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Abstract—We consider physical layer multicasting in an amplify-and
forward multi-antenna relay network. Assuming each relay aatenna has
individual power budget, our objective is to design the relg processing
matrix to minimize the maximum individual antenna power for a given
received SNR target at each destination. As the problem is NRard,
we propose an approximate solution by solving the problem inthe
Lagrange dual domain. Through this Lagrange dual approach,we reveal
a prominent structure, which enables us to derive a semi-cked form
expression for the relay processing matrix that depends on aet of dual
variables. These dual variables can be determined through raefficient
semi-definite programming formulation. Compared with the traditional
semi-definite relaxation (SDR) approach, the proposed sofion has much
lower computational complexity. Furthermore, it produces the optimal
solution if such solution can be extracted from the SDR apprach.
Thus, the proposed solution can serve as a good alternative the SDR
approach, for the performance and complexity trade-off.

Index Terms—Relay Beamforming, Multicast, Amplify-and-Forward,
Per-Antenna Power Control

1. INTRODUCTION

The next generation relay network needs efficient physiagén
multicasting design for some important emerging wireleggliea-
tions such as real-time video broadcasting. We study theymlexf
amplify-and-forward (AF) multi-antenna relaying in a nicétsting

problem is in general NP-hard. Thus, the focus is on progidin
computationally efficient approximate solutions for theolgem.

A semi-definite relaxation (SDR) approach was proposed for a
approximate solution [9]. This approach has been most pomo
far in solving the multicast transmit beamforming probleoedo its
good quality of performance with polynomial time [12]. Slaily,

for relay multicasting, the SDR approach can be adoptedlte sbe
problem. In this paper, instead of SDR, we propose an aligena
approach to find an approximate solution.

In this work, for the AF multi-antenna relay multicastingeaim
at designing the relay processing matrix to minimize the imar
relay per-antenna power consumption, with SNR target reqeént at
each destination. We develop an approximate solution optbblem
in the Lagrange dual domain. Through a sequence of tranaf@ns,
we derive a semi-closed form expression for the approxirsaiigion
of relay processing matrix, of which a set of dual variables de-
termined numerically through an efficient semi-definitegueanming
(SDP) formulation. Our semi-closed form solution is obéainwith
much lower computational complexity, as compared with tlRERS
approach. The computational efficiency comes from the smalze
of SDP and the semi-closed form solution without any iterativhich

scenario, where a source sends common information to a fetir deis needed in the SDR approach. In terms of performance, thé®o

nation users through the assistance of a relay. A processatgx is
used at the relay to process received signals to forwardl tasers.
The focus of the design is to develop efficient algorithmseatednine
the relay processing matrix so that good performance at aaeh

obtained sometimes is in fact optimal. In this case, bottpgsed
approach and SDR approach produce the optimal solutiore a&zime
time. However, unlike the proposed approach, obtaining sytimal
solution from the SDR approach is not always straightfodvat

can be achieved. In addressing this problem, we impose a moeguires the knowledge on the existence of the optimal isolwnd

practical constraint that each relay antenna has its owivithal
power budgets. For a relay equipped with multiple antentias,
constraint reflects the individual RF front-end power afigaliat each
antenna; For multiple relays equipped with single anteon@mm a
virtual multi-antenna system for collaborative procegsimdividual
antenna power budget is particularly more realistic. Tipeseantenna
power constraints render the design problem more chahlgntjian
that with the traditional sum-power constraint.

For single pair of source and destination, optimally desigrihe
relay processing matrix has been studied under differeromeance
criteria [1]-[4]. The relay processing design for multigeurces
and/or destinations has also been studied in [5]-[7], whareerical
methods were proposed to obtain approximate solutionsuloops
timal structure was imposed to simplify the problem. Relgmsl of
single or multiple pairs of source and destinations, mosstiex
designs for multi-antenna relay processing rely on a suwepo
constraint among relay antennas, which leads to more acellyt
tractable problems. When per-antenna power constraietsrgosed,
existing techniques developed under the sum-power camiséig@ no
longer applicable. For the scenario of a single pair of sewand
destination, the optimal relay processing matrix undergreenna
power budget is obtained recently in [8].

The problem of physical layer multicast transmit beamfogrinas
been well studied in a direct downlink scenario [9]-[11] andhe
sum-power constraint. It was shown that the multicastingpation

methods to extract it (e.g., [13]). When the solution is optmal,
the SDR approach tends to have better performance. Thuk, bot
approaches should be considered in generating the sotatchieve
overall good performance with high computational efficienc
Notations: The Kronecker product is denoted &s Hermitian
and transpose are denoted(ag’ and(-)”, respectively. Conjugate
is denoted ag-)*. vec(A) vectorizes the matribA = [a;,- - ,an]
to [af,--- ,ak]”. The notationA = 0 means that the matriA is
positive semi-definite; ane = 0 denotes element-wise inequality.
The maximum eigenvalue of the matriX is denoted agmax(A).
For A bleing positive semi-definiteA% denotes its square-root with
A=AzAz.

2. PROBLEM FORMULATION

We consider a dual-hop AF multi-antenna relaying system in
multicast scenario where the source transmits common dafd t
destination users through a relay equipped wkhantennas. The
channel vector between the source and the relay, and the asth
userk is denoted byh; € CV*! andhy;, € CV*!, respectively. The
signals received at the relay are processed with a relayepsoty
matrix W € CV*¥ and then are forwarded to all users. lygt be
the received signal vector at the relay. The received sighabkerk
is given by

yar = h3 (Wy,) + ng = h3, Whyv/P,s + hi Wn, +ng. (1)



where s is the transmitted signal from the source with unit poweapproximate solution in the Lagrange dual domain. Wikh the

Els|*> = 1, P, is the transmit power at the source, ang is the

AWGN at userk’s receiver with variancer2. The received signal-

to-noise ratio (SNR) at usek is obtained as

P,|h2, Wh; |2

SNRy = —————.
" oFIhL WP + o3

)

With the practical assumption that each transmit antenntheat
relay is individual power controlled with its own power bedgthe
per-antenna power on the output of each transmit antente atlay
is given by E{|[Wy.|:|*} = [PoWhih{' W + s7WW'] . for
i=1,---,N.

Our objective is to design an optim&V at the relay to minimize
the relay per-antenna power usage for data forwarding,esulip

received SNR targets at each user. Let the received SNRt targe
user k be v,. We consider minimizing the maximum per-antenna

transmit power at the relay subject to constraints on SNBRetaof
each user, given as

min max [PoWhlhfI wh afwwH} @)
W 1<i<N i
s.t. SNRik > v, Vk 4)

It is straightforward to see that the above min-max powerimiiza-
tion problem is equivalent to the following problem

min P, (5)
w
s.t. SNRx > v, VEk

[P()Whlh{{ wH afwwH} <PV (6)

which also corresponds to a common per-antenna power aantstr

We also impose the following assumption of the channel betwe

the source and relays.

Al): The channel between the source and the relay over eaehren
is active,i.e., h1; # 0, Vi, wherehy; is theith element inh;.

The above assumption is very mild and generally holds intfmac
scenarios, as for a fading channdhlp, = 0) = 0.

3. MULTICAST RELAY PROCESSINGDESIGN

By vectorizing the relay processing mati¥, we first transform
the received SNR expression in (2) to the following form.

Polgi w|?

P @)

2
+ oy

SNRy, =
1

wherew £ vec(WH), gk 2 ho, ® hy, and Ry 2 hy, hl @ Io2,
fork=1,---,K, wherel is anN x N identity matrix. LetW# =

Lagrangian for (5) is given as

K P, H 2 1 2 2
L(Pr,w,A,v) =P, = u {—7 W] — IR wl —ffd]
k
k=1

N
+3 N [wff (Pohih? + o2T)w; — PT] ®)
i=1

where A 2 diag(A1,- -+, An) is the diagonal matrix of Lagrange
multipliers corresponding to the per-antenna power cairgs, and
v=[v,---,vk|" be the vector of Lagrange multipliers associated
with the SNR constraints in (4). By the Lagrangian dual apphy
we obtainw by solving the dual problem

max min L(P,,w, A, v 9
IR ( ) 9)
st. A=0, vi=0. (10)

We now show that the solution to the Lagrange dual problem (9)
can be obtained by an equivalent optimization problem givetne
following theorem.

Proposition 1: The Lagrange dual problem associated with the
optimization problem (5) is equivalent to the following ptem

K
. 2
. 11
mﬁx 11311&1 oy ;uk (11)
K v P
Py T v e
k=1
.t >
s.t T Sw >1 (12)
tr (A) <1, A is diagonal (13)
As=0,v=0 (14)
whereX 2 A ® (Phihi’ + 021) + 5 | vi Ry
Proof: The Lagrangian in (8) is given by
K
L(Pr,w,A,v) =03 > v+ P[1 — tr(A)]
k=1
s 1%
+w |B-P Y “gel | w. (15)
o1 Tk

Substituting (15) into (9) and solving the inner miniminatiof the
dual problem (9), we have the following equivalent problem

K K
max 03 Y v st. (10),(13), and £ = P, Y Lggll. (16)
1 k=1 TF
In order to show the equivalence of the problem (11) and (@),

have the following lemmas. The proofs are omitted due to epac
limitation.

[wi,- -+, wx]. Following (7), the constraint (6) can be re-expressed Lemma 1: Let A andB be N x N positive definite and positive

in terms ofw;, where

P,Whh#PWH 4 afWWH] - =w(Phihi + o T)w,.

1,1

A. Lagrange Dual Approach

semi-definite matrices, respectively. Then,

ArBol—onn (ATBATE) >0 (17)

Lemma 2: Under the assumption Al, at the optimality of the
problem (16), we have the optimaf > 0, foralli=1,--- | N.

The optimization problem (5) is non-convex, as SNR constsai Using Lemma 2, we have the following.

in (7) are non-convex w.r.tw. In fact, for the direct-link multicast
beamforming, it has been shown that the total power miniticima

Lemma 3: At optimality of the problem (16), rarf&) = N2, i.e,
3 is a positive definite matrix.

problem is NP-hard [9], and the SDR approach is typicallyduse Combining Lemma 1 and Lemma 3, the dual problem (16) is now
to find the approximate solution. In our problem, we find thequivalent to



(18)

s <l
P,

To see how the optimization problem (18) and (11) are eqentalve
note that the inner minimization of (11) w.ri& can be interpreted
as the following problem

K
2
max oy E Vk
Av T

K
s.t. (13),(14), and omax <

>

k=

kgk

K
> anPiw gl

. ~ k=1
min E P, st. —mmMm —— >k
W= wi 3w

(19)

where we setP, = Vo3, > = dE ar = 1/v, andk = 1. We
can solve (19) through a generahzed eigenvalue problenerevkr
has the form

P (

whereP(-) denotes the principle eigenvector of a matrixSubsti-
tuting the above into (11), we have

K

> aPigrer
k=1

ml»—A

> %> (20)

K

. 2
mXLX myln (o} ,;,1 Vi (22)
1 a 1% 1 1
s.t. (13),(14), andomax | X7 2 ko o |72 | > .
(13),(14) ( g:l 5 BKBK >_ 7

For any givenA, the two optimization problems (18) and (21) are

equivalent, because at optimality, they both require thestaints to
be met with equalityomax (X~ 2 [Z,ﬁil :—:gkgf] 2*%) =7,
where the optimab is the root of this equation. [ ]
Assuming the optimization problem (5) is feasible, we abtai

following (20) in Proposition 1, up to an arbitrary scalettacs, i.e.,

w= 4" 2u° (22)

whereu® £ P (2"’% [ZkK | Eggi ] 2“’%), and =° being
under the optimalA’, v° of the problem (16). The value of is
determined to ensure that all the SNR target constraintar@)met.
It follows that

*%u°||2).

1Bl =oa/ ¢ mK

2 _1
°”z°*%gk( ~ |R,ZZ°

Note that an arbltrary phase rotation w1 does not affect the SNR

value. Thus, without loss of generality, we simply get |3|.
Finally, we need to obtain the optimal solutiof&\’,»°) to

being (P,h;1hi’ 4+ ¢2I) and all other(N — 1) diagonal blocks being
Onxn, and Gk 2 Ror — %’gkgf, fork=1,--- K.

It is known that the SDP algorithm has a polynomial worst-
case complexity, and performs very well in practice [14]cdin be
efficiently implemented through the interior point methdd]f

B. Comparison with the SDR Approach

As mentioned earlier, we can also use the SDR approach to find
the approximate solution to the optimization problem (5).this
approach, the min-max power minimization problem can be firs
formulated as

(24)

min P,
X
s.t. tr(GiX) < P, Vi, tr ({%gkgf - Rnk] X) > o3, Vk
k

rankX)=1, X =0

whereX = ww’. The above problem can be relaxed to an SDP
problem by removing the rank-1 constraint & The problem is
solved using a bi-section search as an outer loop over an SDP
feasibility problem. Thenw is extracted fromX through some
randomization method.

Note that each approach formulates the original problem ant
SDP. However, the computational complexity of the propodedl
approach is much lower. This is reflected in two aspects:

1) The SDP problem in the SDR approach h&é variables
and N + K constraints with complexity per iteration of
O((N*)?(N?*)?), while the SDP problem in the dual approach
only hasN + K variables and three constraints with complexity
per iteration of O((N + K)*(N?)?). Therefore, the SDP
problem in the dual approach has smaller size and lower
complexity to compute whetN* > (N + K) .

In the dual approachy is directly obtained through the semi-
closed form solution (22) and only needs to solve a single SDP
problem (23). In the SDR approach, a bi-section search over
the SDP feasibility test is conducted which needs multifidS
feasibility tests due to iterations. In addition Xf is not rank-1,

a randomization procedure is required to obtain

Note that the dual problem (9) and the relaxed SDP problen24f (
produce the same lower bound of the original optimizatioobfam
(5)%. There are literature works discussing when the rank-1tisolu
for X exists in a relaxed SDP problemg, generating the optimal
solution for the original problem ) under certain problenttings,
and how to obtain it. Due to the relation of the two approaches
when a rank-1 solution can be obtained, the strong dualikgtshimr
the original optimization problem, and both approachesafitain an
optimal solution. Thus, the advantage of the dual approsithat the
optimal solution can be directly obtained via the semi-etbform
with significantly lower computational complexity.

2)

determinew in (22). They are obtained by solving the optimization

problem (16), which is a dual SDP problem. To see this, we

reformulate (16) as the following SDP problem
N+K
min o7x st bTx—1< 0, x =0, Z i
=1

Gi=0 (23

[lql\wfxlvof(xl]Tv X =
AN, v,k T, andGy is anN x N
, N, with theith diagonal block

A
where & = [0§X17—0§1;T(X1]T7b
[z1,- - 7xN+K]T =,
block diagonal matrix, foi = 1, - - -

1Although there exist other optimal solutions @, the solution in (20)
leads to the maximum eigenvalue of a Hermitian matrix

4. NUMERICAL RESULTS

To study the multicast relay beamforming performance usirggy
proposed approach, we assume the noise powers at the relaat an
the destination are set a§ = o2 = 0.1W. The source transmitted
power P, is set to bel0dB aboves?. The entries oh; andhy;, are
assumed i.i.d. zero-mean Gaussian with variahcand {h.;} are
i.i.d.. All users have the same SNR targget=~,, fork =1,--- | K.
The results are generated over 1000 Monte Carlo runs.

2|t is known that the two approaches have the same lower boecalise the
SDP relaxation problem is essentially the bi-dual of thgiogl optimization
problem [12]



We first compare the multicast relay beamforming perforreanc

under the dual approach and SDR approach. We investigatgaihe
between the power obtained from the primal approximatetisoiu
and that of the dual problem. Let{w) be the optimal objective of
the dual problem (9) wherev is obtained by (22). It is a lower
bound for the primal problem (5). Lef(w) be the objective of the
primal problem (5) undew. Define the gap ratidsuy = 5rag-
When Gg.p[dB] = 0, the solution is optimalj.e, w*' = w.
Similarly, in the SDR approach, we can compudtg., between the
the approximate solution and the lower bound obtained from t
relaxed SDP problem. Fig. 1 shows the CDF @&f., under both
dual and SDR approaches. As we see, the case&/fg5 = 0dB
in both approaches is identical, verifying that the optirsalutions
are produced by both approaches. When there is a gap, the S
approach provides smaller gap than that of the dual apprdatite |
shows the average processing time in each approack fer2,4, 8
and N = 2 in simulations. As we see, the average computati
time for the dual approach remains roughly unchanged, aaifdin

the SDR approach increases wiih more noticeably. The average

computation time of the SDR approach 1i§-26 times more than
that of the dual approach fd& ranges fron® to 8. Thus, to achieve
better performance while being computationally efficiem, should

consider both approaches as candidates. Since the coiopatat

complexity in the dual approach is much lower than that of the

SDR approach, we can use it as the first candidate to prodece
approximate solution, and only use the SDR approach whegahpe
is significant.

We also show the performance under differeNt and K.
Fig. 2:Left shows the average per-antenna power usage &tiaed
against noise% > P;/c3) for different required SNRy, with

K | Dual Approach (sec)] SDR Approach (sec)
2 0.13 2.0
4 0.15 3.6
8 0.17 4.5

TABLE I: Average Processing Timey{ = 4dB, N = 2)

5. CONCLUSION

We have considered a multicast AF relaying scenario with-mul
tiple destination users, where we designed the multi-awterlay
processing matrix under the per-antenna power budget.e Sime
optimization problem is NP-hard, we have obtained an apprate
solution for the problem in the Lagrange dual domain. Theraage

| approach enables us to obtain a semi-closed form soluatf
e relay processing matrix, where an efficient SDP fornmats
formed to determine the parameters in the semi-closed fotatisn.

0%ompared with the traditional SDR approach, the proposethade

has much lower computational complexity. When the optiraltton
can be obtained in either approach, both approaches obtaim s
solution at the same time. Simulation cases show that theéupsal
solution is optimal for a high percentage of time, and theldua
approach can be a good alternative approach consideretthéogeth
the SDR approach to produce the approximate solution.
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