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Abstract—We utilize the orthogonality and channel hardening
properties of massive multiple-input multiple-output (MIMO)
systems to propose an efficient uplink transmission scheme for
a heterogeneous network (HetNet). Such a network consists of
multiple user-equipments (UEs) communicating with a macro-cell
base station (MCBS) through a small-cell BS (SCBS) where both
BSs have a large number of antennas and deploy zero-forcing
(ZF) detection. The SCBS helps relay UEs’ information using
quantize-forward (QF) relaying with Wyner-Ziv (WZ) binning
and multiple-timeslot transmission for the binning indices to
the MCBS. The MCBS then deploys separate and sequential
decoding for each UE’s message. To maximize the rate region, we
optimize the quantization levels through geometric programming
and further obtain the optimal transmission timeslot durations
in terms of the optimal quantization. We show that the proposed
scheme has linear codebook size and decoding complexity in
the number of UEs, while it achieves the same rate region of
other QF schemes that employ joint transmission at the SCBS
and/or joint decoding at the MCBS, all of which have exponential
complexity. Furthermore, simulation results show that the SCBS
should employ finer quantization for UE signals that have strong
UE-SCBS links compared with the UE-MCBS links, and the
proposed scheme can substantially outperform several existing
alternatives under a wide range of parameter settings.

I. INTRODUCTION

As a valuable technology for 5G cellular networks, massive
MIMO has received heightened research interest because of
its ability to 1) neglect the small scale fading through channel
hardening [1], 2) orthogonalize different users’ transmission
through beamforming and allow concurrent transmission with-
out inter-user interference [2], and 3) achieve close-to-optimal
performance with low complexity linear receivers, e.g, the zero
forcing (ZF) receiver [2]. Moreover, since massive MIMO
arrays can be made rather compact [3] [4], they can be
implemented at the MCBS and the SCBS as well. However,
the MCBS will still have much more antennas than the SCBS.
Given this deployment of massive MIMO, we investigate its
impact on the transmission design of heterogeneous networks
(HetNets).

Consider the uplink transmission for the HetNet in Fig. 1
where K UEs inside the small cell aim to communicate with
the MCBS through the SCBS. For this system, to improve the
UEs’ transmission rates, several transmission schemes were
proposed based on decode-forward (DF) [5]–[7] or quantize-
forward (QF) [8], [9] relaying techniques. In LTE-A standard
[10], DF relaying is used although QF relaying achieves higher
rates in some channel settings, e.g., the relaying links to the
SCBS have similar or weaker strength to the direct links to the
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Fig. 1. Uplink Transmission in HetNet.

MCBS [11]. Furthermore, the above works did not consider
massive MIMO at the SCBS and the MCBS.

In QF relaying with multiple antennas, it is challenging
to optimize the quantization at the SCBS as optimizing the
covariance matrix of the quantization noise vector is generally
non-convex. Hence, approximate solutions were obtained via
iterative numerical methods [12]–[14]. Furthermore, in [15],
we utilize massive MIMO orthogonality and beamforming
properties to develop a preliminary QF scheme for the simple
case of two UEs. However, for K UEs, it is more challenging
to optimize the quantization at the SCBS.

This paper has the following contributions:
• We propose an uplink transmission scheme for K UEs in a

massive MIMO HetNet. In this scheme, each UE performs
conventional transmission, the SCBS deploys ZF detec-
tion, QF relaying with WZ binning and multiple-timeslot
transmission to the MCBS. Then, the MCBS deploys ZF
detection, and separate and sequential decoding for each
UE’s message.

• To maximize the rate region of the proposed scheme, we
derive the optimal transmission timeslots as functions of the
quantization levels. Then, present a method to formulate the
optimal quantization problem as a geometric programming
(GP) problem, which can be solved by existing tools [16].

• We show that the proposed scheme has linear codebook
size and decoding complexity in terms the number of UEs.
However, it achieves the same rate region of more complex
schemes with joint encoding at the SCBS and/or joint
decoding at the MCBS.

The remainder of this paper is organized as follows. Section
II presents the uplink channel model of a massive MIMO
HetNet with ZF detection at the SCBS and the MCBS. For
this channel, Section III describes the proposed transmission
scheme and provides its achievable rate region. To maximize
this region, Section IV derives the optimal quantization and



timeslot durations at the SCBS. Then, Section V shows
the efficiency of the proposed scheme. Section VI presents
numerical results and Section VII concludes the paper.

II. SYSTEM MODEL

We consider the uplink transmission in a HetNet that
consists of a macro cell, a small cell, and K UEs (K > 1) in
the small cell. Each UE has a single antenna while the SCBS
(resp. MCBS) has N (resp. M ) antennas where we assume
M � N � K. Since using massive MIMO techniques at
both MCBS and SCBS can reduce the uplink interference from
other nodes to a negligible level [2], we ignore transmissions
in and from other SCBSs in the same macro cell. The UEs
communicate with the MCBS through the SCBS, as shown
in Fig. 1. This uplink channel resembles the the multiple-
access relay channel (MARC) shown in Fig. 2, where the
SCBS resembles the relay (R) and the MCBS resembles the
destination (D).

For the MARC in Fig. 2, we assume a block fading
channel model where the channel over each link remains
constant in each transmission block and changes independently
between blocks. Over B transmission blocks where B � 1,
let hri,j = [h

(1)
ri,j , · · · , h

(N)
ri,j ]

T denote the N × 1 channel
vector from UEi to R in block j, for i ∈ {1, 2, . . . ,K} and
j ∈ {1, . . . , B}, where h(n)ri,j is the channel coefficient from
UEi to the nth antenna of R in block j. We assume hri,j
is a complex Gaussian random vector with zero mean and
covariance σ2

h,rI. The variance σ2
h,r is modeled by the pathloss

model as σ2
h,r = dαri, where dri is the distance between UEi

and R, and α is the pathloss exponent. A similar definition
holds for the M × 1 channel vector hdi,j from UEi to D and
the M ×N channel matrix Hdr from R to D. We assume all
channel coefficients are independent to each other.

At any transmission block j ∈ {1, . . . , B}, given hri,j , hdi,j
and Hdr,j , the received signal vectors at R and D, denoted
by yr,j and yd,j respectively, are given as follows:

yr,j =

K∑
i=1

hri,jxi,j + zr,j ,

yd,j =

K∑
i=i

hdi,jxi,j +Hdr,jxr,j + zd,j , (1)

where xi,j is the transmit signal by UEi for i ∈ {1, 2, . . . ,K}
while xr,j is the N×1 transmit signal vector from R; zr,j and
zd,j are N×1 and M×1 independent complex AWGN vectors
with zero mean and covariance IN and IM , respectively.

We assume that the channel state information (CSI) is
known at the respective receivers (R,D), i.e., R knows hri
and D knows hdi and Hdr. Moreover, R knows (via feedback
from D [17]) the variance of the channel from R to D, and
from each UE to D, through the pathloss information. Such
knowledge helps R optimize its transmission for maximum
rate region (see Section IV). Note that the pathloss information
over each link is much easier to obtain than the massive MIMO
channel itself (hdi and Hdr) in each block.

We consider full-duplex relaying at the SCBS. Although
full-duplex relaying suffers from self-interference, it can be
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Fig. 2. The channel model of full-duplex MARC, using K=2 as example.

substantially alleviated by analog and digital cancellation
techniques developed in recent literatures and the remaining
part appears as an additional additive noise [18]. Hence, we
assume perfect cancellation at the SCBSs in our model and
focus on its transmission design.

In massive MIMO systems, linear detectors like ZF or
maximum ratio combining (MRC) are applied to reduce the
inter-user interference [2]. Here, we choose the ZF detector for
simplicity, but similar analysis is applicable to other detectors.
Receivers at R and D apply ZF detection to separate the
data streams from different origins. Specifically, define the ZF
matrices Ar,j and Ad,j as follows

Ar,j , (GH
r,jGr,j)

−1GH
r,j , Ad,j , (GH

d,jGd,j)
−1GH

d,j ,

where Gr,j , [hr1,j hr2,j . . . hrK,j ],

Gd,j , [hd1,j hd2,j . . . hdK,j Hdr,j ]. (2)

Denote Ar,j = [ar1,j ,ar2,j , . . . ,arK,j ]
H and Ad,j =

[ad1,j ,ad2,j , . . . ,adK,j ,Adr,j ]
H , where ari,j is an N × 1

vector, adi,j is an M × 1 vector, for i ∈ {1, 2, . . . ,K}, and
Adr,j is an M ×N matrix. After applying ZF matrices in (2)
to the received signal vectors yr,j and yd,j at R and D) in
(1) respectively, we obtain the K × 1 received vector ỹr,j at
R and (K +N)× 1 received vector ỹd,j at D as follows

ỹr,j = [ỹr1,j ỹr2,j . . . ỹrK,j ]
T
,

ỹd,j = [ỹd1,j ỹd2,j . . . ỹdK,j ỹdr,j ]
T
,

ỹri,j = xi,j + aHri,jzr,j , ỹdi,j = xi,j + aHdi,jzd,j ,

ỹdr,j = xr,j +AH
dr,jzd,j , (3)

where ỹri,j (resp.∼ ỹdi,j) is the signal received at R (resp.∼
D) from UEi in block j, and ỹdr,j is the N × 1 signal vector
received at D from R in block j.

III. THE QF-WZTD SCHEME FOR MASSIVE MIMO
HETNET

The QF-WZTD scheme is based on QF relaying, WZ
binning and TD transmission at the SCBS and sliding window
decoding with separate and sequential decoding at the MCBS,
and we name it as the QF-WZTD scheme. These techniques
are explained as follows.
• In QF relaying [11], the SCBS quantizes the received signal

and forwards the quantization indices to the MCBS. Since



massive MIMO asymptotically orthogonalizes the transmis-
sion from different users [2], the SCBS can separately
quantize the date steam from each UE as in [11].

• In WZ binning [19], the SCBS partitions the quantization
indices of each UE data stream into equal-size bins [11].
That is, after obtaining the quantization indices, the SCBS
finds each binning index that includes the quantization index
of each data stream.

• In TD, the SCBS transmits different information (code-
words) over different time slots (phases). The number of
phases is equal to the number of UEs. Hence, each SCBS
transmits K binning indices over K phases.

• In separate and sequential decoding, the MCBS sequentially
decodes the binning indices, quantization indices and then
UEs’ messages. Furthermore, the MCBS separately decodes
these information triple (binning index, quantization index
and the message) for each UE, i.e., the MCBS does not per-
form simultaneous and joint decoding for UEs’ messages.

Next, we describe the transmission scheme in details.

A. Transmission Scheme

In the proposed scheme, the data transmission from the UEs
to the MCBS is carried over B transmission blocks as each UE
aims to send B−1 messages through these blocks.1 In block
j ∈ {1, 2, . . . , B}, the transmission/reception at each node is
given as follows.

1) Each UE: transmits a new message to the SCBS and
the MCBS, i.e., UEk sends its new message wk,j as follows.

xk,j =
√
PkUi(wk,j), k ∈ {1, 2, . . . ,K}, (4)

where Pk is the UEk transmit power and Uk is a Gaussian
signal with zero mean and unit variance that conveys wk,j
codeword.

2) The SCBS: deploys ZF detection as in (3) and then sepa-
rately quantizes each UE message, i.e., for k ∈ {1, 2, . . . ,K},
the SCBS utilizes ỹrk,j to estimate the quantization index l̂k,j .
Such a quantization index exists if its rate Rqk satisfies the
following constraint [11]:

Rqk ≥ C
( (dαrk/N) + Pk

Qk

)
, Ir,k, k ∈ {1, 2, . . . ,K}. (5)

where C(x) = log(1 + x). After obtaining the quantization
indices l1,j , l2,j , . . . , and lK,j , the SCBS finds the binning
indices b1,j , b2,j , . . . , and bK,j that include l1,j , l2,j , . . . , and
lK,j , respectively. Then, the SCBS transmits these binning
indices in block j + 1 in K separate phases of durations
β1, β2, . . . , and βK . Therefore, in block j, the SCBS generates
its signals for forwarding as follows:

Phase k: xrk,j =
√
ρrk/(βkN)Urk(bk,j−1), (6)

where Urk(bk,j−1) is an N × 1 Gaussian random vector with
zero mean and covariance IN which conveys the codeword
of the binning index bk,j−1. Moreover, the phase durations

1This may reduce the average rate region by a factor of (1/B), but this
factor becomes negligible as B →∞ [11].

(β1, β2, . . . , βK) and the transmit powers (ρr1, ρr2, . . . , ρrk)
at each phase satisfy the following:

K∑
k=1

βk = 1,

K∑
k=1

ρrk = Pr, βk ≥ 0, ρrk ≥ 0, (7)

where Pr is the transmit power at the SCBS that also deploys
power control by transmitting xrk,j with (ρrk/βk) in phase k.

3) The MCBS: performs sliding window decoding over two
consecutive blocks (j and j+1) to separately and sequentially
decode each bin index, quantization index and finally the
message of each UE. Specifically, after ZF detection in (3),
the received signals from the SCBS over K phases in block
j + 1 are given by

Phase k: ỹdrk,j+1 = xrk,j+1 +AH
dr,j+1zdk,j+1, (8)

where k ∈ {1, 2, . . . ,K}. The Decoding for each UE is done
in a similar approach. For UE1, the MCBS uses ỹdr1,j+1 in
(8) and ỹd1,j in (3) to sequentially decode
1) the bin index b̂1,j using ỹdr1,j+1. Reliable decoding is

ensured if the bin index rate Rb1 satisfies [2]

Rb1 ≤ β1NC
(
ρr1(M −N)

β1Ndαdr

)
. (9)

2) the quantization index l̂1,j using ỹd1,j given that l̂1,j ∈ b̂1,j .
Reliable decoding is ensured if

Rq1 −Rb1 ≤ log(η)− log(η − P 2
1 )

where η =
( Ndαd1
M −N

+ P1

)
(
dαr1
N

+Q1 + P1). (10)

The constraint is on Rq1−Rb1 instead of Rq1 as the MCBS
only looks for l̂1,j such that l̂1,j ∈ b̂1,j .

3) UE1 message ŵ1,j using ỹd1,j and ŷr1,j(l̂1,j). Reliable
decoding is ensured if the message transmission rate R1

satisfies

R1 ≤ C
(
Pk(M −N)

dαdk
+

Pk
(dαrk/N) +Qk

)
, I1, (11)

B. Achievable Rate Region
Let Rk denote the transmission rate for UEk for k ∈
{1, 2, . . . ,K}. The achievable rate region is determined by the
rate constraints that ensure reliable decoding at the MCBS.
These constraints are derived from the error analysis of the
decoding rule at the MCSB as follows.

Theorem 1. For K-UE massive MIMO HetNet, the achievable
rate region of the QF-WZTD scheme consists of all K-tuples
rate vectors (R1, R2, . . . , RK) satisfying

Rk ≤ Ik(Qk), s.t. Lk(Qk) ≤ Hk(βk, ρrk), (12)

for all k ∈ {1, 2, . . . ,K} and for all βk and ρrk satisfying (7)
where

Ik(Qk) = C
(
Pk(M −N)

dαdk
+

Pk
(dαrk/N) +Qk

)
,

Lk(Qk) = C
(

1

Qk

[dαrk
N

+
Pk

1 + (Pk(M −N)/dαdk)

])
,

Hk(βk, ρrk) = βkNC
(
ρrk(M −N)

βkNdαdr

)
. (13)



Proof: Ik(Qk) ensures reliable decoding for UEk mes-
sage as in (11) for k = 1 while the constraints Lk(Qk) ≤
Hk(βk, ρrk) is obtained from combining the quantization
and binning indices constraints in (5), (9) and (10). In fact,
Lk(Qk) ≤ Hk(βk, ρrk) is a constraint on the quantization
noise variance Qk, such that the transmission rate of the
binning index bk,j−1 is bounded by the link from the SCBS
to the MCBS.

Next, we derive the optimal Q∗k, β
∗
k and ρ∗rk that maximize

the rate region.

IV. OPTIMAL QUANTIZATION AT THE SCBS

For practical implementation, it is important to specify the
optimal quantization at the SCBS for each UE data stream.
As the quantization levels increase, the quantizer becomes
finer with smaller noise variances. However, finer quantiza-
tion requires higher transmission rate for the quantization
indices, which may not be sustained by the SCBS-MCBS
link. Therefore, we derive the optimal quantization parameters
(Q∗1, Q

∗
2, . . . , Q

∗
K) that maximize the rate region in (12).

In Theorem 1, any boundary point of the rate region can
be represented by the weighted sum rate

∑K
i=1 µiRi, where

µi ∈ [0, 1] is some priority weighting factor of UEi rate, while∑K
i=1 µi = 1. Thus, the rate region boundary is achieved by

maximizing the weighted sum rate for some given µ1, µ2, . . . ,
and µK over Q1, Q2, . . . , and QK . Hence, the optimization
problem is formulated as

max
Qk,k∈{1,2,...,K}

K∑
k=1

µkIk(Qk), (14)

s.t. Lk(Qk) ≤ Hk(βk, ρrk), Qk ≥ 0.

The solution of problem (14) is given as follows.

Theorem 2. The optimal Q∗k, ρ∗rk and β∗k for k ∈
{1, 2, . . . ,K} for problem (14) are given as follows

Q∗k =
(dαrk/N)

(
1 + Pk(M−N)

dαdk

)
+ Pk(

1 + Pk(M−N)
dαdk

)
(λ∗k − 1)

, (15)

ρ∗rk = β∗kPr, β
∗
k = log(λ∗k)/ log(λs),

where λ∗k is obtained from the solution of the following GP
problem:

min
λk,k∈{1,2,...,K}

K∏
k=1

µkL∑
ik=0

(
µkL

ik

)(
bka
−1
k λ−1k

)ik)
s.t. λ−1s

K∏
k=1

λk = 1, λ−1k ≤ 1. (16)

where L is the least common denominator (LCD) between the
weighting factors (µ1, . . . , µK) as each factor represents a
fraction. Moreover,

ak = 1 + Pk(M −N)/dαdk, k ∈ {1, 2, . . . ,K}

bk = PkN/d
α
rk, λs =

(
1 +

Pr(M −N)

Ndαdr

)N
. (17)

Proof: The proof is obtained by three main steps. We
first consider a QF-WZ scheme (no TD), which is an upper
bound of QF-WZTD as it deploys joint decoding instead of
separate decoding for the binning indices [11]. Then, we find
the optimal phase durations and power allocations for the
QF-WZTD scheme, and show that at optimality QF-WZTD
coincides with the QF-WZ scheme. Finally, we transform the
problem to a GP problem that can be solved by existing tools
in [16].
1) We start the QF-WZ scheme where no TD is deployed and

the SCBS generates a common codeword for all tuple of
the k binning indices and transmits it (during the whole
transmission block) to the MCBS. The MCBS jointly
decodes all binning indices by using the received signal
from the SCBS and then decodes the quantization indices
and UEs’ messages as in the proposed QF-WZTD scheme.
Such a scheme achieves a rate region similar to (12) in
Theorem 1, except the following constraint on Lk(Qk):

K∑
k=1

Lk(Qk) ≤ NC
(
Pr(M −N)

Ndαdr

)
. (18)

Note that Ik(Qk) in (13) is maximized by minimizing Qk.
However, we can decrease Qk as long as the constraint
in (18) holds. Hence, the weighted sum rate is maximized
when this constraint holds with equality.

2) Considering (18) with equality, let

NC
(
Pr(M −N)

Ndαdr

)
= log(λs) =

K∑
k=1

log(λk),

where λs is given in (17) while
∏K
k=1 λk = λs. Then, from

(18), we obtain Qk as in (15). To ensure that Qk ≥ 0, we
have the constraint λk ≥ 1.

3) Considering Hk(βk, ρrk) in (13), the proposed QF-WZTD
scheme achieves the same performance of the QF-WZ
binning when Hk(βk, ρrk) = log λk, which occurs with
ρ∗rk and β∗k in (15).

4) By substituting Qk in (15) into (14), the optimization
problem in (14) becomes as follows:

max
λk,k∈{1,2,...,K}

K∑
k=1

µkIk(Qk), s.t.
K∏
k=1

λk = λs, λk ≥ 1,

(19)

where Ik(Qk) = log(ak(ak + bk))− log
(
ak + bkλ

−1
k

)
,

5) As λk only appears in the negative part of Ik(Qk), the
optimization problem in (19) can be reexpressed as follows

min
λk,k∈{1,2,...,K}

K∑
k=1

µk log
(
ak + bkλ

−1
k

)
s.t.

K∏
k=1

λk = λs, λk ≥ 1. (20)

In (20), while the objective function is convex, the equality
constraint is not affine. Hence, the problem is not neces-
sary convex. However, it can be transformed to a convex
problem as shown next.



6) By changing the sum of logarithms to the logarithm of
a product, optimizing this product is equivalent to (20).
Hence, the optimization problem becomes as follows.

min
λk,k∈{1,2,...,K}

K∏
k=1

(
ak + bkλ

−1
k

)µk
s.t. λ−1s

K∏
k=1

λk = 1, λ−1k ≤ 1. (21)

7) Next, in (21), let ak + bkλ
−1
k = ak(1 + bka

−1
k λ−1k ). Then,

we can remove
∏K
k=1 a

µk
k form the objective function with-

out affecting the optimization problem. The optimization
further will not be affected by taking the objective function
to the Lth power. Hence, we have

min
λk,k∈{1,2,...,K}

K∏
k=1

(
1 + bka

−1
k λ−1k

)µkL
s.t. λ−1s

K∏
k=1

λk = 1, λ−1k ≤ 1. (22)

8) Last, in (22), each µkL is an integer. Hence, by applying
multi-binomial expansion to the objective function, it can
be expressed as a posynomial as in (16). Moreover, the
inequality constraints are posynomials while the equality
constraint is a monomial [16]. Hence, the optimization
problem in (22) is GP, which can be solved by existing
tools in [16].

Next, we discuss several proprieties of the proposed QF-
WZTD scheme.

V. DISCUSSION

Sections III and IV describe the transmission scheme and
its optimal design. Here, we provide several remarks on the
transmission scheme and its achievable rate region.
Remark 1. (Impact of massive MIMO on the transmission
design) As stated in [3], massive MIMO system simplifies
the quantization process at the SCBS as compared with a
regular MIMO system. First, the optimal quantization element
Q1, Q2, . . . , and QK depend on the large scale fading and
their number is equal to number of UEs (K). Optimizing
these elements is much simpler than that of a regular MIMO
system which requires optimizing the covariance matrix of the
quantization noise vector to obtain the rate region boundaries
[12], [13]. Second, because of the orthogonality property of
massive MIMO [2] and TD transmission, the transmission
and decoding for each UE’s message is similar to the basic
single UE relay channel in [11]. However, all UEs share the
same relaying link from the SCBS to the MCBS. Therefore,
the quantization at the SCBS is not simply optimized by
considering multiple orthogonal single user relay channels.
Further details are given in Section IV.
Remark 2. (Impact of TD on the transmission design at
the SCBS) The TD transmission has several benefits. First,
TD transmission leads to a small codebook size and simple
decoding because of the separate codeword generation and

separate decoding for each bin index, which is much simpler
than joint transmission and joint decoding. Specifically, let
n be the length of the transmitted codewords, the number of
generated codewords will be

∑K
k=1 2

nRbk for the TD transmis-
sion to represent each binning index separately. However, for
joint transmission (without TD), the number of the generated
codewords will be 2

∑K
k=1 Rbk to represent each K-tuple of

binning indices. Similar comparison holds for the decoding
complexity at the MCBS. Therefore, TD transmission has a
linear complexity with the number of UEs while the joint
transmission has an exponential complexity. Note that the
transmission from all UEs and the decoding of quantization
indices and UEs’ messages are the same in both schemes (i.e.
with or without TD).

Furthermore, TD transmission is more flexible than joint
transmission to handle various latency requirements for dif-
ferent UEs. With joint transmission, all UEs’ messages that
are sent in block j will be decoded at the end of block
j + 1. However, with TD transmission, the SCBS can send
the bin index of the UE’s data stream with the lowest latency
requirement in phase 1 such that the MCBS decodes that UE’s
message with one phase of delay instead of the whole block
as in joint transmission and decoding.

Although TD transmission requires additional optimization
of the phase durations and power allocations, their optimal
values can be conveniently obtained from the optimal quanti-
zation variables (Q∗k) as shown in Section IV.

Remark 3. (Impact of WZ binning on the transmission
design) WZ binning simplifies the decoding by facilitating
sequential decoding for the binning index, quantization index
and a UE’s message [11]. WZ binning also reduces the
codebook size: the SCBS only transmits the binning indices
but not the quantization indices, and the number of binning
indices is less than that of the quantization indices [11].
Moreover, although WZ binning is an extra encoding step at
the SCBS, only minor computation is needed for sorting the
quantization indices into equal-size groups.

Remark 4. (Impact of massive MIMO, TD transmission
and WZ binning on the rate region) In general, QF-WZ
scheme reduces the transmission rates from the general QF
scheme (i.e., without WZ binning but with joint decoding
for the messages and quantization indices [11]). However, for
massive MIMO HetNet, both schemes achieves the same rate
for the two-UE case [15]. It can be shown similarily that this
conclusion also holds for K-UE case.

Remark 5. (Impact of the optimal TD transmission on the
achievable rate region) Item 3 in the proof of Theorem 2
shows that even with TD, the proposed QF-WZTD scheme
achieves the same performance as the QF-WZ scheme and
hence, the general QF scheme without WZ binning or TD
(see Remark 4). Furthermore, in the QF-WZTD scheme, the
additional variables of phase durations and power allocation
are conveniently optimized as direct functions of λ∗k and hence
incur no extra optimization. Moreover, by substituting ρ∗ri in
(15) into (12), it is optimal that the SCBS transmits each bin
index with the same power Pr in each phase. Hence, there
is no need for different power allocation in each transmission
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Fig. 3. Optimal quantization noise variances to maximize the weighted sum
rate of the QF-WZTD scheme.

phase at the SCBS.
Remark 6. (Quantization level implication) In the proof
of Theorem 2, item 7 implies that λk increases as (bk/ak)
increases in order to minimize the objective function in (22).
Consequently and considering Qk in (15), item 7 implies that
the SCBS deploys finer (resp. coarser) quantization for a UE
data stream as its weighting factor increases (resp. decreases)
and its link to the SCBS becomes stronger (resp. weaker)
compared with that to the MCBS. Furthermore, for a UE with
a very low weighting factor or a much weaker link to the SCBS
than that to the MCBS, the SCBS does not quantize that UE’s
data stream and the MCBS decodes its message from only the
received signal of that UE.

Remarks 1—6 show the efficiency and effectiveness of our
scheme as it achieves the rate performance of more complex
schemes.

VI. NUMERICAL RESULTS

We now provide numerical results for the optimal quantiza-
tion noise variances, optimal phase durations and the weighted
sum rate as shown in Theorem 2. In the simulations, we
consider three UEs with the same transmission power Pk = P
for k ∈ {1, 2, 3} while the SCBS’s power is Pr = 5Pk.
The SCBS (resp. MCBS) has 50 (resp. 500) antennas. The
inter-node distances in meters are: ddr = 100, dd1 = 105,
dd2 = 110, dd3 = 120, dr1 = 30, dr2 = 40, and dr3 = 50.
These distances are valid for 5G systems with small cell sizes
at the order of 100 m while the path loss exponent α = 2.7
is valid for cellular propagations [10]. We define the SNR as
the received SNR at the MCBS from UE1 as follows:

SNR = 10 log10 (P1(M −N)/dαd1) . (23)

In all figures, we set SNR = 1dB and the results are obtained
versus µ1 where µ2 = 0.75(1−µ1) and µ3 = 0.25(1−µ1).

Fig. 3 shows the optimal Q∗1, Q
∗
2, and Q∗3 that maximize

the weighted sum rate. As expected from Remark 6, the SCBS
performs finer quantization for UE1 since it is the closest UE
to the SCBS, i.e., has the best ratio of its link to the SCBS
compared with that to the MCBS. Moreover, as the weighting
factor of each UE rate increases, the SCBS performs finer
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Fig. 4. Optimal phase durations to maximize the weighted sum rate of the
QF-WZTD scheme.
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Fig. 5. Weighted sum rate comparison between different schemes with dr1 =
30, dr2 = 40 and dr3 = 50.

quantization to send a clearer version of that UE’s signal to
the MCBS. On the other hand, for µ1 ≥ 0.8 where µ3 ≤ 0.05
and since UE3 has the weakest link to the SCBS, the optimal
quantization Q∗3 is very high (approaches ∞), i.e., the SCBS
does not QF UE3’s signal and the MCBS decodes it through
the direct link only. Similarly for the optimal phase durations
(β∗1 , β

∗
2 , β
∗
3) in Fig. 4, for UEs with better links to the SCBS

and higher weighting factors, the SCBS sends their binning
indices over longer durations to increase the total rate. For
µ1 ≥ 0.8, β∗3 = 0 since the SCBS does not QF UE3’s signal.

Fig. 5 compares between the maximum weighted sum
rate for the proposed QF-WZTD scheme, the cut-set outer
bound [11], the full-duplex DF scheme [6], the half duplex
dual-hop DF scheme (used in LTE-A [10]) and the direct
transmission. Results show that our QF-WZTD is close the
cut-set bound and outperforms the DF scheme, LTE-A and the
direct transmission. Full-duplex DF relaying is always better
than half-duplex DF relaying in the LTE-A systems. Note that
if the UEs get closer to the SCBS, DF relaying can outperform
the QF relaying [11]. However, For the channel setting in Fig.
5, the QF-WZTD is the preferred scheme.



VII. CONCLUSION

We have utilized massive MIMO features to propose a
simple yet efficient uplink transmission scheme for multiple
UEs in a HetNet. The proposed scheme is based on QF re-
laying, Wyner-Ziv binning and multiple-timeslot transmission
at the SCBS, and separate and sequential decoding at the
MCBS. Such encoding and decoding techniques have linear
complexity in the number of UEs. However, they lead to
the same rate region of a joint-encoding and joint-decoding
scheme with exponential complexity. To maximize the rate
region, we have formulated the weighted sum rate problem
to obtained the optimal quantization levels and, in turn, the
optimal transmission timeslot durations. Our simulation results
show that for some channel setting, the proposed scheme
performs close to the cut-set outer bound and can substantially
outperform several existing alternatives. Furthermore, finer
quantization should be used for UEs’ data streams as their
weighting factors increase and their UE-SCBS links become
stronger compared with the UE-MCBS links.
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