
Generative Adversarial Classification Network with
Application to Network Traffic Classification

Rozhina Ghanavi∗, Ben Liang∗, Ali Tizghadam†,
∗Dept. of Electrical and Computer Engineering, University of Toronto, Canada

†Technology Strategy and Business Transformation, TELUS Communications, Canada
Email: rozhina.ghanavi@mail.utoronto.ca, liang@ece.utoronto.ca, ali.tizghadam@telus.com

Abstract—Large datasets in machine learning often contain
missing data, which necessitates the imputation of missing data
values. In this work, we are motivated by network traffic classi-
fication, where traditional data imputation methods do not per-
form well. We recognize that no existing method directly accounts
for classification accuracy during data imputation. Therefore, we
propose a joint data imputation and data classification method,
termed generative adversarial classification network (GACN),
whose architecture contains a generator network, a discriminator
network, and a classification network, which are iteratively
optimized toward the ultimate objective of classification accuracy.
For the scenario where some data samples are unlabeled, we
further propose an extension termed semi-supervised GACN (SS-
GACN), which is able to use the partially labeled data to improve
classification accuracy. We conduct experiments with real-world
network traffic data traces, which demonstrate that GACN and
SS-GACN can more accurately impute data features that are
more important for classification, and they outperform existing
methods in terms of classification accuracy.

I. INTRODUCTION

Prediction, estimation, and inference using machine-
learning approaches often rely on large and informative
datasets. However, missing data is inevitable in many ap-
plications, due to faulty data collection, costly measurement,
corrupted data storage, and other reasons [1]. Some examples
of fields where instances of missing data often occur are
economics [2], computational biology [3], and medicine [4].
Many published works in the field of machine learning and
statistics cover missing data problems, such as [5], [6]. In [7],
the authors brought to light the problem of missing data in
network traffic classification. They concluded that this issue is
common in network traffic flow datasets. In network traffic
classification, since the missingness often is spread widely
throughout the datasets, the naive method of deleting all the
data entries with at least one feature missing is not an option
since that would delete a considerable portion of the dataset.
Thus, we need to impute values in place of the missing data.

There is a large body of research on the imputation of miss-
ing data in machine learning. Classical methods include statis-
tical solutions such as mean imputation and interpolation [1].
However, these methods have been shown to be insufficient
in modern applications. Subsequently, deep learning methods
have been proposed. In [8] the authors focused on finding a
discriminative approach that can handle missing features in
all types of data, continuous or categorical, simultaneously.

This work was funded in part by Telus Communications and the Natural
Sciences and Engineering Research Council (NSERC) of Canada.

To this end, they proposed an iterative method based on a
random forest model. In [9], [10], an imputation method based
on the chained equation was presented, termed multivariate
imputation by chained equations (MICE). It is a multiple
imputation approach, which uses the best imputation solution
chosen from a candidate set, for individual columns features.
MICE is one of the state-of-the-art solutions and has a popular
software implementation that is widely used in the literature.

Deep generative imputation methods have attracted much
attention in recent years [11]–[13]. The main benefit of using
generative models is that they make the uncertainty estimation
of imputed value possible with multiple imputation [14]. In
generative adversarial imputation networks (GAIN) [15], the
authors proposed a model based on the generative adversarial
networks (GAN) [16] for imputation of missing data entries in
tabular datasets. The GAN architecture consists of a generator
and a discriminator. The generator is a multilayer perceptron
generating fake samples, and the discriminator is another
multilayer perceptron trying to maximize the probability of
assigning the right label to the observed (real) data or gener-
ated (fake) data. GAN aims to teach the generator to produce
real looking samples by modeling the optimization problem
as a two-player minimax game between the generator and the
discriminator. Borrowing GAN’s idea, GAIN imputes missing
data by generating the missing parts in data entries, where
the problem is formulated as a two-player game between
the generator and discriminator. The generator generates the
data entries. The discriminator checks every single entry for
whether it is imputed or observed. In [17] the authors further
proposed a data pre-possessing method based on [15] for
missing data imputation and handling imbalanced datasets.

None of the existing methods directly account for data clas-
sification during data imputation. As a typical example, in the
research work on GAIN, the missing feature data were imputed
first, with the average root mean squared error (RMSE) as
a main performance metric. The accuracy of classification
was considered only in experimental performance evaluation,
which was separate from data imputation. Therefore, in ap-
plications where data classification is the ultimate objective,
e.g., network traffic identification [7], existing data imputation
methods suffer a loss of efficacy by not directly aligning their
objectives with classification accuracy.

In this work, we address the above challenge by jointly
considering data imputation and data classification. A unique
characteristic of our work is that we take into account the
classification accuracy as our primary motivation in data



imputation. Our main contributions are as follows:

• We propose a new generative model for imputing missing
data features, termed generative adversarial classification
network (GACN), which consists of three inter-connected
deep neural networks, a generator network, a discrimi-
nator network, and a classification network. We design a
weighted loss function based on the three networks and an
iterative three-step optimization algorithm to train GACN
toward improving the classification accuracy.

• We further propose an extension, termed semi-supervised
GACN (SS-GACN), which does not require all data
samples to be labeled as GACN does. Therefore, SS-
GACN allows missing values even in the data labels. It
may be viewed as a general form of both GACN and
GAIN.

• As an application to network traffic classification, we
perform experiments with real-world data traces using
a combination of ISCX VPN-nonVPN [18], [19] and
ISCX Tor-nonTor [20], [21] datasets. Comparison with
GAIN, MICE, and mean imputation demonstrates that
GACN and SS-GACN can more accurately impute data
that are more important for classification. They achieve
higher classification accuracy faster, for a wide range of
experimental settings.

The rest of this paper is organized as follows. Section II
presents our system and problem statement, including an
application of network traffic application. In Section III, we
present the GACN architecture and optimization algorithm for
joint data imputation and data classification. The approach we
propose aims for better classification results after imputation
is completed. Section IV presents the SS-GACN extension
of our proposed method, which enables us to work with a
partially labeled dataset. Section V is devoted to presenting
the experimental results. Finally, Section VI concludes this
paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Our goal is to maximize classification accuracy, given any
real-world dataset which consists of missing data feature
values. To this end, we define our problem as follows.

Suppose data vector, X = (X1, X2, . . . , Xd), is a random
vector in Rd. Every X is labeled with a target value, T , indicat-
ing the class to which it belongs. Let M = (M1,M2, . . . ,Md)
in {0, 1}d be a random vector, which we call the missingness
vector, so that if a feature value Xi is missing, Mi = 0. Our
goal is to impute missing entries of X , with an imputation
algorithm in a way that maximizes the classification accuracy.
Note that the imputation algorithm should be such that it
outputs and imputes value for Xi if and only if Mi = 0;
otherwise, we have already observed Xi and its value should
be retained.

We consider a training dataset with N samples, D =
{(x1, t1), (x2, t2), . . . , (xN , tN )}, where each sample is drawn
independently from some distribution of X with arbitrary

missing elements. For the classification accuracy metric, we
consider the cross-entropy loss. It is noteworthy that any
general metric can be used instead of cross-entropy. However,
if another metric is chosen, then the proposed algorithm in
Section III needs to be modified accordingly.

As an application for the proposed methods, in Section V,
we consider a network traffic flow dataset that combines
ISCX VPN-nonVPN [18], [19] and ISCX Tor-nonTor [20],
[21] datasets. The objective is to identify whether a flow is
delay-sensitive or delay-tolerant. In other words, the goal is to
classify traffic flows based on their quality-of-service (QoS)
under the presence of missing data.

III. GACN FRAMEWORK

With missing data features, optimal classification implies
the need for imputing those missing data features. Instead
of the conventional approach of separately imputing data
and then performing classification, we propose the generative
adversarial classification network (GACN) for the imputation
of missing data features while considering the classification
accuracy. The architecture of GACN consists of three neural
networks: the generator network G, the discriminator network
D, and the classification network A. We next present the
details of GACN.

A. The Generator Network

The definition of the generator is as follows. We first define
a noise vector, Z ∈ [0, 1]d. This noise vector is the input to the
generator. We express the generator as G(X,M,Z; θg), a dif-
ferentiable function taking value in Rd, which is a multilayer
perceptron with parameters θg . It takes M�X+(1−M)�Z
as input, where � denotes element-by-element multiplication.
It outputs a vector of imputed feature values:

X̌ = G(X,M,Z) (1)
Notably, G generates a value for all the feature entries, both

observed and unobserved. However, if a value is observed, we
use the observed value as the algorithm’s output. Thus it is
essential to update the output as

X̂i =

{
Xi if Mi = 1,

X̌i otherwise.
(2)

Now the entries of the overall output vector X̂ are equal
to those of X for the observed values and are equal to the
generated values for missing features.

B. The Discriminator Network

The discriminator, D, is one of the mechanisms to check
whether the output of the generator G is similar to previously
learned data pattern. It is a multilayer perceptron denoted
by D(X̂; θd), with the network parameters θd. It outputs a
vector in the d-dimensional region [0, 1]d, which represents
the probabilities of the data entries in X̂ being observed
instead of imputed. Inspired by [15], for correct operation,
it is necessary to define a selection vector, R ∈ {0, 1}d. This

In general, we use uppercase letters to represent random variables and
lowercase letters to represent the realization of random variables.



Fig. 1: GACN model schematic.

is because learning a good discriminator in our problem is
harder than in basic GAN. Here, the discriminator needs to
assign the probability of being imputed to every single feature,
while GAN’s discriminator only needs to decide if the entire
generated set is real or fake. The selection vectors gives the
training of D some information on the likelihood that a feature
value is missing for any given data sample, to make this job
easier. The selection vector R is define as follows:

Ri =

{
1 if i 6= r
0 if i = r,

(3)

where r is uniformly sampled from 1, . . . , d. With R, now the
discriminator needs to decide only whether the feature i = r
is imputed or observed. Furthermore, for each data sample X ,
since we know which data features are missing, we update the
output of the discriminator as follows:

P̂ (X,R) =

{
D(X)i if Ri = 0,
Mi otherwise.

(4)

C. The Classification Network

The classification network, A(X̂; θa), is the last multilayer
perceptron of the GACN model with parameters θa. It is a
conventional classification network that outputs the probability
of assigning the data vector X̂ to a specific target label.

D. Connecting the Components of GACN

Fig. 1 shows how these three networks interact with each
other. As shown in this figure, G receives five elements as its
input: the data vector X , the noise vector Z, the missingness
vector M , and the outputs of D and A. The generator then
outputs the completed vector X̂ . The completed vector is
then one of the inputs to the discriminator. In addition to the
completed data vector, D also receives the selection vector
and outputs the probability vector of each data entry being
imputed. The completed vector from the generator is also
the input to the classification network, A. The classification
network outputs the probability of assigning each data points
to different classes.

As in GAN, we form a game to train a generator that outputs
artificial values for missing data that both match the learned

data pattern and provide high classification accuracy. Thus,
in GACN, the generator G generates replacements for the
missing data. Then the discriminator D gives feedback about
how good the generator’s imputation is, but only in terms of
the previously learned data pattern. Finally, the classification
network A checks how much the imputation helps in terms
of the final accuracy. The game between the generator and
the discriminator occurs sequentially in iterations over time.
The classification network is not a player, but it actively gives
feedback to help the generator and the discriminator find which
feature is more critical in terms of accuracy. This feedback
makes sure that for more essential features, the data imputation
is performed more carefully.

Similar to basic GAN, for the sequential game between
the generator and the discriminator, the aim is to solve the
following minimax problem.

min
θg

max
θd

L(D,G), (5)

where L(D,G) is defined as follows:

L(D,G) = EX,M,R[MT log P̂ (X̂, R)+

(1−M)T log(1− P̂ (X̂, R))].
(6)

In (6), the discriminator network tries to maximize the prob-
ability of correctly deciding whether a feature is real or im-
puted. The generator, on the other hand, tries to minimize the
chance of the discriminator deciding correctly. This implicitly
means that the generator’s goal is to impute the data so well
that the imputed features are indistinguishable from the real
ones. Here, L(D,G) is an expectation over three random
variables’ realization. The first two random variables, X and
M , are the data vector and missingness vector. These two
random variables are defined in Section II. The last random
variable R is the selection vector presented in Section III-B. As
mentioned earlier, this random variable’s existence is essential
for assuring adequate performance from the discriminator. The
dependence of (6) to the generator is trough X̂ . The first
part of this equation, MT log P̂ (X̂, R), checks how well the
discriminator assigns the observed values’ probabilities. At the
same time, the second part checks the same for missing and
imputed values.
E. GACN Algorithm

We next discuss how to address the minimax problem in
(5) while accounting for classification accuracy. First, we can
extend the analysis of [15] to show that there exists a global
optimum for (5), and this global optimum is the true data
distribution. The formal proof is omitted for brevity.

Our method is based on three-step optimization. In the fol-
lowing, α, β, and γ are model hyperparameters, and BD, BA,
and BG are mini-batch sizes. Also, superscript j denotes the
j-th sample in a mini-batch. We first update D and A given a
fixed generator G. For updating D, we first define the cross-
entropy for a sample being observed as follows:

LD(m, P̂ (x̂, h)) =

d∑
i=1

mi log(P̂ (x̂, h)i)

+(1−mi) log(1− P̂ (x̂, h)i).

(7)



Then D is trained with the following objective:

min
θd

−
BD∑
j=1

LD(mj , P̂ (x̂j , hj)). (8)

For updating A we define LA(x̂j) as the cross-entropy loss
between the target value t and the output probability vector
A(x̂). Then we optimize A with respect to the following
objective:

min
θa

−
BA∑
j=1

LA(x̂j). (9)

Now with the given locally optimal A and D, we can update G.
We use a weighted loss function consisting of three elements,
LM , LG, and LP , which are defined as follows:

LM (x, x̂) =

d∑
i=1

mi(xi − x̂i)2 (10)

LG(m, P̂ (x̂, h)) = −
d∑
i=1

(1−mi) log(P̂ (x̂, h)i), (11)

LP (m, x̂) = − log(A(x̂))
d∑
i=1

(1−mi). (12)

Minimizing LM makes sure the generator learns to generate
values close to the observed data’s real values. While opti-
mizing LG and LP helps better impute missing values. LG
is the loss function associated with fooling the discriminator.
Optimizing this loss function means the generator is so good at
imputing missing values that the discriminator cannot distin-
guish between imputed or real features. The last loss function,
LP , is a term associated with the classification loss. Adding
this term helps the generator learn the model, which gives the
highest accuracy by emphasizing the features that are more
important in terms of final accuracy.

Given these three loss functions we then update the gener-
ator based on the following objective:

min
θg

BG∑
j=1

αLM (xj , x̂j) + βLG(mj , P̂ (x̂j , hj))

+γLP (mj , x̂j).

(13)

Algorithm 1 presents the pseudo-code of our algorithm.
IV. SEMI-SUPERVISED GACN

GACN requires that all data samples are labeled to run
correctly. However, as shown in Section V, if we do not
have enough labeled samples, the GACN performance drops
drastically. Therefore, an extension of GACN is presented here
to address this issue. We call this algorithm semi-supervised
GACN (SS-GACN). Alternatively, we may view SS-GACN as
a more robust version of GACN, which allows missing data
labels in addition to missing data features.

In SS-GACN, we update (9) and (13) as follows:

min
θa
−

BA∑
j=1

κjLA(x̂j), (14)

min
θg

BG∑
j=1

αLM (xj , x̂j) + βLG(mj , P̂ (x̂j , hj))

+κjγLP (mj , x̂j),

(15)

where κj is a binary variable that is equal to 1 if the
label for the j-th sample in the mini-batch is present and 0
otherwise. For labeled samples, SS-GACN uses the additional
information in the labels to update the classification network
A. However, if a sample is unlabeled, it still helps to update
the discriminator and also the generator by updating LD,
LM , and LG using this sample. We note that SS-GACN is a
general algorithm, of which both GACN and GAIN are special
cases, when all data samples are labeled and when there is no
labeled sample, respectively. In Section V, we show that in
the presence of partially labeled data, SS-GACN outperforms
both GACN and GAIN.

Algorithm 1 Pseudo-code of GACN
for a preset number of iterations do

(1) Discriminator optimization
Sample from the dataset {(xj ,mj)}BD

j=1

Sample i.i.d., {zj}BD
j=1, of Z

Sample i.i.d., {rj}BD
j=1, of R

for j = 1, . . . , BD do
x̌j ← G(xj ,mj , zj)
for i in d do

if Mi = 1 then
x̂ji = xji

else
x̂ji = x̌ji

end if
end for
hj = rj �mj + 0.5(1− rj)

end for
Optimize D with respect to objective
∇θd −

∑BD

j=1 LD(mj , P̂ (x̂j , hj))
(2) Classification network optimization
Sample from the dataset {(xj ,mj)}BA

j=1

Sample i.i.d., {zj}BA
j=1, of Z

for j = 1, . . . , BA do
x̌j ← G(x̃j ,mj , zj)
for i in d do

if Mi = 1 then
x̂ji = xji

else
x̂ji = x̌ji

end if
end for

end for
Optimize A with respect to objective
∇θa −

∑BA

j=1 LA(x̂j)
(3) Generator optimization
Sample from the dataset {(x̃j ,mj)}BG

j=1

Sample i.i.d., {zj}BG
j=1, of Z

Sample i.i.d., {bj}BG
j=1, of R

Optimize G with respect to objective
∇θg

∑BG

j=1 αLM (xj , x̂j) + βLG(mj , P̂ (x̂j , hj)) +

γLP (mj , x̂j)
end for



V. EXPERIMENTS IN NETWORK TRAFFIC CLASSIFICATION

To experiment with the proposed GACN algorithm in the
application of network traffic classification, we consider a
combination of ISCX VPN-nonVPN [18], [19] and ISCX Tor-
nonTor [20], [21] datasets. These datasets are PCAP files from
encrypted TCP flows, each labeled with one of 22 applications.
Following the procedure in [22], we extract 266 features for
each flow data sample from the dataset. We consider binary
QoS classification of the flows. To create labels, we map each
of the applications to the delay-sensitive group or the delay-
tolerant group (e.g., video conference is delay sensitive, email
is delay tolerant, etc.). This forms the flow dataset. It consists
of 43590 flows.

In order to experiment with different levels of missing data,
we first take a complete dataset, i.e., with no missing data,
based on the flow dataset and then add artificial random miss-
ingness on its data. To build the complete dataset, we delete
all the samples with at least one unobserved feature. Then,
we upsample the smaller classes to keep the classification
fair between elements. The final dataset contains 34446 flows.
Now with this dataset, we use 70% of the data for training, and
10% and 20% for the validation set and test set, respectively.
We assume that each feature Xi is independently missing with
probability Pmiss, which corresponds to the missing at random
(MAR) model [24].

In our experiments G and D are three-layer perceptron
networks, where all hidden layers have nodes equal to the
numbers of features, while A is another three-layer perceptron,
where the hidden layers consist of 30, 20, and 20 nodes
respectively. All networks are optimized with ADAM [23]. We
choose these architectures based on extensive experimentation
and hyper-parameter tuning.

For performance comparison, we consider GAIN [15],
MICE [9], [10], and mean imputation, a popular method in
practical systems where for each feature, the average of all
observed values of the feature in the dataset is used as the
value of the same feature in samples where the feature value
is missing. Since the samples are already balanced, we use the
test accuracy for performance metric. We note that throughout
this section, all numerical results include 90% confidence
intervals for 50 random realizations.

A. Improved Classification Accuracy
Fig. 2 studies the effectiveness of having the classification

loss LP as a part of the generator’s update with Pmiss equal to
20% and 40%. These missingness rates are common choices
in similar studies (e.g. [11], [15]). We have used α = 10 and
β = 1 following the recommendation for GAIN in [15]. Fig. 2
shows that by picking a suitable γ, GACN can reach a higher
accuracy faster than GAIN. For the remaining results, we use
γ = 1000 as default, unless otherwise specified.

Table I gives further comparison between GACN and GAIN
for different missingness rates. The number of iterations is
1000. We can see that GACN always gives higher classification
accuracy with a tight confidence interval. This demonstrates
the advantage of GACN by integrating data imputation and

Fig. 2: Comparison of test accuracy between GACN and
GAIN. The four numbers in the legend are the values of
α, β, γ, and Pmiss.

Pmiss Accuracy GACN Accuracy GAIN
10% 0.9376 ± 0.0036 0.9237 ± 0.0052
20% 0.9022 ± 0.0024 0.8575 ± 0.0049
30% 0.8637 ± 0.0023 0.8326 ± 0.0046
40% 0.8017 ± 0.0028 0.7258 ± 0.0100
50% 0.7307 ± 0.0079 0.6886 ± 0.0072
60% 0.6389 ± 0.0100 0.6271 ± 0.0050

Table I: Test accuracy for GACN and GAIN at different
missingness rates.

classification. Note that when Pmiss is low, both algorithms
perform well as expected, and when Pmiss is above 50%,
both algorithms suffer from the large amount of missing data.
However, over a large range of moderate Pmiss values, GACN
substantially outperforms GAIN.

Table II compares the accuracy results for different impu-
tation methods, including GACN, GAIN, MICE, and mean
imputation. The number of iterations for GACN and GAIN is
1000. We observe that GACN outperforms all other methods.

B. Imputation RMSE

To understand why GACN outperforms GAIN in terms of
accuracy, we study the average RMSE of individual imputed
features. We first sort all features based on importance. Here,
feature importance is defined by the correlation between each
feature and true labels in the complete dataset. The bigger
the absolute value of the correlation coefficient, the higher the
importance of the feature is. In Fig. 3, we plot the cumulative
RMSE for the 30 most important features, for GACN, GAIN,
and mean imputation. Each data point is the average of 30
realizations. We can see that GACN tends to impute more
important features more accurately. This result shows that
GACN puts in an additional effort by using the term LP to
make sure the classification accuracy is high while imputing
the missing data.

Algorithm Accuracy
GACN 0.9022 ± 0.0024
GAIN 0.8575 ± 0.0049
MICE 0.8349 ± 0.0043

Mean imputation 0.7540 ± 0.0016

Table II: Test accuracy for different algorithms at 20% miss-
ingness rate.



Fig. 3: Cumulative RMSE for the 30 most important features,
sorted in decreasing importance.

Fig. 4: SS-GACN and GACN test accuracy for Pmiss = 20%.
The three numbers in the legend are the values of α, β, γ.

C. Partially Labelled Data Imputation

We experiment with SS-GACN for partially labeled data.
Fig. 4 compares the accuracy result for GACN, SS-GACN,
and GAIN when 20% of the feature values are missing, and
only 10% of the training dataset is labeled. We can see that
the performance of GACN drops drastically, because GACN
can only use labeled data. On the other hand, GAIN preserves
its performance because it does not use any labels. However,
SS-GACN outperforms both of GACN and GAIN because it
can improve its learning using the available 10% labels and
use the whole dataset for imputation.

VI. CONCLUSION

We propose a novel deep generative method for the im-
putation of missing data features, termed GACN, that takes
classification accuracy into account. The architecture of GACN
consists of three neural networks working together to learn
the data distribution, impute missing values, and perform
classification. Our experimental result on real-world network
traffic data traces show the performance advantage of GACN
over the state of the art under a wide range of scenarios. We
conclude that GACN achieves higher classification accuracy
by more carefully imputing the data features that are more
important for classification. We further expand our proposal
to SS-GACN for partially labeled datasets. SS-GACN is able
to use both unlabeled and labeled data entries, making it

more useful in applications where it is hard to collect all the
labels. Our experimental results further show that SS-GACN
maintains satisfactory classification accuracy even when only
a small percentage of data samples are labeled.

REFERENCES
[1] B. Marlin, "Missing Data Problems in Machine Learning," PhD disserta-

tion, University of Toronto, Toronto, ON, Canada, 2008.
[2] J. Abrevaya, and S. G. Donald, "A GMM approach for dealing with

missing data on regressors," The Review of Economics and Statistics, vol.
99, no. 4, pp. 657-662, 2017.

[3] M. Q. Yang, S. M. Weissman, W. Yang, J. Zhang, A. Canaann, and R.
Guan. "MISC: missing imputation for single-cell RNA sequencing data,"
BMC systems biology, vol. 12, no. 7, pp. 55-63, 2018.

[4] J. C. Jakobsen, C. Gluud, J. Wetterslev, P. Winkel, "When and how should
multiple imputation be used for handling missing data in randomised
clinical trialsda practical guide with flowcharts," BMC Medical Research
Methodolog, vol. 17, no. 1, pp. 162-171, 2017.

[5] C. K. I. Williams, C. Nash, and A. Nazabal, "Autoencoders and prob-
abilistic inference with missing data: An exact solution for the factor
analysis case," arXiv:1801.03851, 2018.

[6] B. M. Marlin, S. T. Roweis, and R. S. Zemel, "Unsupervised learning with
non-ignorable missing data," in Proceedings of the International Workshop
on Artificial Intelligence and Statistics (AISTAT), 2005, pp. 222-229.

[7] P. M. Comar, L. Liu, S. Saha, P. N. Tan, and A. Nucci, "Combining
supervised and unsupervised learning for zero-day malware detection," in
Proceedings of IEEE INFOCOM, 2013, pp. 2022-2030.

[8] D. J. Stekhoven, P. Buhlmann, "MissForest-non-parametric missing value
imputation for mixed-type data," Bioinformatics 2012, pp. 112-118.

[9] S. Buuren and K. Groothuis-Oudshoorn, "MICE: Multivariate imputation
by chained equations in r," Journal of statistical software, 2011.

[10] S. Buuren and C. Oudshoorn, "Multivariate imputation by chained
equations: MICE v1. 0 user’s manual," Technical report, TNO, 2000.

[11] A. Nazabal, P. Olmos, Z. Ghahramani, I. Valera, "Handling incomplete
heterogeneous data using VAEs," arXiv:1807.03653, 2018.

[12] F. Biessmann, T. Rukat, P. Schmidt, P. Naidu, S. Schelter, A. Taptunov,
D. Lange, and D. Salinas, "DataWig: Missing value imputation for tables,"
Journal of Machine Learning Research, vol. 20, no. 175, pp. 1-6, 2019.

[13] N. B. Ipsen and P. A. Mattei and J. Frellsen, "MIWAE: deep generative
modelling with missing not at random data," in International Conference
on Learning Representations (ICLR), 2021.

[14] D. B. Rubin, Multiple Imputation for Nonresponse in Surveys, John
Wiley & Sons, Inc., vol. 81, 2004.

[15] J. Yoon, J. Jordon, and M. van der Schaar, "GAIN: Missing data impu-
tation using generative adversarial nets," in Proceedings of International
Conference on Machine Learning (ICML), pp. 5689–5698, 2018.

[16] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. WardeFarley,
S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets,"
in Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2014.

[17] U. Hwang, D. Jung, and S. Yoon, "HexaGAN: Generative adversarial
nets for real world classification," arXiv:1902.09913, 2019.

[18] 2016. ISCX TOR-nonTOR. Available online:
https://www.unb.ca/cic/datasets/tor. html.

[19] G. Draper-Gil, A. Lashkari, M. Mamun, and A. Ghorbani, "Charac-
terization of encrypted and VPN traffic using time-related features," in
Proceedings of 2nd Int. Conf. on Inf. Sys. Security and Privacy, pp.
407–414, 2016.

[20] 2016. ISCX VPN-nonVPN. Available online:
https://www.unb.ca/cic/datasets/ vpn.html.

[21] A. Lashkari, G. Draper-Gil, M. Mamun, and A. Ghorbani, "Characteri-
zation of Tor traffic using time based features," in Proceedings of 3rd Int.
Conf. on Inf. Sys. Security and Privacy, 2017.

[22] S. Chowdhury, B. Liang, and A. Tizghadam, "Explaining class-of-
service oriented network traffic classification with superfeatures," in Pro-
ceedings of ACM CoNEXT Workshop on Big DAta, Machine Learning
and Artificial Intelligence for Data Communication Networks (Big-DAMA),
2019.

[23] D. Kingma and J. Ba. "Adam: A method for stochastic optimization,"
in Proceedings of International Conference on Learning Representations
(ICLR), 2015.

[24] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data,
John Wiley & Sons, Inc., 1987.


