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Abstract—We consider downlink multiple-input multiple-
output (MIMO) wireless network virtualization (WNV) in a
fading environment, via a base station (BS) precoding design.
The BS is owned by an infrastructure provider (InP) and is
shared by several service providers (SPs) who are oblivious to
each other. The SPs realize their virtual-cell transmissions via
MIMO precoding provided by the InP. We aim to minimize the
time-averaged expected deviation of the precoding provided by
the InP from the SPs’ virtualization demands, considering both
long-term and short-term transmit power limits at the BS. We
propose an online MIMO WNV algorithm to provide a precoding
solution through Lyapunov optimization. Our online precoding
solution only requires the current channel state information, and
it has a semi-closed form with low computational complexity. We
provide an upper bound on the performance of the proposed
algorithm, showing that it can be arbitrarily close to the optimum
over any given time horizon. Simulation results validate the
performance of our proposed algorithm under typical urban
micro-cell settings.

I. INTRODUCTION

Spectrum scarcity is a major concern for current and future
wireless networks. To address this issue, the concept of
wireless network virtualization (WNV) has been proposed as
an extension of wired network virtualization to the wireless
domain. By abstracting and slicing the physical resources,
WNV reduces the capital and operational expenses of wire-
less networks [1]. A virtualized wireless network generally
consists of an infrastructure provider (InP) that creates virtual
slices of the physical infrastructure and radio resources, and
service providers (SPs) that lease these virtual slices and
provide services to their subscribing users under their own
management and requirements, unaware of the underlying
physical architecture [2]. Compared with wired network vir-
tualization, WNV concerns the sharing of both the wireless
hardware and the radio spectrum, which brings new challenges
that do not exist in a wired network. Due to the broadcast
and random nature of the wireless medium, guaranteeing the
isolation among virtual networks is a difficult task [3].

In this work, we focus on downlink WNV of a multiple-
input multiple-output (MIMO) system in a fading environ-
ment, where several SPs share one InP-owned base station
(BS) to serve their subscribing users. Most existing works on
WNV in MIMO systems enforce strict physical isolation [4]–
[9], which is inherited from wired network virtualization [10].
The system throughput and energy efficiency maximization
problems for WNV in OFDM-based massive MIMO systems
have been investigated in [4] and [5]. Orthogonal sub-carriers

are allocated among the SPs through a two-level hierarchical
auction architecture in [6]. Antenna allocation through pricing
for virtualized massive MIMO systems has been studied
in [7]. The resource allocation problems for uplink MIMO
WNV combining the cloud radio networks and non-orthogonal
multiple access techniques have been studied in [8] and [9]. In
contrast to strict physical isolation, stochastic robust precoding
for downlink massive MIMO WNV has been investigated
in [11] to allow simultaneous sharing of both antennas and
spectrum among the SPs.

Note that all existing works on MIMO WNV have focused
on one-shot optimization problems subject to an instantaneous
transmit power constraint. Since the long-term average trans-
mit power is an important indicator of energy usage [12], in
this work, we consider an online optimization framework that
incorporates the long-term average transmit power constraint.
We adopt the precoding-based MIMO WNV approach of
[11], where each SP makes individual precoding demands
to serve its own users ignoring the other SPs, and the InP
uses global downlink precoding to serve all users simultane-
ously, with implicit mitigation of the inter-SP interference.
We aim to minimize the long-term time-averaged expected
deviation of the received signals due to the InP’s actual
precoding from those demanded by the SPs. Note that the
considered precoding design is stochastic in nature due to
channel fading over time. Furthermore, the long-term average
transmit power constraint introduces correlation among the
precoding solutions over time. This is a challenging problem
even in the offline scenario where the channel states are
known over the entire time horizon. In practice, future channel
states are unknown, which leads to a more complicated online
optimization problem. To the best of our knowledge, this is
the first work to achieve online MIMO WNV that allows
simultaneous sharing of all antennas and spectrum resources
among the SPs.

The main contributions of this paper are summarized below:
• We formulate the above downlink MIMO WNV as a

precoding problem to allow simultaneous sharing of all
antennas and spectrum resources among the SPs for
efficient resource allocation. In each time slot, each SP
is allowed to demand its own precoder without the need
to be aware of the other SPs. The InP designs the
global precoder to mitigate the inter-SP interference, and
minimizes the deviation of the actual received signals
from the desired ones by the SPs’ demands at their users.



We accommodate both long-term and short-term transmit
power constraints.

• We propose, to the best of our knowledge, the first online
MIMO WNV algorithm based on the framework of Lya-
punov optimization. Our proposed algorithm determines
the downlink precoding only based on the current channel
state, and the online precoding solution is in semi-
closed form. Our analysis shows that the performance
of our proposed algorithm can be arbitrarily close to the
optimum over any given time horizon.

• Simulation results demonstrate the fast convergence
of the proposed algorithm. Performance studies under
typical urban micro-cell network settings validate the
proposed algorithm, and demonstrate the performance
advantage of the virtualized network enabled by the
proposed algorithm over non-virtualized networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a virtualized MIMO cellular network that is
formed by one InP and M SPs. In each cell, the InP owns
the BS and performs virtualization. The SPs, oblivious to
each other, serve their own subscribing users. Other parts of
the networks, including the core network and computational
resources, are assumed to be already virtualized.

Consider downlink transmissions in a virtualized cell, where
the InP-owned BS is equipped with N antennas. The M SPs
share the N antennas at the BS and the spectrum resources
provided by the InP. Each SP m has Km subscribing users.
Let N = {1, . . . , N}, M = {1, . . . ,M}, and Km =
{1, . . . ,Km}. There is a total of K =

∑
m∈MKm users in

the cell. Let K = {1, . . . ,K}. We assume K ≤ N .
We consider a time-slotted system with time indexed by t.

Let H(t) ∈ CK×N denote the MIMO channel state between
the BS and all K users at time t. We assume a block fading
channel model, so that {H(t)} over time t is independent
and identically distributed (i.i.d.). The distribution of H(t) is
unknown and can be arbitrary. We assume that at any time t,
the channel gain is bounded by a constant B, given by

∥H(t)∥F ≤ B, ∀t (1)

where ∥ · ∥F denotes the Frobenius norm.
We adopt the spatial virtualization approach first proposed

in [11], which is illustrated in Fig. 1. Let Hm(t) ∈ CKm×N

denote the channel state between the BS and the Km users of
SP m. At each time t, the InP shares Hm(t) with SP m and
allocates transmit power Pm to the SP. Using Hm(t), each
SP m designs its own precoding matrix Wm(t) ∈ CN×Km ,
subject to the transmit power limit ∥Wm(t)∥2F ≤ Pm. SP m
then sends Wm(t) to the InP as a virtual precoding matrix by
the SP. For SP m, with Wm(t), the desired received signal
vector y′

m (at its Km users) in the absent of noise is given by

y′
m(t) = Hm(t)Wm(t)xm(t),m ∈ M

where xm(t) is the transmitted signal vector for the Km users.
Define y′(t) , [y′H

1 (t), . . . ,y′H
M (t)]H as the desired received
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SP 2

H1(t)

H2(t)

W2(t)

W1(t)

y 1(t)=H1(t)W1(t)x1(t)

y 2(t)=H2(t)W2(t)x2(t)

y(t)=H(t)V(t)x(t)

Virtual cell 1

Virtual cell 2

Physical cell

InP shares Hm(t) with SP m

SP m sends Wm(t) to InP as demand
Desired received signal y m(t) via Wm(t)

Actual received signal y(t) via V(t)

Fig. 1. An illustration of MIMO virtualization in a cell with one InP and
two SPs serving its own users in a virtual cell.

signal vector at all K users, we have y′(t) = D(t)x(t)
where D(t) , blkdiag{H1(t)W1(t), . . . ,HM (t)WM (t)} ∈
CK×K can be viewed as the virtualization demand made by
all SPs, and x(t) , [xH

1 (t), . . . ,xH
M (t)]H . We assume that

at each time t, the transmitted signal to each user is zero-
mean with unit power and uncorrelated to each other, i.e.,
E{x(t)} = 0 and E{x(t)xH(t)} = I,∀t.

At each time t, the InP designs the actual downlink pre-
coding matrix V(t) , [V1(t), . . . ,VM (t)] ∈ CN×K , where
Vm(t) ∈ CN×Km is the actual downlink precoding matrix
for SP m. The actual received signal vector ym(t) (excluding
noise) at the Km users of SP m is given by

ym(t)=Hm(t)Vm(t)xm(t)+
∑

i∈M,i̸=m

Hm(t)Vi(t)xi(t),∀m∈M

where the second term is the inter-SP interference from the
other SPs to the users of SP m. The actual received signal
vector y(t) , [yH

1 (t), . . . ,yH
M (t)]H at all K users is given

by y(t) = H(t)V(t)x(t).

B. Problem Formulation

For downlink MIMO WNV, the InP designs precoding
matrix V(t) to perform virtualization. Note that at each time t,
each SP m designs its own virtual precoding matrix Wm(t)
without considering the inter-SP interference, while the InP
designs the actual downlink precoding matrix V(t) to mitigate
the inter-SP interference, in order to meet the virtualization
demand D(t) gathered from the SPs.

With the InP’s actual precoding matrix V(t) and each SP
m’s virtual precoding matrix Wm(t), the expected deviation
of the received signal vector via the InP’s actual precoding
from that via the SPs’ virtual precoding, is given by

E{∥y(t)− y′(t)∥22} = E{∥[H(t)V(t)−D(t)]x(t)∥22}
= E{∥H(t)V(t)−D(t)∥2F }.

The goal of the InP is to optimize MIMO precoding to
minimize the long-term time-averaged expected precoding
deviation from the virtualization demand, subject to both



long-term and short-term transmit power constraints. The
optimization problem is formulated as follows:

P1 : min
{V(t)}

lim
T→∞

1

T

T−1∑
t=0

E{∥H(t)V(t)−D(t)∥2F }

s.t. lim
T→∞

1

T

T−1∑
t=0

∥V(t)∥2F ≤ P̄ , (2)

∥V(t)∥2F ≤ Pmax (3)

where P̄ is the long-term transmit power limit, and Pmax
is the maximum transmit power limit. Both power limits
are set by the InP, and we assume P̄ ≤ Pmax to avoid
triviality. With random channel state H(t), P1 is a stochastic
optimization problem. It is challenging to solve, especially
when the distribution of H(t) is unknown.1

With only the instantaneous channel state H(t) available at
each time t, in this work, we aim to develop an online MIMO
WNV algorithm based on H(t) and D(t) for a precoding
solution {V(t)} to P1.

III. ONLINE MIMO VIRTUALIZATION ALGORITHM

In this section, we develop an online MIMO WNV algo-
rithm by exploring Lyapunov optimization technique [13].

A. Online Optimization Formulation

To design an online algorithm to solve P1, we introduce a
virtual queue Z(t) for the long-term average transmit power
constraint (2) with the updating rule given by

Z(t+ 1) = max{Z(t) + ∥V(t)∥2F − P̄ , 0}. (4)

Define L(t) , 1
2Z

2(t) as the quadratic Lyapunov function
and ∆(t) , L(t + 1) − L(t) as the corresponding Lyapunov
drift at time t. Instead of minimizing the objective in P1
directly under the long-term average constraint, we minimize
the objective while stabilize the virtual queue through min-
imizing a drift-plus-penalty (DPP) metric [13], defined as
E{∆(t)|Z(t)}+UE{ρ(t)|Z(t)}, where ρ(t) = ∥H(t)V(t)−
D(t)∥2F and U > 0 is the relative weight. The DPP metric is a
weighted sum of the conditional expectation on the Lyapunov
drift ∆(t) and the penalty ρ(t) on precoding deviation, given
the current virtual queue length Z(t). We first provide an
upper bound for the DPP metric in the following Lemma. The
proof follows standard Lyapunov optimization techniques [13]
and is omitted due to space constraint.

Lemma 1. At each time t, for any precoding design of V(t),
the DPP metric is upper bounded for all Z(t) and U > 0 as

E{∆(t)|Z(t)}+ UE{ρ(t)|Z(t)}
≤ S + UE {ρ(t)|Z(t)}+ Z(t)E{∥V(t)∥2F − P̄ |Z(t)} (5)

where S , 1
2 max

{
(Pmax − P̄ )2, P̄ 2

}
.

1If the channel distribution is known, it is possible to solve P1 through
Dynamic Programming (DP). However, the DP method faces the curse
of dimensionality in computational complexity and is impractical for real
systems.

Algorithm 1 Online MIMO WNV Algorithm
1: Choose an appropriate constant U > 0 and let Z(0) = 0. At

each time t, observe H(t) and Z(t), and then do the following:
2: Solve the per-slot problem P2 for V⋆(t) (see Section III-B).
3: Update Z(t+ 1) = max{Z(t) + ∥V⋆(t)∥2F − P̄ , 0}.

Minimizing the DPP metric directly is still difficult due to
the dynamics involved in the Lyapunov drift ∆(t). Instead,
we minimize its upper bound given in Lemma 1 which is no
longer a function of ∆(t). Specifically, given H(t) at each
time t, we consider the per-slot version of the upper bound in
(5) by removing the conditional expectation. Further removing
the constant terms in the upper bound, the resulting per-slot
optimization problem is given as follows:

P2 : min
V(t)

U∥H(t)V(t)−D(t)∥2F + Z(t)∥V(t)∥2F

s.t. ∥V(t)∥2F ≤ Pmax. (6)

Note that P2 is a per-slot precoding optimization problem
under the current channel state H(t) and virtual queue length
Z(t), subject to the short-term transmit power constraint only.
Compared with the original P1, the long-term time-averaged
expected objective is modified to the per-slot version of the
DPP metric in P2, where the long-term average constraint (2)
is converted to the queue stability in Z(t) as part of the DPP
metric. Solving P2, we obtain the optimal precoding matrix
V⋆(t) for P2 at each time t, which we use to update the
virtual queue Z(t) according to (4). The online MIMO WNV
algorithm is outlined in Algorithm 1.

B. Online Precoding Solution to P2
Now we show how to solve P2 to obtain the optimal V⋆(t).

Since P2 is a per-slot optimization problem at time t, without
causing ambiguity, in the following, we omit time index t for
notation simplicity. Since P2 is a convex optimization problem
satisfying the Slater’s condition, the strong duality holds. We
solve P2 by studying the KKT conditions [14]. The Lagrange
function for P2 is given by

L(V, λ) = U∥HV −D∥2F + Z∥V∥2F + λ(∥V∥2F − Pmax)

where λ is the Lagrangian multiplier associated with con-
straint (6). Taking partial derivative of L(V, λ) with respect
to V∗ to 0, we have
∂L(V, λ)

∂V∗ = U(HHHV −HHD) + (Z + λ)V = 0 (7)

which follows from ∥A∥2F = tr{AAH}, ∂ tr{ABH}
∂B∗ = A,

and ∂ tr{AB}
∂B∗ = 0. The KKT conditions for (V⋆, λ⋆) being

globally optimal are given by(
HHH+

Z + λ⋆

U
I

)
V⋆ = HHD, (8)

∥V⋆∥2F − Pmax ≤ 0, (9)
λ⋆ ≥ 0, (10)

λ⋆(∥V⋆∥2F − Pmax) = 0 (11)



where (8) is derived from (7). We now discuss conditions (8)-
(11) to find the optimal solution. Note that Z ≥ 0 by (4). We
have the following cases.

1) Z + λ⋆ > 0: From (8), HHH + Z+λ⋆

U I ≻ 0, which
implies that it is invertible, and we have

V⋆ =

(
HHH+

Z + λ⋆

U
I

)−1

HHD. (12)

We discuss the solution in two subcases: 1.i) If Z > 0:
By (9), V⋆ in (12) is the optimal solution with λ⋆ = 0,
if ∥(HHH + Z

U I)−1HHD∥2F ≤ Pmax. Otherwise, by (11),
V⋆ in (12) is the optimal solution with λ⋆ > 0 such that
∥(HHH + Z+λ⋆

U I)−1HHD∥2F = Pmax. 1.ii) If Z = 0: It
follows that λ⋆ > 0. By (11), we have λ⋆ > 0 such that
∥(HHH + λ⋆

U I)−1HHD∥2F = Pmax, and V⋆ in (12) with
Z = 0 is the optimal solution.

2) Z = λ⋆ = 0: From (8), the optimal solution must satisfy

HHHV⋆ = HHD. (13)

Recall that we assume K ≤ N . We categorize (13) in two
subcases: 2.i) If K < N : HHH ∈ CN×N is a rank deficient
matrix, and there are infinitely many solutions for V⋆. We
choose V⋆ to minimize ∥V⋆∥2F subject to (13), which is
an under-determined least square problem with a closed-form
solution:

V⋆ = HH
(
HHH

)−1
D. (14)

By (9), if ∥HH
(
HHH

)−1
D∥2F ≤ Pmax, then V⋆ in (14) is

the optimal solution. 2.ii) If K = N : HHH ∈ CN×N is of
full rank2, and we have a unique solution:

V⋆ =
(
HHH

)−1
HHD. (15)

Again, If ∥
(
HHH

)−1
HHD∥2F ≤ Pmax, then V⋆ in (15) is

the optimal solution. For both subcases 2.i) and 2.ii), V⋆ in
(14) and (15) cannot satisfy (9), which means the condition
in Case 2) does not hold at optimality, i.e., λ⋆ > 0, and the
optimal solution is given by Case 1).

Note that if λ⋆ = 0 at optimality, we have a closed-form
solution for V⋆(t) in (14) or (15). Otherwise, we have a semi-
closed form solution for V⋆(t) in (12), where λ⋆ > 0 can be
obtained by bi-section search to satisfy (11).

IV. PERFORMANCE ANALYSIS

In this section, we provide performance bounds for our
proposed online MIMO WNV algorithm. Note that Algorithm
1 is applicable to any precoding schemes adopted by the SPs.
In the following, we focus on the maximum ratio transmission
(MRT) precoding scheme. The analysis can be extended to
more general precoding schemes as well.

2Since the channels from the BS to users are independent, H(t) ∈ CK×N

is of full rank at each time t. The independent channel assumption is typically
satisfied in practice for users at different locations.

We assume each SP m uses the following MRT precoding
matrix to maximize the received signal-to-noise ratio (SNR)
at each time t:

Wm(t) = αm(t)HH
m(t) (16)

where αm(t) =
√

Pm

∥Hm(t)∥2
F

is a power normalizing factor.
We first show in the following lemma that in Algorithm 1,

the virtual queue Z(t) at each time t is upper bounded.

Lemma 2. By Algorithm 1, Z(t) at each time t is upper
bounded by

Z(t) ≤ UB2ξ + Pmax − P̄ (17)

where ξ ,
√

N
P̄

∑
m∈M Pm.

Proof: See Appendix A.
For channel state H(t) being i.i.d. over time t, there

exists a stationary randomized optimal precoding solution to
P1, which depends only on the distribution of H(t), and
achieves the minimum objective value of P1 denoted as ρopt

[13]. Leveraging the key results in Lemma 1 and Lemma
2, the following theorem provides performance bounds for
Algorithm 1 over any given time horizon T .

Theorem 3. Given any ϵ > 0, set U = S
ϵ in Algorithm 1,

where constant S is defined below (5). For any T > 0, the
following bounds hold regardless of the distribution of channel
state H(t):

1

T

T−1∑
t=0

E
{
∥H(t)V⋆(t)−D(t)∥2F

}
≤ ρopt + ϵ, (18)

1

T

T−1∑
t=0

∥V⋆(t)∥2F ≤ P̄ +
SB2ξ + ϵ(Pmax − P̄ )

ϵT
. (19)

Proof: The proof of (18) utilizes the Lyapunov optimization
techniques [13] and key results in Lemma 1. Details are
omitted due to space constraint. Note that (18) only holds if
Z(0) = 0. The proof of (19) is as follows. For any time t, we
have Z(t+1) ≥ Z(t)+∥V⋆(t)∥2F − P̄ from (4). Rearranging
terms as ∥V⋆(t)∥2F ≤ P̄+Z(t+1)−Z(t), summing over t and

dividing by T gives 1
T

∑T−1
t=0 ∥V⋆(t)∥2F ≤ P̄ + Z(T )−Z(0)

T

(a)
=

P̄ + Z(T )
T , where (a) follows from Z(0) = 0. We complete

the proof of (19) by substituting S, U , and the virtual queue
upper bound in Lemma 2 into the above inequality.

In Theorem 3, (18) provides a performance bound of the
objective value in P1, i.e., the time-averaged expected precod-
ing deviation from the virtualization demand. It indicates that,
for any given time horizon T , the performance of Algorithm 1
can be arbitrarily close to the optimum, where the performance
gap ϵ is a controllable constant by our design and can be set
arbitrarily small. Furthermore, (19) provides a performance
bound of the time-averaged transmit power over any given T .
The bound indicates for all T ≥ 1

ϵ2 , Algorithm 1 guarantees
that the deviation from the long-term transmit power limit P̄
is within O(ϵ). Finally, notice that as T → ∞, (19) becomes
the long-term average transmit power constraint (2).



V. SIMULATION RESULTS

We consider an InP that owns a BS equipped with N = 30
antennas at the center of an urban hexagon micro-cell of
500 m radius. It serves M = 4 SPs, each with 2 to 5 users
uniformly distributed in the cell. We set Pmax = 16 dBm,
noise spectral density N0 = −174 dBm/Hz, noise figure
NF = 10 dB, and channel bandwidth BW = 10 kHz as
default system parameters. The fading channel from the BS
to user k is modeled as hk =

√
βkgk, where gk ∼ CN (0, I),

and βk[dB] = −31.54 − 33 log10(dk) − ψk captures path-
loss and shadowing, with dk being the distance from the BS
to user k and ψk ∼ CN (0, σ2

ϕ) being the shadowing with
σϕ = 8 dB. We set time slot duration to be 1 sec. Note
that Algorithm 1 is not limited to a specific channel model
as we only assume the channel gain is bounded in (1). We
set B = 1.645

√
N

∑
k∈K βk, which gives a Chernoff upper

bound of 3.8 × 10−9 for the probability of bound violation
P{∥H(t)∥F > B}.

For performance study of Algorithm 1, we define the
normalized time-averaged precoding deviation from the vir-
tualization demand as

ρ̄(T ) ,
1
T

∑T−1
t=0 ∥H(t)V⋆(t)−D(t)∥2F

1
T

∑T−1
t=0 ∥D(t)∥2F

and the time-averaged downlink transmit power as

P̄ (T ) , 1

T

T−1∑
t=0

∥V⋆(t)∥2F .

We assume each SP m is allocated with Pm = Pmax
M transmit

power such that
∑

m∈M Pm = Pmax in our simulation.
We first study the effect of weighting factor U = S

ϵ
in Algorithm 1. We set ϵ = θB2Pmax since ∥D(t)∥2F ≤∑

m∈M ∥Hm∥2F ∥Wm∥2F ≤ B2Pmax,∀t, and study the perfor-
mance dependency on U by varying θ. Fig. 2 shows the time
trajectory of ρ̄(T ) and P̄ (T ) under different values of θ with
P̄ = 14 dBm. We observe fast convergence of our proposed
algorithm (within 100 time slots). As θ decreases, U is larger,
more emphasis is on the precoding deviation ρ(t), and less
on the Lyapunov drift ∆(t) in the DPP metric. As a result, it
takes a longer time for the virtual queue to be stabilized, and
the performance to reach steady state. Furthermore, at steady
state, ρ̄(T ) decreases as θ decreases, and P̄ (T ) converges to
P̄ . These are consistent with Theorems 3. For the remaining
simulation results, θ = 0.1% is used as the default value.

Fig. 3 shows ρ̄(T ) and P̄ (T ) under different long-term
transmit power limit P̄ . The case of P̄ = ∞ refers to removing
the long-term average transmit power constraint from P1.
At steady state, ρ̄(T ) is around 0.5% when P̄ = ∞. The
steady-state value of ρ̄(T ) is only around 2% when P̄ = 14
dBm. Note that there is a natural trade-off between P̄ and
ρ̄(T ), which allows the InP to balance the power consumption
and the deviation of actual precoding from the virtualization
demand.

We further compare the performance between virtualized
and non-virtualized networks. All users share the channel
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Fig. 2. ρ̄(T ) and P̄ (T ) vs. T under different θ.
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Fig. 3. ρ̄(T ) and P̄ (T ) vs. T under different P̄ .

bandwidth BW simultaneously in the non-virtualized network.
We assume the InP directly serves all users and optimizes
the transmit power of MRT precoding to maximize the long-
term time-averaged expected rate subject to both long-term
and short-term transmit power constraints as follows:

P3 : min
{α(t)}

lim
T→∞

1

T

T−1∑
t=0

E

{
−

∑
k∈K

Rk(t)

}

s.t. lim
T→∞

1

T

T−1∑
t=0

∥α(t)W(t)∥2F ≤ P̄ ,

∥α(t)W(t)∥2F ≤ Pmax

where Rk(t) = log2

(
1+

α2(t)|hT
k (t)wk(t)|2

σ2
n+α2(t)

∑
k′∈K,k′ ̸=k |hT

k′ (t)wk′ (t)|2

)
,

and W(t) = HH(t). The solution to P3 is omitted due to
space constraint.

Fig. 4 shows the time-averaged rate per user R̄(T ) ,
1
K

∑
k∈K log2

(
1 +

|hT
k (t)vk(t)|2

σ2
n+

∑
k′∈K,k′ ̸=k |hT

k′ (t)vk′ (t)|2

)
achieved

by the virtualized and non-virtualized networks with P̄ = 15
dBm. Note that the rate demand from the SPs is calculated by
1
K

∑
m∈M

∑
k∈Km

log2

(
1+

|hT
m,k(t)wm,k(t)|2

σ2
n+

∑
k′∈Km,k′̸=k|hT

m,k′(t)wm,k′(t)|2

)
.

We observe that it is higher than the actual rate achieved,
since the SPs request maximum transmit power Pmax = 16
dBm and design their virtual precoding matrices without
considering the inter-SP interference.

Compared with the non-virtualized network, a virtualized
network using the proposed algorithm achieves higher rate.
This is because our downlink precoding minimizes the precod-
ing deviation from the virtualization demand, while implicitly
mitigating the inter-SP interference. This indirectly increases
the rates of all SPs.
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Fig. 4. Comparison of R̄(T ) between virtualized and non-virtualized
networks.

VI. CONCLUSIONS

This paper has considered the precoding design for down-
link MIMO virtualization in a fading environment. We have
proposed an online precoding algorithm to minimize the long-
term time-averaged expected deviation of the actual precoding
solution by the InP from the virtualization demands set by
the SPs, subject to both long-term and short-term transmit
power constraints. The proposed algorithm only depends on
the current channel state, without requiring knowledge of
the channel distribution, and the online precoding solution
is in a semi-closed form. Our analysis have shown that the
performance of the proposed algorithm can be arbitrarily
close to the optimum over any given time horizon. Simulation
results under typical urban micro-cell settings have validated
the performance of the proposed algorithm.

APPENDIX A
PROOF OF LEMMA 2

We omit time index t for notation simplicity. Let HH
mHm =

UmΣmUH
m, where Um is an unitary matrix and Σm =

diag(σm,1, . . . , σm,N ). Let HHH = UΣUH , where U is
an unitary matrix, and Σ = diag(σ1, . . . , σN ). It follows that
HHH + Z+λ⋆

U I = UΣ′UH , where Σ′ = diag(σ′
1, . . . , σ

′
N )

and σ′
j = σj +

Z+λ⋆

U ,∀j ∈ N . If Z > 0, V⋆ is given by (12)
in Section III-B, and we have

∥V⋆∥2F = tr

{
HHDDHH

(
HHH+

Z + λ⋆

U
I

)−2
}

(a)
=

∑
m∈M

tr
{
α2
mUmΣ3

mUH
mUΣ′−2

UH
}

(b)
=

∑
m∈M

tr

∑
i∈N

α2
mσ

3
m,ium,iu

H
m,i

∑
j∈N

σ′−2
j uju

H
j


=

∑
m∈M

∑
i∈N

∑
j∈N

σ′−2
j α2

mσ
3
m,i(u

H
m,iuj)(u

H
j um,i)

(c)

≤
∑

m∈M

∑
j∈N

σ′−2
j

Pm∑
i∈N σm,i

∑
i∈N

σ3
m,i

(d)

≤
∑

m∈M

∑
j∈N

σ′−2
j

Pm∑
i∈N σm,i

B4
∑
i∈N

σm,i

(e)

≤
U2B4N

∑
m∈M Pm

Z2
(20)

where (a) follows from (16) and

HHDDHH =
∑

m∈M
α2
m(HH

mHm)3 =
∑

m∈M
α2
mUmΣ3

mUH
m;

in (b), um,i is the i-th column vector of Um and uj is
the j-th column vector of U; (c) follows from α2

m =
Pm

∥Hm∥2
F

= Pm∑
i∈N σm,i

,∀m ∈ M, the Cauchy Schwartz

inequality uH
m,iuj ≤

√
∥um,i∥22∥uj∥22, and ∥um,i∥2 =

∥uj∥2 = 1,∀j ∈ N ,∀m ∈ M; (d) follows from σm,i ≤∑
m∈M tr{Σm} =

∑
m∈M ∥Hm∥2F ≤ B2; and (e) is

because σ′−2
j = (σj + Z+λ⋆

U )−2 ≤ U2

Z2 , ∀j ∈ N , due to
σj ≥ 0 and λ⋆ ≥ 0. From (20), we have the following
sufficient condition for Z(t) to ensure ∥V⋆(t)∥2F ≤ P̄ for
any time t:

Z(t) ≥ UB2ξ. (21)

If (21) holds, ∥V⋆(t)∥2F ≤ P̄ , and by (4), the virtual queue
decreases, i.e., Z(t + 1) ≤ Z(t). Otherwise, the maximum
increase of virtual queue is Pmax − P̄ , i.e., Z(t+1) ≤ Z(t)+
Pmax − P̄ . Thus, the virtual queue is upper bounded as in (17)
at any time t.

REFERENCES

[1] J. van de Belt, H. Ahmadi, and L. E. Doyle, “Defining and surveying
wireless link virtualization and wireless network virtualization,” IEEE
Commun. Surveys Tuts., vol. 19, pp. 1603–1627, 2017.

[2] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some
research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 17,
pp. 358–380, 2015.

[3] M. Richart, J. Baliosian, J. Serrat, and J. Gorricho, “Resource slicing in
virtual wireless networks: A survey,” IEEE Trans. Netw. Service Manag.,
vol. 13, pp. 462–476, Sep. 2016.

[4] V. Jumba, S. Parsaeefard, M. Derakhshani, and T. Le-Ngoc, “Resource
provisioning in wireless virtualized networks via massive-MIMO,” IEEE
Wireless Commun. Lett., vol. 4, pp. 237–240, Jun. 2015.

[5] Z. Chang, Z. Han, and T. Ristaniemi, “Energy efficient optimization
for wireless virtualized small cell networks with large-scale multiple
antenna,” IEEE Trans. Commun., vol. 65, pp. 1696–1707, Apr. 2017.

[6] K. Zhu and E. Hossain, “Virtualization of 5G cellular networks as
a hierarchical combinatorial auction,” IEEE Trans. Mobile Comput.,
vol. 15, pp. 2640–2654, Oct. 2016.

[7] Y. Liu, M. Derakhshani, S. Parsaeefard, S. Lambotharan, and K. Wong,
“Antenna allocation and pricing in virtualized massive MIMO networks
via Stackelberg game,” IEEE Trans. Commun., vol. 66, pp. 5220–5234,
Nov. 2018.

[8] S. Parsaeefard, R. Dawadi, M. Derakhshani, T. Le-Ngoc, and
M. Baghani, “Dynamic resource allocation for virtualized wireless
networks in massive-MIMO-aided and fronthaul-limited C-RAN,” IEEE
Trans. Veh. Technol., vol. 66, pp. 9512–9520, Oct. 2017.

[9] D. Tweed and T. Le-Ngoc, “Dynamic resource allocation for uplink
MIMO NOMA VWN with imperfect SIC,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2018.

[10] N. M. Mosharaf Kabir Chowdhury and R. Boutaba, “Network virtual-
ization: state of the art and research challenges,” IEEE Commun. Mag.,
vol. 47, pp. 20–26, Jul. 2009.

[11] M. Soltanizadeh, B. Liang, G. Boudreau, and S. H. Seyedmehdi, “Power
minimization in wireless network virtualization with massive MIMO,”
in Proc. Intel. Conf. Commun. (ICC) Workshops, May 2018.

[12] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral effi-
ciency of very large multiuser MIMO systems,” IEEE Trans. Commun.,
vol. 61, pp. 1436–1449, Apr. 2013.

[13] M. J. Neely, Stochastic Network Optimization with Application on
Communication and Queueing Systems. Morgan & Claypool, 2010.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.


