimizers sequence. In particular, compared
with DMD, OMMD with m = 10 reduces the dynamic regret
up to 60% after 2500 rounds.

VII. CONCLUSION

We have studied online mirror descent in dynamic settings,
when the mirror descent step can be applied multiple times
per round. We derive three upper bounds on the dynamic
regret based on the path length C'r, squared path length S,
and cumulative optimal cost Fr, for strongly convex and
smooth cost functions. The main benefit of the third bound
is that it can be much smaller than both Cr and St when
the sequence of minimizers drastically fluctuates over time.
In contrast to prior studies [10], [11], [13], our analysis does
not require the cost functions to be Lipschitz continuous.
Our numerical results further reveal that OMMD can offer
substantial improvement on the dynamic regret compared
with existing alternatives.
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APPENDIX

A. Helper Lemmas

We first present several lemmas that will be used in our
regret analysis.

Lemma 9: The following equality holds for any z,y, 2z €
X, and the Bregman divergence D,.(-,-) with respect to any
function r(-):

(Vr(z) = Vr(y),z —y) = Dy(z,y) — Dy-(2,2) + Dy(y, 2).
The proof of Lemma 9 is given in earlier studies [26].
Lemma 10: With a single-step of OMD with update

. 1
Tir1 = argmm{(Vft(xt),m) + fD,.(a:,a:t)} 9)
reX &
the following inequality holds:

(Tt41 =y, Vilze)) <
2Dy, 20) — Doy we4n) = Delrr ) b, Wy € .
Proof. By applying the first-order optimality condition of
(9), we have
1 1 (10)
(@1 =y, VSilze) + =Vr(zen) = —Vr(z)) <0, vy € .



We re-arrange the terms in (10) to obtain
(a1 =y, V(@) < — (@41 —y, Vr(ze) —

1
< ~{Di(y.2) = Dy(y.2001) = Dr(esr,a) po (D)

where we have applied Lemma 9 to obtain the right hand-
side of (11). O

Lemma 11: Suppose r(z) is strongly convex and y sat-
isfies Vr(y) = Vr(u) — aV f(l) for some convex function
f(z) and step size o. We have

argmin{(Vf( ), x) + D (, )} = argmin D, (z,y).
The Ie)r)g)of of Lemma ll is given in Proposn)l(on 17 in [27].

Furthermore, we will also use the following Bregman
divergence projection inequality to bound the dynamic regret
of OMMD. If y = argmin, ., D,(z,z2), ie., y is the
Bregman projection of z into the set X, then for any arbitrary
point d € X', we have

Vr(zi41))

2.9

Dy(d, z) 2 Dy(d,y) + Dr(y, 2). (12)
B. Proof of Lemma 1
Consider single-step OMD update as follows:
. 1
Tyr1 = argmm{(Vft(xt),@ + fDT(:c,sct)}. (13)
TEX «
By applying the result of Lemma 10, we have
(Tey1—2f, Vii(re)) < (14)

1 *
a{Dr(x:»xt) — Dy (xf,441) — Dr(xt+17$t)},

where xy is a minimizer of the cost function, i.e., x; =
argmin y f¢(«). Furthermore, from the smoothness of f(-),
we have

15)

fe(@epr) < fil@e) +(Vfi(@e), o1 — 2¢) + LDy (Tp 41, 24).
By combining (14) and (15) we obtain

fr(zer1) < fil@e) + (Vfe(ae), o0 — 24) (16)

+ (L - é)Dr(th,xt) + é{DT(JJ:,CEt) - D,,(:E;k7xt+1)}.

The strong convexity of the cost function f;(-) implies
fe(we) +(V fe(we), 2f — 24) + ADp (27, 2¢) < fi(xp). (17)

By substituting (17) into (16), and using the fact that D,.(-, -)
is non-negative when the regularization function r(:) is
convex, and also o < %, we obtain

fi(zip) <
1
ft(z:) - )‘Dr(xr7zt) + aDr(mz,fEt) -

Next, we use the result of [19], which states that for every
A-strongly convex function f;(-), the following inequality
holds:

1 (18)
aDr(ftk, Tiy1)-

fi(z) —

We set z = x;4; in (19) and combine it with (18) to complete
the proof. ]

fe(x) > AD,(z},x), Vx € X, (19)

C. Proof of Theorem 2

The following lemma paves the way for our regret analysis
leading to Theorem 2.

Lemma 12: Under the same convexity and smoothness
condition stated in Theorem 2, let z; be the sequence of
decisions generated by OMMD. Then, the following bound
holds:

2] < (20)

W
lzt41 — ;5’”’”% —zil],

where m represents the number of mirror descent steps per
round, parameters p and p’ denote the strong convexity and
smoothness factors of the regularization function r(-), and /3
is the shrinking factor introduced in Lemma 1.

Proof. Using the result of Lemma 1, OMMD with m
mirror descent steps guarantees

D, (z},x141) < ™D, (x}, x1). 21

Since the regularization function r(-) is p-strongly convex,
we have

(22)
Eller = vl < v(@p) = r(@in) = (Fr(@e), o) = o).
In addition, smoothness of r(-) implies
* * :U’/ * 2
r(ag) —rz) = (Vr(z),2f —2) < Tllay =z (23)

Combining the above with (21), and (22), and using the
definition of Bregman divergence completes the proof. [

Now, we are ready to present the proof of Theorem 2.
To bound the dynamic regret, we begin by using the strong
convexity of the cost function f;(-), i.e.,

filzp) <
V(i) —

1
< a( (w7, 2) — D], 24 41) — Dp(Teg1, 2e41)

D (xt,2t+1)> — )\Dr(l':,wt)

(Vfe(we), xe — af) —
Vr(ze41), @ — i) — ADy (7, 24)

fola) - AD, (a}, 27)
Liv

<
a

( $t, Zt+1 Dr($t+1, Zt+1)>

(L)

1
— (D (@t, 2e41) — Dy (@41, Zt+1))

_~_(é_)\ —ft(l’f))

) (ft(xt)

A
where in the second line we have used Lemma 11, the third
line is obtained by applying Lemma 9 and the fact of the
Bregman projection property in (12), and the last line is
obtained using the result of [19] stated in (19). Thus, if

. (24)



a > from (24) we have

Now, we proceed by bounding Zthl |w; — 7|2 as follows:

T
+ > (@l = 2p P+ 2l —27)1?)

2/\’
oo D r
fulo) = fla}) < 5y (Drlae ) = Delarns ) Sy g < s — i P

AK

< gy o leerr — ol
AK . *

< 55— (llzess = a1l + llae — 7))
AK w

< 2% (14 7n) — |,

< g1 (L e lm =il @9)

where we have used inequality (8) in the second line, and
the last line follows from the result of Lemma 12. Summing
(25) over time, we have

K ' .
Regf < 55— Z(H,/%ﬁm)uxt—xtu. (26)
t=1

Now, we proceed to bound Zthl ||z — x7]|| as follows:

T T
Dl =il = oy — il + ) llwe — 27|
t=1 t=2

T
<lwy =23l + > lloe — af_y || + ll=f_y — =7l
t=2
o 27)
< e =i+ Y4 [ =B wioa — 2|l + g — 274
t=2 K
In addition, if m > [L£52 log(£)], we have
(28)
ﬁ%<(1— 2a\ )%<ex —a\m < T
- 14+ ai =P + a) HIE-

Thus, /f™u//p < 1. Combining (26), (27), and (28),
completes the proof. ]
D. Proof of Theorem 3

In order to bound the dynamic regret, we begin by the
generalized smoothness of the cost function f;(.), i.e.,

fe(ze)=fi(@y) < (Vfe(xp), o0 — x7) + LDy (24, 1)
<NV el llllze — i | + LDy (2, 27). (29)
Next, we use the fact

IV fe(=)II3

IVFe(@e)llslloe — 2ill < === + 5

for any arbitrary positive constant 6 > 0.
Furthermore, smoothness of the regularization function
r(-) implies

0 %12
e =il )

li
Dy (a1, 7) < 5 laf — . (1)
By combining (29), (30), and (31), with 8 = L we have

3
* V fi(y 3 Ly 4+ D||zg — xF 2
fula) — fula) < 1 ftz(Lﬁll L Llu )! =l
Summing (32) over time, we obtain

(1 +1) « .
5 > e =11 33)
t=1

T
ViE)IZ | L
R d < || t *
egr < Z oL +

t=1

where we have applied the result of Lemma 12 in the third

line. Furthermore, if m > [4£%2 log (£ ﬂ since 3 < 1 we
have
2a\ \™ —2aAm I
m< (1 ) < L@
b _( 1+ai _eXp<1+a>\><2u’ (3)

Thus, combining (33), (34), and (35) completes the proof. [
E. Proof of Theorem 5

Before presenting the proof of Theorem 5, we first state
the following lemma.

Lemma 13: For H-smooth and non-negative function
g(x), the following condition holds:

IVg(2)|. < VAH f(z), Vo € X.

Lemma 13 is proved in [15]

Now we continue to prove Theorem 5. The proof of
Theorem 5 initially follows the first half of the proof of
Theorem 2 until (25). Then, from (25) we have

A
fe(we) = folay) < 5~ (Drle, 2641) =
Now we continue to bound D,.(x¢,2141). By the definition
of Bregman divergence, we have

D, (¢, 2¢41) + Dr(2t41, Tt)

(36)

(37)
Dy (w41, 2641)) -

= (Vr(zs) — Vr(ze1), @ — ze01) = (aV fi(e), 2 — 2e01)
<oV fi(zo)|[«[|ze — zea |l

a? 2 | M 2
< ﬂ”vft(a?t)H* + §||:Et — ze41])% (38)

The strong convexity of the regularization function implies

g”ﬂct — 2e1* < D241, 240). (39
Combining the above with (38), we obtain
o? 2Ly o
Dr(aes2111) < 5o IV a2 < KO @), @0)

where to obtain the right hand-side of (40) we have applied
Lemma 13.
We substitute (40) into (37) to obtain

2L
fulee) — fula) < 2 ) (41)
By setting o < QL”,, from (41) we have
2L !,.2
Je(xe) — fe(zy) < %ﬁ(mf). 42)

Summing (42) over time completes the proof. |



