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ABSTRACT
Recent studies have demonstrated that machine learning can be
useful for application-oriented network traffic classification.
However, a network operator may not be able to infer the
application of a traffic flow due to the frequent appearance of new
applications or due to privacy and other constraints set by
regulatory bodies. In this work, we consider traffic flow
classification based on the class of service (CoS), using delay
sensitivity as an example in this preliminary study. Our focus is on
direct CoS classification without first inferring the application. Our
experiments with real-world encrypted TCP flows show that this
direct approach can be substantially more accurate than a two-step
approach that first classifies the flows based on their applications.
However, without invoking application labels, the direct approach
is more opaque than the two-step approach. Therefore, to provide
human understandable interpretation of the trained learning
model, we further propose an explanation framework that utilizes
groups of superfeatures defined using domain knowledge and their
Shapley values in a cooperative game that mimics the learning
model. Our experimental results further demonstrate that this
explanation framework is consistent and provides important
insights into the classification results.
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1 INTRODUCTION
Traffic classification is an essential service to ensure proper
network management, achieve efficient resource allocation, and
resolve critical security issues. Since classical methods of
identifying Internet traffic based on ports and protocol content
often fail for modern encrypted traffic, many researchers have
proposed machine learning approaches instead [3, 10, 20]. A wide
range of techniques have been studied, including Bayesian
estimation [4, 18], unsupervised clustering [8, 30], support-vector
machine (SVM) [9], and neural network (NN) [5, 14, 15, 28]. There
are also several hybrid [29] and online variants [11, 21, 31].

Most existing works focus on application-oriented classification,
assigning labels to traffic flows in terms of their applications. How-
ever, in practice, the network operator often only needs to know
the required class-of-service (CoS) of a flow, e.g., delay sensitivity,
to make decisions on traffic priority and resource allocation. For
such CoS-oriented classification, a two-step approach can be used,
where we first estimate a flow’s application using any of the afore-
mentioned techniques and then translate the application label to a
CoS label based on some pre-determined mapping.

However, it is often difficult to keep up with the many new
applications appearing daily, particularly to identify zero-day
applications [32]. Furthermore, a network operator may not wish
to infer the application of a flow, e.g., for compliance with privacy
or network-neutrality regulation. Therefore, a better alternative is
to directly assign CoS labels to traffic flows without learning their
application. Such a direct approach has been studied in [24] using
nearest-neighbor clustering and in [27] using semi-supervised
SVM. Since the number of service classes generally is much
smaller than the number of applications, and the service classes
change far less frequently than applications do, the direct approach
can potentially achieve higher efficiency. Indeed, in this paper, we
will demonstrate with real-world traffic that the direct approach is
substantially more accurate than the two-step approach.

Nevertheless, without invoking application labels, the direct ap-
proach is more opaque than the two-step method. However, the in-
terpretability of a classifier is important in many scenarios [6]. One
cannot rely on a black-box model for traffic classification in high-
stake applications, such as network security, self-driving cars, and
emergency services. Furthermore, erroneous performance analy-
sis might give us false confidence in the learning model. There are
many causes for a classifier to give false confidence or incorrect
results, such as data leakage and unintentional bias in the dataset,

https://doi.org/10.1145/3359992.3366767
https://doi.org/10.1145/3359992.3366767
https://doi.org/10.1145/3359992.3366767


Big-DAMA ’19, December 9, 2019, Orlando, FL, USA Chowdhury, et al.

and these causes can be challenging to detect and rectify. More fun-
damentally, without an explanation for how a learning model ar-
rives at its decisions, our scientific understanding would be limited.
Therefore, in addition to building a learning model that is highly
accurate, we also need a means to understand the rationale behind
its predictions. To the best of our knowledge, no such work yet ex-
ists for traffic classification. Furthermore, this is a particularly chal-
lenging problem for the direct approach, since it omits the interme-
diate stage of application identification.

In the case of linear classifiers, one may infer the amount of
contribution of each feature to the predicted label by inspecting
the weight associated with the feature in the learning model.
However, this is impossible for more complex models that achieve
higher accuracy, such as SVM and NN. Thus, we arrive at a
dilemma where the more accurate models are less interpretable.
The authors of [23] proposed local interpretable model-agnostic
explanations (LIME), which computes a linear approximation of a
complex classifier by solving a fidelity-interpretability trade-off
problem in the vicinity of a given sample. Thus, LIME provides
insights about the classifier’s perception using a local surrogate
model. However, a global surrogate model to explain a classifier
can be developed borrowing from game theory, by formulating the
learning model as an equivalent cooperative game with the
features as players and the Shapley values of features indicating
their contribution [16, 26].

It is non-trivial to extend the interpretation approach of [16, 26]
to traffic classification. First, each traffic flow can have hundreds of
features, while the exact computation of all Shapley values
requires exponential time in the number of features. Second, it is
difficult to understand the meaning of each feature with respect to
the overall CoS classification, so that even if we could obtain
Shapley values for them, that is still far from human
understandable interpretation. Therefore, in this work, we first
group the flow features into several superfeatures based on domain
knowledge and consider them as players. Since the superfeatures
are much fewer than the original features, exact calculation of
their Shapley values is now possible. Furthermore, since the
superfeatures correspond to flow characteristics that are
meaningful to the network operator, their Shapley values improve
human understanding on how the learning model arrives at its
classification results.

The contributions of this work are summarized as follows:

• Using an aggregate dataset of 43590 encrypted TCP flows
from [7] and [13], we extract 266 features for each flow and
train learning models for CoS-oriented classification, using
binary delay sensitivity as an example for the CoS labels. We
show that the direct approach has more than three times
lower false-negative rate than the two-step approach for
delay sensitive traffic.

• We develop an efficient explanation framework based on
superfeatures grouped by easily-understood feature
characteristics such as packet information and rate
information. The Shapley values of these superfeatures, in a
cooperative game that represents the learning model,
indicate their contribution toward the predicted CoS label.

CoS
Label

Application
Type

Applications

Delay
Sensitive

CHAT Facebook chat, Skype chat,
Hangouts chat, ICQ chat,

AIM chat
VOIP Facebook voice, Skype

voice, Hangouts voice

Delay
Tolerant

AUDIO Spotify
FTP Skype file transfer, FTPS,

SFTP
MAIL SMPTS, POP3S, IMAPS
P2P uTorrent, Transmission

(Bittorrent)
VIDEO Vimeo, YouTube
WEB Firefox, Chrome

Table 1: Applications and their types

• We propose several analytical methods and present further
experimental results to demonstrate that the proposed
explanation framework is reliable and informative.
Correlation analysis on the Shapley values shows superior
consistency of the proposed explanations. Thus, the direct
approach and the explanation framework combine to
provide a highly accurate yet explainable means to traffic
classification.

The rest of this paper is structured as follows. Section 2
summarizes the flow features and our learning model. Section 3
details the explanation framework and the proposed analytical
methods. In Section 4, we present the experimental results and
demonstrate the performance of both the direct approach and the
explanation framework. Section 5 concludes the paper.

2 FEATURES AND LEARNING MODEL
The proposed learning model and explanation framework are
general. However, as a real-world example for illustration, we
consider a dataset that combines ISCX VPN-nonVPN (2016)[2][7]
and ISCX Tor-nonTor (2016) [1][13]. It contains pcap files for
43590 encrypted TCP flows of various applications that are
grouped into 8 application types as shown in Table 1. We extract
266 features for each bidirectional flow to construct the dataset,
which are loosely based on those used in [19] from older captures.
We show some examples of these features in Table 2.

More generally, let X be our training dataset containing a num-
ber of flows with K features per flow. Each flow in X is associated
with an application and a CoS label. Let A be the set of application
types, e.g., as shown in Table 1, and C be the set of CoS labels. We
assume a deterministic mapping D : A → C. For simplicity of il-
lustration, here we consider only two CoS classes: delay sensitive,
which contains all flows in the VOIP and CHAT application types;
and delay tolerant, which contains all other flows. This CoS desig-
nation aligns with the practices of some systems of Internet service
provided by TELUS in Canada, but the applicability of our work is
not limited by it.

In CoS-oriented classification, we wish to build a machine
learning model h, such that given some test flow with feature
vector x = [x1, ..., xK ]

T ∈ RK as input, h(x) returns the predicted
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Superfeatures Features (# Features)
Packet
Information

Mean packet length, variance of packet
length, mean payload length, variance of

payload length, etc. (55)
Protocol
Information

Source port, destination port, # SYN
packets, # FIN packets, max segment size
requested, max and min window sizes, etc.

(51)
Rate

Information
Throughput, mean frame rate, variance of
frame rate, mean data rate, variance of

data rate, etc. (55)
Stochastic
Information

# Bursts, mean # packets in bursts,
variance of # packets in bursts, mean
burst length, variance of burst lengths,

etc. (52)
Time

Information
Mean interarrival time (IAT), variance of

IAT, FFT of IAT, etc. (53)

Table 2: Superfeatures and corresponding features

probability that the flow is delay sensitive. To train this model in
the direct approach, we use the true CoS labels of the flows in the
training dataset X. Many variants of learning models are
applicable and interpretable using the proposed explanation
framework, but in this paper we focus only on NN as an example
for illustration. For comparison in Section 4, we also consider the
two-step approach, where we first training an NN model to
categorize the flows into application types and then use the
mapping D : A → C to obtain the corresponding CoS labels.

3 EXPLANATION FRAMEWORK
3.1 Explanation Based on Superfeatures
In [16, 26], classification is modeled as a cooperative game, where
the set of K features are players and the prediction probability is
the outcome. Then, the Shapley value [25] measures the average
marginal contribution of each feature to the output prediction.
However, this requires computation of the prediction probability
for all coalitions of the players, i.e., all 2K possible subsets of the
features. This is intractable in flow classification, since we have
hundreds of features. Furthermore, the Deep SHAP approximation
approach proposed in [16] loses accuracy. Finally, even if the
contribution of each feature could be computed, it would still be
challenging for human inspection.

Hence, we propose to separate the features intoM groups, where
M << K , based on domain knowledge specific to network traffic
flows. Each group is called a superfeature. For our dataset X, we
group the 266 flow-level features into 5 disjoint superfeatures as
shown in Table 2, where packet information includes features related
to packet and payload lengths, protocol information covers TCP-
specific features, rate information contains throughput and data rate-
related features, and stochastic information and time information
contain features associated with traffic burstiness and interarrival
times, respectively.

Thus, we define a cooperative game with the set ofM superfea-
tures x̃ = {x̃1, ..., x̃M } as players and the probability of being delay
sensitive as payoff. Them-th superfeature x̃m denotes a set of fea-
tures included in this superfeature or a vector with those features

0.5     + -0.10.15 -0.1 0.20.05 =           0.7

         Shapley Values                               

Feature Vector

Superfeatures

=   Probability of being 
     Delay Sensitive

Figure 1: Example Shapley values of superfeatures

as its components. We will switch between these two interpreta-
tions of x̃m for notational simplicity. Given a sample x, the Shapley
value of them-th superfeature for the black-box model h can be ob-
tained as

ϕm (h, x) =
∑

S ⊆ x̃ \ {x̃m }

|S|!(M − |S| − 1)!
M!

(v(S ∪ {x̃m }) −v(S)),

(1)
where function v(·) computes the contribution of any coalition of
superfeatures S marginalized over the superfeatures not in S as
follows:

v(S) = E−S[h(x)] − E[h(x)], (2)
where E−S indicates expectation taken over the values of features
included in the superfeatures not in S and E indicates expectation
taken over the values of all features. Since the probability
distribution from which the dataset is drawn remains unknown,
we take the sample average over the training dataset to
approximate the above expectations. Note that E[h(x)] gives the
prior probability of being delay sensitive. Hence, if the dataset is
balanced, i.e., it contains equal numbers of delay sensitive and
delay tolerant flows, then E[h(x)] = 0.5 for a well-trained model
on this dataset.

An explanation framework based on Shapley values has several
useful properties that other explanation methods do not possess
[17], such as null player, symmetry, and efficiency. In particular, the
last property suggests that, given a feature vector x, the sum of
E[h(x)] and the Shapley values of all superfeatures is equal to the
payoff, i.e., the predicted probability of being delay sensitive:

h(x) = E[h(x)] +
M∑

m=1
ϕm (h, x). (3)

As an example, Fig. 1 illustrates the Shapley values obtained for the
5 superfeatures of some flow sample. Added to the prior probabil-
ity of being delay sensitive E[h(x)], some superfeatures have posi-
tively contributed and some have negatively contributed. As the
sum of all Shapley values contributes positively over E[h(x)], the
sample is predicted as delay sensitive. Therefore, we may view the
Shapley value of a superfeature as the amount of probability that it
contributes to our prediction. Hence, the set ofM Shapley values
{ϕm (h, x)} for the superfeatures of a sample x provides an explana-
tion for the prediction of that sample by the classifier h.

3.2 Analysis of the Explanation Framework
In this section, we introduce several novel analytical methods to es-
tablish the reliability of the proposed explanation framework and
to obtain insights about CoS-oriented classification. We note that
available theoretical understanding about the features of Internet
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traffic is limited, so it is challenging to establish the prior knowl-
edge required for human understandable explanation. Therefore,
we will demonstrate the reliability of the proposed explanation by
evaluating the consistency of Shapley values across different fea-
ture vectors and between different approaches of classification. Ex-
perimental results of these methods will be presented in Section
4.

Let E = [x(1), ..., x(N )]T ∈ RN×K be our explanation set that
contains N correctly labeled samples for which we have obtained
explanation. The set of superfeatures of the n-th sample x(n) is
given by {x̃(n)1 , ..., x̃

(n)
M }. For brevity, we will rewrite ϕm (h, x(n)),

the Shapley value of them-th superfeature of the n-th sample in
the explanation set, as ϕ

(n)
m . We evaluate the consistency of

explanation by checking whether similarity in a particular
superfeature for different samples results in similar contribution.
Given the explanation set E, let x be a new test sample with M
superfeatures x̃ = {x̃1, ..., x̃M }. By comparing it with the flows in
the explanation set, we expect the contribution of its m-th
superfeature should be close toψm defined as follows:

ψm =

{
ϕ
(n∗)
m : n∗ = argmin

n∈{1, ...,N }

| |x̃m − x̃(n)m | |

}
(4)

where | | · | | denotes the Euclidean distance. The index n∗ in (4)
may not be unique, and ties are broken uniformly randomly. Now,
we define an explained value for x as E[h(x)] +

∑M
m=1ψm and use

it to perform two experiments. Firstly, we check the correlation
coefficient between the explained value of a test sample and its
probability of being delay sensitive predicted by the learning
model. Note that the correlation coefficient is normalized between
-1 and 1, and a high correlation indicates that the learning model is
well-explained by the Shapley values. Secondly, we define an
explained label to each test sample such that it is delay sensitive if∑M
m=1ψm ≥ 0, i.e., the sum of the assigned Shapley values has

positive contribution; and it is delay tolerant otherwise. We
measure how accurately the explanations obtained from the
classifier reflect the ground truth by comparing the explained
labels against the true labels of the test samples.

Furthermore, to show that the explanations between the direct
and two-step approaches are consistent, we consider their
correlation as follows. For the direct approach, we have the vector
of Shapley values of them-th superfeature for the N samples in the
explanation set E, Φ(m)

direct = [ϕ
(1)
m , ...,ϕ

(N )
m ]T ∈ RN . In the two-step

approach, for any flow, the probability of being delay sensitive
equals the probabilities of being in the application types that are
mapped to delay sensitive. We denote its vector of Shapley values
for them-th superfeature by Φ

(m)
two-step(D) ∈ R

N . We measure the

correlation coefficient between Φ
(m)

direct and Φ
(m)
two-step(D), denoted

by ρ(Φ(m)

direct,Φ
(m)
two-step(D)). A high correlation would show that the

explanations are consistent between the direct and two-step
approaches. Furthermore, there are 28 possible choices of the
mapping D for the 8 application types in our traffic flow dataset to
be mapped to two CoS labels. Let D∗ be the mapping such that

D∗ = argmax
D

1
M

M∑
m=1

ρ(Φ
(m)

direct,Φ
(m)
two-step(D)). (5)

If D∗ is the same as our input mapping of VOIP and CHAT to delay
sensitive, then we understand that the best average correlation of
superfeatures is achievedwhen the explanations correctly recognize
the delay sensitivity of the application types.

Finally, some high-level insights can be drawn from the explana-
tion set E. Let σ be a function such that the k-th feature is grouped
into the σ (k)-th superfeature. To determine how the k-th feature
value varies along with the Shapley value of its parent superfea-
ture σ (k), we obtain the correlation between the k-th feature col-
umn of E and Φ

(σ (k ))
direct = [ϕ

(1)
σ (k ), ...,ϕ

(N )

σ (k )]
T ∈ RN . If it is positive,

then we understand that as the value of the k-th feature increases,
the probability of being delay sensitive increases; and vice versa.
For each feature, the higher the absolute value of correlation, the
more we are confident about our conclusion. In the next section,
we will summarize some of these conclusions based on our expla-
nation framework.

4 EXPERIMENTAL RESULTS
4.1 Dataset and Experimental Setup
We combine the aforementioned two ISCX datasets in our
experiments. Our learning models are implemented in Python and
trained on 80% of this dataset, plus 10% for validation and another
10% for testing. For data balancing of the training set, we apply the
sklearn.utils.resample function from scikit-learn v0.21.3 [22], so
that in the direct approach the training set contains the same
number of delay sensitive and delay tolerant flows, while in the
two-step approach the training set contains the same number of
flows for each application type. We have experimented with
logistic regression, SVM, and NN, but here we present results on
NN only for brevity. The other learning models give similar
conclusions but are less accurate in general.

We use RELU activation and batch normalization in each hidden
layer in addition to a drop-out rate of 0.5. After experimenting
with various configurations of NNs, we observe that using two
hidden layers of 30 nodes each gives sufficient accuracy. To train
the NNs, we use the ADAM optimizer along with the cross-entropy
loss function. In the direct approach we use learning rate 5 × 10−5,
batch size 1000, and 400 epochs, while in the two-step approach
we use learning rate 10−4, batch size 500, and 600 epochs. Both
settings have been observed to give superior performance for their
respective approaches.

4.2 Classification Performance
In Table 3, we compare the classification performance of the two
approaches. We observe that the test accuracy of 92.5% by the
direct approach is superior to that of the two-step approach. More
importantly, to a network service provider, misclassifying delay
sensitive traffic as delay tolerant can impose a high penalty.
Therefore, we are more interested in the false-negative rate on
delay sensitive samples. We find it to be only 6% for the direct
approach, more than three times lower than that of the two-step
approach. This demonstrates the significant benefits of the direct
approach. Furthermore, even though the two-step approach
appears to give a lower false-negative rate on delay tolerant flows,
its false-negative rate for classifying individual applications is
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Metric Direct
Approach

Two-step
Approach

Test accuracy 92.5% 87.5%
False-negative rate for
delay sensitive flows

6% 21%

False-negative rate for
delay tolerant flows

9% 4%

Table 3: Comparison of classification performance

CoS
Label

Application
Type

False-negative Rate

Delay
Sensitive

CHAT 0.27
VOIP 0.36

Delay
Tolerant

AUDIO 0.35
FTP 0.27
MAIL 0.14
P2P 0.04

VIDEO 0.22
WEB 0.13

Table 4: False-negative rates for different application types
for two-step approach

0.0 0.1 0.2 0.3 0.4
Shapley Values

Packet Info

Protocol Info

Rate Info

Stochastic Info

Time Info

CHAT Sample
VOIP Sample

Figure 2: Explanations for theCoS classification of two delay
sensitive flows

much higher, as shown in Table 4. Indeed, we observe that it often
mis-classifies one application as another application of the same
delay class, which does not appear as erroneous in delay
classification but nevertheless calls into question its reliability.

4.3 Evaluating Explanations
As illustrative examples, in Fig. 2, we show the superfeature expla-
nations {ϕm } for a CHAT flow and a VOIP flow, both of which are
delay sensitive as explained in Section 2. One can observe that pro-
tocol information provides the greatest evidence for the CHAT flow
being classified as delay sensitive, while time information provides
the greatest evidence for the VOIP flow being classified as delay
sensitive. For comparison, the explanations for two delay tolerant
samples, a FTP flow and a MAIL flow, are shown in Fig. 3. Here we
see that packet information provides the greatest evidence for both
the FTP flow and the MAIL flow being classified as delay tolerant.

Next, we obtain the explained values of all samples in the test set
by assigning Shapley values according to (4), using 2000 randomly

0.3 0.2 0.1 0.0
Shapley Values

Packet Info

Protocol Info

Rate Info

Stochastic Info

Time Info
FTP Sample
MAIL Sample

Figure 3: Explanations for theCoS classification of two delay
tolerant flows

Test Samples Our Work Deep SHAP
All samples 0.83 0.66

Delay sensitive samples 0.67 0.48
Delay tolerant samples 0.75 0.56

Table 5: Correlation between explained value and predicted
probability for test samples

Metric Our Work Deep SHAP
Accuracy 88% 83%

False-negative rate for explaining
delay sensitive samples

15% 21%

False-negative rate for explaining
delay tolerant samples

9% 13%

Table 6: Accuracy of explained labels against true labels for
test samples

selected, correctly classified samples to form our explanation set E.
Table 5 records the correlation coefficient between the explained
values and the predicted probabilities by the learning model. We
compare the proposed explanation approach with Deep SHAP [16],
where we approximate the Shapley values all 266 features and treat
each as a superfeature to obtain the explained values. We observe
that the proposed method has substantially higher correlation for
the same learning model.1 Next, we obtain the explained labels and
present in Table 6 the overall accuracy and error rates of the
explained labels when compared with the true labels. We observe
higher overall accuracy by the proposed approach, indicating
superior consistency of explanations over different feature vectors.

We then calculate the correlation between the explanations ob-
tained from the direct and two-step approaches. Table 7 shows the
correlation coefficients of each superfeature for the true mapping
D : A → C where VOIP and CHAT are mapped to delay sensitive.
We observe that the correlation is high. In fact, the true mapping
gives an average correlation of 0.82, which is the highest among

1As a rule of thumb to interpret correlation values, the ranges (0.5, 0.7), (0.7, 0.9),
and (0.9, 1) are commonly recognized as indicating moderate, high, and very high
correlation, respectively [12].
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Packet
Info

Protocol
Info

Rate
Info

Stochastic
Info

Time
Info

0.81 0.89 0.78 0.72 0.92

Table 7: Correlation of superfeatures for the mapping of
VOIP and CHAT as delay sensitive traffic

Top-ranked Features Correlation
Found

(1) FFT of data rate (arctan of frequency
corresponding to the largest magnitude)

-0.72

(2) Time-to-live (dest. to src.) 0.71
(3) Mean pkt length -0.62
(4) Mean payload length -0.62
(5) # Bursts (dest. to src.) 0.62

Table 8: Top five features that impacts the probability of
being delay sensitive

all 28 possible mappings as found by (5). This suggests that expla-
nations between the two approaches are consistent, and the expla-
nations reliably recognize the applications as the source of delay
sensitivity.

Finally, Table 8 summarizes the top five features ranked by the
absolute values of their correlation with their parent superfeatures,
as described in Section 3.2. A large absolute value indicates that
the feature strongly impacts the probability of a flow being delay
sensitive, either positively or negatively. This shows that despite
the dramatic reduction of complexity in computing Shapley values
by using superfeatures, we can still obtain new insights about the
contribution of individual features.

5 CONCLUSION
Through experimentation with real-world traffic flows, we have
shown that the direct approach for CoS-oriented traffic
classification can be substantially more accurate than the two-step
approach that first infers the application types. We further present
an efficient explanation framework based on Shapley values to
interpret the classification results, using superfeatures defined
based on domain knowledge. Our experimental results further
demonstrate the consistency and usefulness of the proposed
explanations.
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