
Multi-user Mobile Cloud Offloading Game with Computing Access Point

Meng-Hsi Chen and Ben Liang

Dept. of Electrical and Computer Engineering

University of Toronto

Toronto, Canada

Email: {mchen, liang}@ece.utoronto.ca

Min Dong

Dept. of Electrical, Computer and Software Engineering

University of Ontario Institute of Technology

Oshawa, Canada

Email: min.dong@uoit.ca

Abstract—We consider a multi-user mobile cloud computing
system with a computing access point (CAP) where each
mobile user has multiple dependent tasks to be processed
using a round-by-round schedule. The CAP can either process
the received tasks from mobile users or offload them to
the cloud. In each round, we aim to jointly optimize the
offloading decisions of all users and the CAP, together with
communication and processing resource allocation, to minimize
the overall cost of energy, computation, and the maximum delay
among all users. Since the centralized optimization problem
is non-convex and mobile users may not follow the obtained
solution, we further formulate a mobile cloud offloading game.
We show the existence of a Nash equilibrium (NE) of this
game and propose an algorithm to attain the NE. Simulation
results show that our proposed algorithm gives nearly optimal
performance in terms of the total system cost under various
parameter settings.

Keywords- mobile cloud; computing access point; game
theory; offloading decision; resource allocation

I. INTRODUCTION

By offloading tasks to the cloud for data gathering,

storage, and processing, mobile users can potentially reduce

its own device energy consumption or processing delay of

each task [1] [2]. However, the integration between mobile

devices and the cloud introduces additional communication

delay and transceiver energy consumption, which may affect

the quality of service (QoS) of those offloaded tasks and

overall mobile device energy usage [3].

Prior works on mobild cloud computing include scenarios

where a single user offloads a single application [3] [4],

multiple users each offload a single application [5]–[8], a

single user offloads multiple tasks [9]–[12], and multiple

users each offload multiple tasks [13]. Furthermore, in-

stead of conventional mobile cloud computing where only

mobile devices and the cloud server can process tasks,

a novel Computing Access Point (CAP) was proposed in

our previous work [14], which can be a wireless access

point or a cellular base station with built-in computation

capability. Mobile cloud computing through CAPs is similar

to the concept of Mobile Edge Computing [15], micro cloud

centers [16], cloudlets [17], and fog computing [18], but the

user computing tasks may be processed locally at the mobile

devices, at the CAP, or further forwarded by the CAP to a

remote cloud server. By solving the centralized offloading

optimization problem, we previously showed substantial

system performance improvement by considering the CAP

for both single-user [14] and multi-user [19] scenarios.

In this work, we study the interaction between selfish

mobile users and the CAP. Each mobile user has multiple

sequentially ordered tasks with a round-by-round schedule

where the head-of-queue task from each user is processed in

each round. We consider jointly the offloading decision and

the allocation of communication and computation resources

among all users, with an aim to conserve energy and

maintain QoS of all users. Different from [19], in which a

heuristic method was proposed to solve the centralized non-

convex mixed integer programming problem sub-optimally,

we use a game theoretic approach by letting mobile users

distributively compute their own offloading decisions based

on their respective cost function, while the CAP decides the

allocation of communication and computation resources. We

show that a Nash equilibrium (NE) exists in our formulated

game, and we propose an algorithm which leads to an NE

in finite steps. We further show that the users will truthfully

report their task information to the CAP, so that the CAP can

compute the NE and no user will have incentive to deviate

from it. Simulation shows that our proposed game-based

solution can achieve near-optimal performance in terms of

the overall system cost under various parameter settings.

The rest of this paper is organized as follows. In Section

II, we describe the system model and present the centralized

problem formulation. In Section III, we provide details of the

game formulation, the existence of the NE, and the proposed

algorithm to find a NE. Simulation is provided in Section

IV, and conclusion is given in Section V.

II. SYSTEM MODEL AND CENTRALIZED OPTIMIZATION

Consider a cloud access network consisting of one remote

cloud server, one CAP, and N mobile users, as shown in Fig.

1. Each mobile user has M sequentially ordered tasks, and

we consider a round-by-round schedule where one task from

each user is processed (for a total of N tasks) in each round.

After finishing the current round, a new round will start

until all tasks are processed. Note that this system model

can be easily extended to the case where each mobile user

Remote
 Cloud

Computing
 AP

Mobile
User 1

 1

Mobile
User 2

Mobile
User N

 2

 N

Figure 1. System model

has a different number of tasks, by considering only those

users with tasks to process in the current round. In such a

round-by-round system, it suffices to optimize the offloading

decisions and resources allocation for mobile users in a

single round. This will be the focus of the rest of this paper.

A. Per-Round Offloading Decision

In each round, every mobile user has one task to be either

processed locally or offloaded. Furthermore, an offloaded

task may be processed at the CAP or be further forwarded

to the remote cloud. Denote the offloading decisions by

xli + xai
+ xci = 1, i = 1, . . . , N, (1)

where xli , xai
, xci ∈ {0, 1} indicate whether user i’s task is

processed locally, at the CAP, or at the cloud, respectively.

Notice that only one of xli , xai
, and xci for user i could be

1.

B. Cost of Local Processing

The input data size, output data size, and processing

cycles of user i’s task are denoted by Din(i), Dout(i), and
Y (i), respectively. When this task is processed locally, the

processing energy is denoted by Eli and the processing time

is denoted by Tli .

C. Cost of CAP Processing

Since there are multiple tasks offloaded to the CAP and

some of them are processed by the CAP, we need to fur-

ther allocate the communication and computation resources

available at the CAP. For user i’s task being offloaded to the
CAP, we denote by Eti and Eri , respectively, the energy

consumed for wireless transmission and reception by the

user. We further denote the uplink and downlink transmis-

sion times by Tti = Din(i)/rui
and Tri = Dout(i)/rdi

,

respectively, where rui
and rdi

are uplink and downlink

data rates allocated to user i. Furthermore, rui
and rdi

and

limited by the uplink and downlink capacities CUL and CDL

as follows:

N
∑

i=1

rui
≤ CUL, (2)

and

N
∑

i=1

rdi
≤ CDL. (3)

Table I
NOTATION AND CORRESPONDING DESCRIPTION.

Notation Description

Eli
local processing energy of user i’s task

Eti
, Eri

uplink transmitting energy and downlink receiving
energy of user i’s task to and from CAP, respectively

Tli
, Tci

local processing time and cloud processing time of
user i’s task

Tti
, Tri

uplink transmission time and downlink transmission
time of user i’s task between mobile user and CAP

Taci
transmission time of user i’s task between CAP and
cloud

CUL, CDL uplink transmission capacity and downlink transmission
capacity between mobile users and CAP

rui
, rdi uplink transmission rate and downlink transmission rate

assigned to user i
Cci

system utility cost of user i’s task
rac transmission rate for each user between CAP and cloud
fC cloud processing rate for each user
fai

CAP processing rate assigned to user i

If this task is processed by the CAP, denote its processing

time by Tai
= Y (i)/fai

, where fai
is the assigned process-

ing rate, which is limited by the total processing rate fA:

N
∑

i=1

fai
≤ fA. (4)

D. Cost of Cloud Processing

If the task is further offloaded to the cloud from the

CAP, besides all the costs mentioned above except for Tai
,

there is additional transmission time between the CAP and

the cloud denoted by Taci = (Din(i) + Dout(i))/rac, and
cloud processing time denoted by Tci = Y (i)/fC , where we
assume the wired transmission rate rac between the AP and

the cloud and the cloud processing rate fC for each user are

pre-determined values. Thus, Taci and Tci only depend on

task i itself. Finally, the cloud utility cost of processing user
i’s task at the cloud is denoted by Cci . The above notations

are summarized in Table I.

E. Centralized Optimization Problem Formulation

Our goal is to reduce the mobile users’ energy consump-

tion and maintain the QoS to their tasks. Therefore, we de-

fine the total system cost as the weighted sum of total energy

consumption, the costs to offload and process all tasks, and

the corresponding maximum transmission and processing

delays among all users. We aim to minimize the total system

cost by jointly optimizing the task offloading decisions

xi = (xli , xai
, xci) as well as the communication and CAP

processing resource allocation ri = (rui
, rdi

, fai
). The

optimization problem is formulated as follows:

min
{xi},{ri}

[N
∑

i=1

αi(Elixli + EAi
xai

+ ECi
xci)

+ max
i

{TLi
+ TAi

+ TCi
}

]

(5)

s.t. (1), (2), (3), (4),

rui
, rdi

, fai
≥ 0, i = 1, . . . , N, (6)

xli , xai
, xci ∈ {0, 1}, i = 1, . . . , N, (7)

where EAi
, (Eti + Eri), ECi

, (Eti + Eri + βCci) is
the weighted transmission energy and processing cost for

task i being offloaded to the cloud, with β being the relative

weight, TLi
, Tlixli is the processing delay at the mobile

user, TAi
, (Din(i)/rui

+Dout(i)/rdi
+ Y (i)/fai

)xai
and

TCi
, (Din(i)/rui

+Dout(i)/rdi
+Taci+Tci)xci correspond

to the transmission and processing delay at the CAP and

the cloud, respectively, and αi is the weight on energy

consumption relative to the delay. We can adjust αi to place

different emphasis on energy consumption and delay.

The optimization problem (5) is a non-convex mixed-

integer programming problem. Furthermore, even when an

optimal solution to (5) can be obtained, there is no reason

to expect that selfish users will necessarily follow the pre-

scribed solution. Next, through a game theoretic approach,

we consider a method to allow the mobile users distributedly

compute their own offloading decisions, while the CAP

decides the allocation of communication and computation re-

sources. In simulation we will show that the proposed game

theoretic solution can achieve near-optimal performance in

terms of the objective of (5).

III. MULTI-USER MOBILE CLOUD OFFLOADING GAME

A. Game Formulation

In this section, we model the interaction between mobile

users and the CAP as a mobile cloud offloading game,

aiming to find an efficient solution to problem (5).

Let us consider a strategic form game

GMCO = (I, (Ai)i∈I , (ui)i∈I), (8)

where I = {1, ..., N} is the player set containing all mobile
users, Ai is the strategy set containing all possible strategies

for user i, and ui is the corresponding cost function that

user i aims to minimize. Here, ui is a function of the

strategy profile a = (ai, a−i), where ai ∈ Ai, a−i =
(a1, ..., ai−1, ..., ai+1, ..., aN) ∈ A−i =

∏

j 6=i Aj , ∀i. More

specifically, we define the strategy set and the cost function

for user i as

Ai =

{

ai = (xli, xai, xci)

∣

∣

∣

∣

xli + xai
+ xci = 1;

xli , xai
, xci ∈ {0, 1}

}

, (9)

and

ui(a) = αi(Elixli + EAi
xai

+ ECi
xci)

+ max
j

{TLj
+ TAj

+ TCj
}, (10)

respectively. By choosing ai, user i can decide where to

process its task to minimize its cost function ui, which is

defined as the weighted sum of user i’s energy consumption
and the delay of this round. Without loss of generality, we

assume that all mobile users are willing to participate in the

game. That is, for each user, the expected cost to participate

in the game is smaller than the cost of processing its task

locally without joining the game. Since there are multiple

tasks for each mobile user, the mobile user aims to reduce

the delay of each round so that the next round can start

earlier. Therefore, the cost function ui(a) in (10) expresses

the user’s objective to balance its energy usage and the

overall delay that it experiences.

After receiving some offloading decisions a from all

mobile users, the CAP will assign communication and

computation resources to each user to minimize the overall

system cost by solving the resource allocation problem as

follows:

min
{ri}

(

E+max
i

{TLi
+ TAi

+ TCi
}

)

(11)

s.t. (2), (3), (4), (6),

where E ,
∑N

i=1
αi(Elixli + EAi

xai
+ ECi

xci) is a

constant depending on a. This resource allocation problem

(11) is convex, which can be solved optimally using standard

convex optimization solvers, such as SeDuMi [20].

Notice that problem (11) requires task information from

all users. In the following, we show that there is no incentive

for any user to provide false task information. First, we

note that if a user is found by the CAP to provide false

information, it will be prohibited from participating in the

system, so no user will both provide false information and

offload its task to the CAP in the same round, when its deceit

will be noticed by the CAP. Next, we claim that a mobile

user cannot further decrease its own cost by providing false

information to the CAP without being noticed. The detailed

proof is omitted due to page limitation. The intuition is the

following: if user i participates in the game but provides

false information to the CAP, it needs to guarantee the cor-

responding Nash equilibrium defined in Definition 1 below

contains a∗i = (1, 0, 0) (i.e, local processing). Otherwise,

the CAP will find that user i does not truthfully report its

information. However, by providing false information and

processing its tasks locally, user i will lengthen the delay of
this round and incur a higher cost compared with the cost

of directly processing its task locally without participating

in the game. Therefore, all mobile users who are willing to

participate in the game will always truthfully provide their

task information to the CAP.

B. Game Structure Properties

Definition 1 ([21]). The strategy profile a
∗ is a Nash equi-

librium if ui(a
∗
i , a

∗
−i) ≤ ui(ai, a

∗
−i), for any ai ∈ Ai, ∀i.

Definition 1 implies that, by employing strategies cor-

responding to the Nash equilibrium (NE), no player can

decrease its cost by unilaterally changing its own strategy.

However, the NE may not always exists for a strategic form

game, especially when the game is not carefully formulated.

In Proposition 1, we will prove that the proposed game

GMCO has at least one NE. Before that, we need the

following definitions and lemma.

Definition 2 ([22]). A strategic form game G is an ordinal

potential game (OPG) if there exists an ordinal potential

function φ :
∏

i Ai → R such that

sgn(ui(ai, a−i)− ui(a
′
i, a−i))

= sgn(φ(ai, a−i)− φ(a′i, a−i)), ∀i, (12)

where ai, a
′
i ∈ Ai, a−i ∈ A−i.

Definition 3 (Finite Improvement Property [22]). A path in

G is a sequence (a[0], a[1], ...) where for every k ≥ 1 there

exists a unique player i such that ai[k] 6= ai[k − 1] ∈ Ai

while a−i[k] = a−i[k−1]. (a[0], a[1], ...) is an improvement

path if, for all k ≥ 1, ui(a[k]) < ui(a[k−1]), where player i
is the unique deviator at step k. G has the finite improvement

property (FIP) if every improvement path in G is finite.

Lemma 1 ([22]). Every OPG with finite strategy sets

possesses at least one pure-strategy NE and has the FIP.

To show our mobile cloud offloading game GMCO always

has a NE, we will prove that GMCO is indeed a potential

game as stated in Proposition 1.

Proposition 1. The proposed mobile cloud offloading game

GMCO is an OPG with the potential function (13), and,

therefore, it always has an NE and the FIP.

Proof: We first construct a function

φ(a) =

[N
∑

i=1

αi(Elixli + EAi
xai

+ ECi
xci)

+ max
i

{TLi
+ TAi

+ TCi
}

]

. (13)

Define Ei , αi(Elixli + EAi
xai

+ ECi
xci) and Ti ,

TLi
+ TAi

+ TCi
. Given two different strategy profiles

a = (ai, a−i) and a
′ = (a′i, a−i), where only user i chooses

different strategies ai and a′i, respectively, the difference

between φ(a) and φ(a′) is

φ(a) − φ(a′) = Ei +
∑

j 6=i

Ej +max{Ti,max
j 6=i

{Tj}}

−E
′
i −

∑

j 6=i

Ej −max{T′
i,max

j 6=i
{Tj}}

= Ei +max{Ti,max
j 6=i

{Tj}}

−E
′
i −max{T′

i,max
j 6=i

{Tj}}

= ui(a) − ui(a
′).

Since φ(a) in (13) satisfies the condition of the potential

function of an OPG defined in (12), it is indeed a potential

Algorithm 1 Mobile Cloud Offloading Algorithm

1: Take any initial strategy profile a[0] and obtain the

corresponding optimal resource allocation {r∗i [0]} by

solving (11).

2: Set NE = False and k = 0.
3: while NE == False do flag = 0 and i = 1;
4: while flag == 0 and i ≤ N do

5: Calculate {r
′∗
i } for (a′i, a−i[k]), for all a

′
i ∈ Ai;

6: if ui(a[k]) > ui(a
′
i, a−i[k]), a

′
i ∈ Ai then

7: Set ai[k + 1] = a′i, a−i[k + 1] = a−i[k];
8: Set a[k+1] = (ai[k+1], a−i[k+1]), flag =

1;
9: k = k + 1;
10: else if i == N then

11: Set flag = 1, NE = True;
12: else

13: i = i+ 1;
14: end if

15: end while

16: end while

17: Output: the NE a
∗ of GMCO and the corresponding

resource allocation {r∗i }.

function of GMCO. Therefore, GMCO is an OPG which

always has an NE and the FIP.

C. Mobile Cloud Offloading Algorithm

In this section we propose a mobile cloud offloading

algorithm based on FIP to find an NE of GMCO. Since the

CAP has all information from the mobile users and need to

assign the communication and computation resources to all

offloaded tasks based on the strategy profile, it can compute

the NE a
∗ of GMCO and send a

∗ to all users. Due to the

property of the NE, the users will follow a
∗ and have no

incentive to deviate from it.

The CAP first initiates a starting strategy profile a[0]
containing a set of hypothetical offloading decisions for all

users. Based on a[0], it obtains the optimal communication
and computation resources allocation for all tasks by solving

(11). Then, the CAP takes an arbitrarily ordered list of

all users and one-by-one examines each user’s strategy set.

Once it finds a user i so that it can decrease the value of

the potential function (13) by changing this particular user

i’s strategy from ai[0] to another a′i ∈ Ai while a−i[0]
remains the same, it updates the strategy profile from a[0]
to a[1] where ai[1] = a′i and a−i[1] = a−i[0]. The CAP

repeats the same procedure to find an improvement path

(a[0], a[1], a[2], ...) of GMCO.

The details of the mobile cloud offloading algorithm are

given in Algorithm 1. Since GMCO is an OPG and every

improvement path is finite due to the FIP, the CAP will

finally reach an NE a
∗ where no mobile user can further

decrease its cost by unilaterally changing its strategy.

ρ (s/J)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

to
ta

l
c
o

s
t

(J
)

50

100

150

200

250

300

350

400

450

500

550

shareCAP

random mapping

shareCAP NE

random mapping NE

optimal policy

Figure 2. The total cost vs. α (αi = α).

β (J/bit) ×10-7

1 1.5 2 2.5 3 3.5 4 4.5 5

to
ta

l
c
o

s
t

(s
)

180

200

220

240

260

280

300

320

340

360

380

400

shareCAP

random mapping

shareCAP NE

random mapping NE

optimal policy

Figure 3. The total cost vs. β.

Note that the general potential game approach has also

been used in [7], [8] to find offloading decisions for users

without a CAP. In this work, we study the impact of the

CAP and additionally aim to optimize both communication

and computation resource allocation for each user, leading

to substantially more complex problem formulation and

solution.

IV. SIMULATION RESULTS

In this section, we provide computer simulation result

to study the performance of our proposed algorithm under

different parameter settings. Unless otherwise indicated, we

use the following default parameter values. We adopt the

mobile device characteristics from [23], which is based on

Nokia N900, and set the number of users as N = 8.
According to Tables 1 and 3 in [23], the mobile device has

CPU rate 500 × 106 cycles/s and unit processing energy

consumption 1

730×106
J/cycle. We consider the x264 CBR

encoding application, which requires 1900 cycles/byte [23],

leading to local computation time 4.75 × 10−7 s/bit and

local processing energy consumption 3.25× 10−7 J/bit. The

input and output data sizes of each task are assumed to be

uniformly distributed from 10MB to 30MB and from 1MB

to 3MB, respectively. We assume CUL = CDL = 72.2Mbps

according to IEEE 802.11n. The transmission and receiving

energy per bit at each mobile device are both 1.42 × 10−7

J/bit as indicated in Table 2 in [23]. The CPU rates of the

CAP and each sever at the remote cloud are 2.5×109 cycle/s
and 5 × 109 cycle/s, respectively. For offloading a task to

the cloud, the transmission rate is Rac = 15Mpbs. Also,

we set the cloud utility cost Cci to be the same as that of

the input data size Din(i), and β = 3 × 10−7 J/bit. We

further set αi = α = 0.5 s/J. We assume each user has

M = 100 tasks, with the input and output data size of each

f
A

 (cycle/sec) ×109

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

to
ta

l
c
o

s
t

(s
)

150

200

250

300

350

400

450

shareCAP

random mapping

shareCAP NE

random mapping NE

optimal policy

Figure 4. The total cost vs. fA.

number of users

6 6.5 7 7.5 8 8.5 9 9.5 10

to
ta

l
c
o

s
t

(s
)

150

200

250

300

350

400

shareCAP

random mapping

shareCAP NE

random mapping NE

optimal policy

Figure 5. The total cost vs. number of users N .

task being independently and identically generated. We plot

the averaged total system cost over 100 random realizations

for each data point.

Since our goal is to minimize the overall system cost

in each round, we use the total system cost in (5) as the

performance metric for our proposed algorithm and other

alternative methods. As shown in Algorithm 1, we need

a starting strategy profile a[0] and corresponding resource

allocation {r∗i [0]}. In all figures shown, we provide the

performance of two NEs obtained by two different starting

profiles: 1) the random mapping NE, where in a[0] each task
is processed at different locations with equal probability;

and 2) the shareCAP NE, where a[0] is obtained by the

shareCAP method using both semidefinite relaxation (SDR)

and randomization to solve the non-convex mixed integer

programming sub-optimally [19].

For comparison, we also consider the following methods:

1) the random mapping method, where the offloading deci-

sions are exactly the same as a[0] for the random mapping

NE, 2) the shareCAP method, where the offloading decisions

are exactly the same as a[0] for the shareCAP NE , and 3)

the optimal policy, where the optimal value is obtained by

an exhaustive search.

In Fig. 2, we study the system cost versus weight αi = α
on the energy consumption. We observe that shareCAP

is much better than random mapping, but both random

mapping NE and shareCAP NE obtained by our proposed

algorithm give near-optimal performance. This indicates that

even if we use a random starting strategy profile for our al-

gorithm, the resulting NE is still near-optimal in terms of the

total system cost. Next, we show the system cost vs. weights

β on the cloud processing cost in Fig. 3. As expected, we

see that when β becomes large, all tasks are more likely

to be processed by either the mobile user or the CAP. In

number of users

6 6.5 7 7.5 8 8.5 9 9.5 10

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

2

3

4

5

6

7

8

shareCAP NE

random mapping NE

Figure 6. Number of iterations vs. number of users N .

Fig. 4, we plots the total system cost vs. fA. Although the

CAP can provide additional computation capacity, all tasks

processed at the CAP need to share the CAP CPU rate fA
by optimally allocating the processing rate fai to each user’s
task. As expected, the more powerful CAP can dramatically

increase system performance. In Fig. 5, we plot the total

system cost vs. the number of users N . We see that both NE

solutions are close to the optimal policy, indicating that our

proposed algorithm is nearly optimal for various N values.

In Figs. 2-5, our proposed algorithm provides the nearly

the same performance as the optimal policy under different

parameter settings, despite the decision space of the cen-

tralized optimal problem (5) being very large as 3N . This
demonstrates that our proposed game can solve the original

centralized non-convex problem near-optimally.

Finally, Fig. 6 shows the number of iterations required

in our algorithm to find an NE versus N. We see that

only a small number of iterations (i.e., the length of the

improvement path in GMCO) is needed as N increases.

Although random mapping NE needs slightly more iterations

than shareCAP NE, the former avoids the the computational

complexity incurred by SDR to find the starting strategy

profile.

V. CONCLUSION

A multi-user mobile cloud computing system with a CAP

has been considered, in which each mobile user has multiple

dependent tasks to be processed round-by-round. Since the

centralized optimization problem is non-convex and mobile

users may not follow the obtained solution, a mobile cloud

offloading game is proposed instead. We show the existence

of the NE of the proposed game and propose a algorithm

for the CAP to find it. Through simulation, we show that

the proposed algorithm gives nearly optimal performance.

REFERENCES

[1] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mobile Networks and
Applications, vol. 18, no. 1, pp. 129–140, Feb. 2013.

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.
84 – 106, Jan. 2013.

[3] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp.
51–56, Apr. 2010.

[4] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp.
4569–4581, Sep. 2013.

[5] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization
of radio and computational resources for multicell mobile cloud
computing,” in Proc. IEEE Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), Jun. 2014, pp. 354–358.

[6] E. Meskar, T. Todd, D. Zhao, and G. Karakostas, “Energy efficient
offloading for competing users on a shared communication channel,”
in Proc. IEEE International Conference on Communications (ICC),
Jun. 2015, pp. 3192–3197.

[7] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 4, pp. 974–983, Apr. 2015.

[8] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” to appear in the
IEEE/ACM Transactions on Networking.

[9] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys), Jan. 2010, pp. 49–62.

[10] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proc. ACM
Conference on Computer Systems (EuroSys), Apr. 2011, pp. 301–314.

[11] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. IEEE International Conference on
Computer Communications (INFOCOM), Mar. 2012, pp. 945–953.

[12] S. Mahmoodi, K. Subbalakshmi, and V. Sagar, “Cloud offloading
for multi-radio enabled mobile devices,” in Proc. IEEE International
Conference on Communications (ICC), Jun. 2015, pp. 5473–5478.

[13] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision
and resource allocation for multi-user multi-task mobile cloud,” in
Proc. IEEE International Conference on Communications (ICC), May
2016.

[14] M.-H. Chen, B. Liang, and M. Dong, “A semidefinite relaxation
approach to mobile cloud offloading with computing access point,”
in Proc. IEEE Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Jun. 2015, pp. 186–190.

[15] ETSI Group Specification, “Mobile edge computing (MEC); frame-
work and reference architecture,” ETSI GS MEC 003 V1.1.1, 2016.

[16] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 1, pp. 68–73, Dec.
2008.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for VM-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, Oct. 2009.

[18] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proc. ACM SIGCOMM Workshop
on Mobile Cloud Computing, Aug. 2012, pp. 13–16.

[19] M.-H. Chen, M. Dong, and B. Liang, “Joint offloading decision and
resource allocation for mobile cloud with computing access point,”
in Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Mar. 2016, pp. 3516–3520.

[20] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software
for disciplined convex programming,” 2009. [Online]. Available:
http://cvxr.com/cvx/

[21] M. J. Osborne and A. Rubinstein, A Course in Game Theory. The
MIT press, 1994.

[22] D. Monderer and L. S. Shapley, “Potential games,” Games and
Economic Behavior, vol. 14, no. 1, pp. 124–143, Jun. 1996.

[23] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile

clients in cloud computing,” in Proc. USENIX Conference on Hot

Topics in Cloud Computing (HotCloud), Jun. 2010, pp. 4–11.

