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ABSTRACT

This paper studies the design of wireless federated learning (FL)
for simultaneously training multiple machine learning models. We
consider round robin device-model assignment and downlink beam-
forming for concurrent multiple model updates. After formulating
the joint downlink-uplink transmission process, we derive the per-
model global update expression over communication rounds, cap-
turing the effect of beamforming and noisy reception. To maximize
the multi-model training convergence rate, we derive an upper bound
on the optimality gap of the global model update and use it to for-
mulate a multi-group multicast beamforming problem. We show that
this problem can be converted to minimizing the sum of inverse re-
ceived signal-to-interference-plus-noise ratios, which can be solved
efficiently by projected gradient descent. Simulation shows that our
proposed multi-model FL solution outperforms other alternatives,
including conventional single-model sequential training and multi-
model zero-forcing beamforming.

1. INTRODUCTION

Federated learning (FL) [1] is a widely adopted method for multiple
devices to collaboratively train a common machine learning (ML)
model. In wireless FL, a parameter server, usually the base station
(BS), uses wireless communication to exchange model parameters
with participating devices [2]. With the frequent exchange of a large
number of parameters, FL performance degrades in the wireless en-
vironment due to signal distortion and limited wireless resources.
This necessitates efficient communication design to effectively sup-
port FL.

Most existing works on wireless FL have focused on training
only a single model [3–13]. Assuming an error-free downlink, [3–8]
focused on efficient transmission for the uplink acquisition of lo-
cal parameters from devices to the BS, including both digital [3]
and analog [4–8] schemes. Noisy downlink transmission for FL was
studied in [9] with error-free uplink. It was shown in these works that
analog transmission can be more efficient than digital for both the
downlink and the uplink. Joint noisy downlink-uplink transmission
for FL was studied in [10–13], with single-antenna BSs in [10–12]
and a multi-antenna BS in [13]. In practice, the parameter server
may have multiple models to be trained. Directly using the existing
single-model FL schemes may lead to substantial latency, degrading
the overall performance of wireless FL.

Simultaneously training multiple models in FL was proposed re-
cently in [14], assuming error-free downlink and uplink transmis-
sions. It is shown that multi-model FL can substantially improve
the training convergence rate over the single-model FL approach,
which reduces the burden of required computation and communica-
tion. However, the idealized system in [14] did not account for the
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impact of wireless transmission over noisy channels. In multi-model
wireless FL, besides noisy downlink and uplink transmission during
model updates, there is also inter-model interference in transmission,
which adds substantial challenges to improving communication effi-
ciency.

This paper studies multi-model wireless FL design for noisy
downlink and uplink wireless channels with a multi-antenna BS. We
consider analog transmission, downlink beamforming, and round
robin model scheduling. Aiming to maximize the training conver-
gence rate, we derive an upper bound on the optimality gap of the
FL global model update, which captures the impact of noisy trans-
mission and inter-model interference. We then show that the mini-
mization of this upper bound leads to a downlink multi-group mul-
ticast beamforming design to minimize the sum of inverse received
signal-to-interference-plus-noise ratios (SINRs) subject to a down-
link transmit power budget at the BS, which can be solved using
projected gradient descent (PGD). Our simulation results under typ-
ical wireless network settings show that the proposed multi-model
FL design substantially outperforms the conventional approach of
sequentially training one model at a time and the multi-model train-
ing using the popular zero-forcing beamforming scheme.

2. SYSTEM MODEL
2.1. Multi-Model FL System
We consider FL in a wireless network consisting of a server and
K worker devices that collaboratively train M global models at the
server. Let Ktot = {1, . . . ,K} denote the total set of devices and
M = {1, . . . ,M} the set of models. Let θm ∈ RDm be the param-
eter vector of model m with Dm parameters, and assume ‖θm‖ <
∞. Assume each device k ∈ Ktot holds local training datasets
for all M models, with each θm being locally trained using the
dataset for model m of size Skm, denoted by Skm = {(skm,i, vkm,i) :

1 ≤ i ≤ Skm}, where skm,i ∈ Rb is the i-th data feature vec-
tor and vkm,i is the label for this data sample. The local training
loss function representing the training error at device k for model

m ∈ M is defined as F km(θm) = 1
Skm

∑Skm
i=1 Lm(θm; skm,i, v

k
m,i),

where Lm(·) is the sample-wise training loss for model m. The
global training loss function for model m is given by the weighted
sum of the local loss functions for model m over all K devices:
Fm(θm) = 1∑K

k=1
Skm

∑K
k=1 S

k
mF

k
m(θm). The learning objective is

to find optimal θ?m that minimizes Fm(θm) for each modelm ∈M.
The K devices use their respective local training datasets to si-

multaneously train the M models and communicate with the server
via noisy downlink and uplink wireless channels to exchange the
model training information iteratively. At the beginning of each
downlink-uplink communication round t = 0, 1, . . ., the devices
are divided into device groups, and the server assigns the training
task of each model to a device group. We consider the round robin
scheduling approach for efficient device-model assignment [14].



Specifically, we define every M communication rounds as a frame.
At the beginning of each frame, the K devices are partitioned ran-
domly into M equal-sized groups. Let Ki denote the set of devices
in device group i = 1, . . . ,M . These device groups remain un-
changed within a frame. Each device group i is assigned to train
model m̂(i, t) at round t given by

m̂(i, t) = [(M + i− [t mod M ]− 1) mod M ] + 1. (1)

Fig. 1 shows an example of the device-model assignment in a frame
via the round robin scheduling with M = 3 models.

The iterative multi-model FL training procedure in each downlink-
uplink communication round t is then given as follows:
• Downlink broadcast: The server broadcasts each of the current

M global model parameter vectors θm,t’s to its assigned device
group via the downlink channel;

• Local model update: Device k ∈ Ki in device group i is sched-
uled to locally train model m̂(i, t) using its corresponding lo-
cal dataset Skm̂(i,t). In particular, the device divides Skm̂(i,t)

into mini-batches for its local model update based on θm̂(i,t),t,
where it performs J iterative local updates and generates the up-
dated local model θk,Jm̂(i,t),t;

• Uplink aggregation: The devices send their updated local mod-
els θk,Jm,t’s to the server via the uplink channels. The server ag-
gregates {θk,Jm,t}k∈Ki received from each device group i to gen-
erate updated global model θm,t+1, m ∈ M, for the next com-
munication round t+ 1.

2.2. Wireless Communication Model
We consider a practical wireless communication system where the
server is hosted by a BS equipped with N antennas, and each de-
vice has a single antenna. To efficiently send M global model up-
dates, the BS uses the multi-group multicast beamforming technique
[15, 16] to send the M global model updates θm,t’s to M device
groups simultaneously over a common downlink channel. Also,
we consider analog transmission, where the BS sends the values
of θm,t’s directly under its transmit power budget. For the uplink
aggregation, we consider the orthogonal multiple access technique
to efficiently use the system bandwidth for local model aggregation
at the BS. For each device group, we consider over-the-air com-
putation via analog aggregation over the multiple access channel.
Specifically, the devices in a device group i send their local models
{θk,Jm,t}k∈Ki simultaneously over the same uplink channel, while the
channels among device groups are orthogonal to each other.

The received model updates over downlink are the distorted
noisy versions of θm,t’s, due to the inter-group interference in trans-
mitting θm,t’s and the noisy communication channel. The uplink
received model updates are also the distorted noisy versions of
θk,Jm,t’s due to the noisy channel. These errors in the model updates
further propagate over subsequent communication rounds for multi-
model training, degrading the learning performance. In this paper,
we focus on the communication aspect of FL multi-model training
and develop the downlink beamforming design to maximize the
learning performance of FL over wireless transmissions.

3. MULTI-MODEL DOWNLINK-UPLINK
TRANSMISSIONS

In this section, we formulate the wireless transmission process in
downlink and uplink for the multi-model update using the three steps
in a communication round that are mentioned in Section 2.1.

3.1. Downlink Broadcast
At the start of round t, the BS has the current global models,
with model m denoted by θm,t = [θm1,t, . . . , θmDm,t]

T . For
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Fig. 1: An example of round robin scheduling of device-model assignment
in a frame for training 3 models.

efficient transmission, we represent θm,t using a complex signal
vector, whose real and imaginary parts respectively contain the
first and second half of the elements in θm,t. That is, θm,t =

[(θ̃re
m,t)

T , (θ̃im
m,t)

T ]T , where θ̃re
m,t , [θm1,t, . . . , θm(Dm/2),t]

T

and θ̃im
m,t , [θm(Dm/2+1),t, . . . , θmDm,t]

T . Let θ̃m,t denote the
equivalent complex vector representation of θm,t. It is given by
θ̃m,t = θ̃re

m,t + jθ̃im
m,t ∈ C

Dm
2 .

With the frame structure, round t is in frame n = bt/Mc. We
assume the downlink channel remains unchanged within one frame.
Thus, let hk,n ∈ CN be the downlink channel vector from the BS
to device k ∈ Ki, i = 1, . . . ,M , in frame n, which is assumed
to be known perfectly at the BS. Let wdl

i,n ∈ CN be the downlink
multicast beamforming vector for device group i in frame n. The BS

uses wdl
i,n to send the normalized complex global model

θ̃m̂(i,t),t

‖θ̃m̂(i,t),t‖

to device group i. Let Dmax , maxm∈MDm. The M model
updates are simultaneously sent using Dmax

2
channel uses. For model

m with Dm < Dmax, the BS randomly sets the position for θ̃m,t
within Dmax

2
channel uses and applies zero padding to the rest of

the positions. Thus, the transmitted signal vector for model m is
θ̄m,t = [0H , θ̃Hm,t,0

H ]H . Assume m̂(i, t) = m. The received
signal uk,t at device k ∈ Ki corresponding to θ̃m,t is given by

uk,t=(wdl
i,n)

Hhk,n
θ̃m,t

‖θ̃m,t‖
+
∑
j 6=i

(wdl
j,n)

Hhk,n
θ̄
′

m̂(j,t),t

‖θ̃m̂(j,t),t‖
+ndl

k,t

where n = bt/Mc, θ̄
′

m̂(j,t),t ∈ C
Dm
2 is the portion of θ̄m̂(j,t),t that

aligns with the location of θ̃m,t in θ̄m,t due to zero-padding, and
ndl
k,t ∼ CN (0, σ2

d I) is the receiver additive white Gaussian noise
(AWGN) vector. The beamforming vectors {wdl

i,n}Mi=1 are subject
to the BS transmit power budget. Let DmaxP be the BS total trans-
mit power budget for sending the entire normalized global models
in Dmax channel uses, where P denotes the average power bud-
get per channel use. Then, we have the transmit power constraint∑M
i=1 ‖w

dl
i,n‖2 ≤ DmaxP . The BS also sends the scaling factor

hHk,nw
dl
i,n‖θ̃m,t‖

|hH
k,n

wdl
i,n|

2 to the device via the downlink signaling channel to

facilitate this receiver processing. After post-processing uk,t using
the received scaling factor at device k ∈ Ki, we have
ˆ̃
θkm,t =

hHk,nw
dl
i,n‖θ̃m,t‖

|hHk,nwdl
i,n|2

uk,t

= θ̃m,t+
∑
j 6=i

hHk,nw
dl
i,n(wdl

j,n)Hhk,n

|hHk,nwdl
i,n|2

·
‖θ̃m,t‖θ̄

′
m̂(j,t),t

‖θ̃m̂(j,t),t‖
+ñdl

k,t (2)

where ñdl
k,t ,

hHk,nw
dl
i,n‖θ̃m,t‖

|hH
k,n

wdl
i,n|

2 ndl
k,t is the post-processed noise vec-

tor at device k ∈ Ki. By the equivalence of real and complex signal
representations θm,t and θ̃m,t, device k ∈ Ki obtains the estimate
of the global model θm,t as

θ̂km,t =
[
Re
{ˆ̃
θkm,t

}T
, Im

{ˆ̃
θkm,t

}T ]T
. (3)

3.2. Local Model Update
Device k ∈ Ki is scheduled to perform local model updates on
θ̂km,t in (3) using its local dataset Skm. We assume each device



adopts the standard mini-batch stochastic gradient descent (SGD)
algorithm [17] to perform the local model training. In particular, as-
sume that each device applies J mini-batch SGD iterations for its lo-
cal model update in each communication round. Let θk,τm,t denote the
local model update by device k ∈ Ki at iteration τ ∈ {0, . . . , J−1},
with θk,0m,t = θ̂km,t and Bk,τm,t the mini-batch at iteration τ , which is a
subset of Skm. The local model update is given by

θk,τ+1
m,t = θk,τm,t − ηn∇F

k
m(θk,τm,t;B

k,τ
m,t)

= θk,τm,t −
ηn

|Bk,τm,t|

∑
(s,v)∈Bk,τm,t

∇Lm(θk,τm,t; s, v) (4)

where ηn is the learning rate in frame n,∇F km and∇Lm are the gra-
dients of the corresponding loss functions for model m w.r.t. θk,τm,t.
After J iterations, the device obtains the updated local model θk,Jm,t.

3.3. Uplink Aggregation
The devices send their updated local models θk,Jm,t’s to the BS via
the uplink channels. For efficient transmission, we again represent
θk,Jm,t using a complex vector, similar to downlink transmission. That
is, we re-express θk,Jm,t = [(θ̃k,Jre

m,t )T , (θ̃k,J im
m,t )T ]T , where θ̃k,Jre

m,t and
θ̃k,J im
m,t contain the first and second half of elements in θk,Jm,t, respec-

tively. The equivalent complex vector representation of θk,Jm,t is thus

given by θ̃k,Jm,t = θ̃k,Jre
m,t + jθ̃k,J im

m,t ∈ C
Dm
2 .

We adopt the orthogonal multiple access technique in uplink to
efficiently use the system bandwidth for local model aggregation at
the BS. In particular, devices in the same group i send their local
model updates {θ̃k,Jm,t}k∈Ki to the BS simultaneously via the same
uplink channel. The channels among device groups are orthogonal to
each other. Thus, for each model m, the BS aggregates the received
local model updates from the corresponding assigned device group
i via the over-the-air computation [13]. As a result, the BS has the
complex equivalent global model update θ̃m,t+1 given by

θ̃m,t+1 =
∑
k∈Ki

ρkθ̃
k,J
m,t + ñul

m,t (5)

where ρk ∈ [0, 1] is the weight with
∑
k∈Ki ρk = 1, and ñul

m,t ∼
CN (0, σ2

u I) is the AWGN at the BS receiver. The weight ρk repre-
sents the uplink processing effect including device transmission and
BS receiver processing.

For local model update in (4), let ∆θ̃km,t , θ̃k,Jm,t − θ̃k,0m,t denote
the equivalent complex representation of the local model difference
after the local training at device k ∈ Ki in round t. Using (2) and
(5), we can express the global model update θ̃m,t+1 from θ̃m,t as

θ̃m,t+1 = θ̃m,t +
∑
k∈Ki

ρk∆θ̃km,t +
∑
k∈Ki

ρkñ
dl
k,t + ñul

m,t

+
∑
j 6=i

∑
k∈Ki

ρk
hHk,nw

dl
i,n(wdl

j,n)Hhk,n

|hHk,nwdl
i,n|2

·
‖θ̃m,t‖θ̄

′

m̂(j,t),t

‖θ̃m̂(j,t),t‖
. (6)

Finally, the real-valued global model update can be recovered from
its complex version as θm,t+1 = [Re{θ̃m,t+1}T, Im{θ̃m,t+1}T ]T .

4. MULTI-MODEL DOWNLINK BEAMFORMING DESIGN

We consider the transmission design in the multi-model FL system
to maximize the training convergence rate. Recall that the BS trans-
mits all M model updates simultaneously to devices via multicast
beamforming. Consider the global model update θm,nM for model
m at the beginning of each frame n ∈ S ,{0, . . . , S − 1}. We de-
sign the downlink beamforming vectors to minimize the maximum
expected optimality gap to θ?m among all M models after S frames,

subject to the transmitter power budget. The optimization problem
is formulated as

Po : min
{wdl

i,n}
max
m∈M

E[‖θm,SM − θ?m‖2]

s.t.
M∑
i=1

‖wdl
i,n‖2 ≤ DmaxP, n ∈ S (7)

where E[·] is taken w.r.t. receiver noise and mini-batch local data
samples at each device. Problem Po is a stochastic optimization
problem with a min-max objective. To tackle this challenging prob-
lem, we first develop a more tractable upper bound on E[‖θm,SM −
θ?m‖2] by analyzing the convergence rate of the global model update.
Then, we propose a downlink multi-group multicast beamforming
method to minimize this upper bound.

4.1. Convergence Rate Analysis
To analyze the model update convergence rate, we make the follow-
ing assumptions on the local loss functions, the global model up-
dates, and the difference between the global and weighted sum of
the local loss functions. They are commonly assumed for the con-
vergence analysis of the FL model training [9, 11, 14].
Assumption 1. The local loss function F km(·) is L-smooth and λ-
strongly convex, ∀m ∈M, ∀k ∈ Ktot.
Assumption 2. Bounded model parameters: ‖θ̃m,t‖2 ≤ r, for some
r > 0, ∀m ∈M, ∀t. Bounded stochastic gradients and sample-wise
loss gradients: E[‖∇F km(θm)‖2] ≤ µ, ‖∇Lm(θm; si, vi)‖2 ≤
β1‖∇F km(θm)‖2 + β2, for some µ > 0, β1 ≥ 1 and β2 ≥ 0,
∀m ∈M, ∀k ∈ Ktot, ∀t,∀i.
Assumption 3. Bounded gradient divergence: E[‖∇Fm(θm,t) −∑K
k=1 ck∇F

k
m(θk,τm,t)‖2] ≤ φ, for some φ ≥ 0, 0 ≤ ck ≤ 1,

∀m ∈M, ∀τ , ∀t.
We now analyze the global model convergence rate over frames

for each modelm. Based on (6), we first obtain the per-model global
update over frames, i.e., θm,nM . Let device group î be the group that
trains model m in communication round t at frame n. The device-
model assignment between î and m is given in (1). Summing both
sides of (6) over M rounds in frame n, and subtracting the complex
version of the optimal θ̃?m from both sides, we obtain

θ̃m,(n+1)M−θ̃?m= θ̃m,nM−θ̃?m +

(n+1)M−1∑
t=nM

∑
k∈K

î

ρk∆θ̃km,t+ẽm,n

where ẽm,n is the accumulated error term in (6) over M rounds in
frame n, given by

ẽm,n ,
(n+1)M−1∑
t=nM

∑
k∈K

î

ρkñ
dl
k,t +

(n+1)M−1∑
t=nM

ñul
m,t

+

(n+1)M−1∑
t=nM

∑
k∈K

î

ρk
∑
j 6=î

hHk,nw
dl
î,n

(wdl
j,n)Hhk,n

|hHk,nwdl
î,n
|2

·
‖θ̃m,t‖θ̄

′
m̂(j,t),t

‖θ̃m̂(j,t),t‖
.

By Assumption 2, we can further bound E[‖ẽm,n‖2] by

E
[
‖ẽm,n‖2

]
≤ rMK

M∑
i=1

∑
k∈Ki

∑
j 6=i |h

H
k,nw

dl
j,n|2 + σ̃2

d

|hHk,nwdl
i,n|2

+Mσ̃2
u

where σ̃2
d , σ2

dDmax/2, and σ̃2
u , σ2

uDmax/2.
Using the above, we provide an upper bound on E[‖θm,SM −

θ?m‖2] in Proposition 1 below. Due to the space limitation, the proof
is omitted. Part of the proof adopts some techniques in [14, Th. 2].
Proposition 1. For the multi-model FL system described in Sec-
tion 3, under Assumptions 1–3 and for ηn < 1

λ
, ∀n, the expected

model optimality gap after S frames is upper bounded by

E[‖θm,SM − θ?m‖2]≤ Γm

S−1∏
n=0

Gn +

S−2∑
n=0

H(wdl
n)

S−1∏
s=n+1

Gs
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Fig. 2: Left: Test accuracy vs. M (from Model A). Middle & Right: Test accuracy vs. communication round t: Middle – Model A; Right – Model B.

+H(wdl
S−1) + Λ, m ∈M (8)

where Γm , E[‖θm,0 − θ?m‖2], Gn , 4(1 − ηnλ)2J , Λ ,∑S−2
n=0 Cn

(∏S−1
s=n+1Gs

)
+ CS−1 with Cn , 4η2nJ

3K2(β1µ +

β2) + 4η2nJ
2φ+ 4Mσ̃2

u , wdl
n , [(wdl

1,n)
H , . . . , (wdl

M,n)
H ]H , and

H(wdl
n) , 4rMK

M∑
i=1

∑
k∈Ki

∑
j 6=i |h

H
k,nw

dl
j,n|2 + σ̃2

d

|hHk,nwdl
i,n|2

.

4.2. Downlink Multi-Group Multicast Beamforming Design
We now replace the objective function in Po with the more tractable
upper bound in (8). Note that only Γm

∏S−1
n=0Gn in (8) depends

on m. Omitting the constant terms Γm
∏S−1
n=0Gn + Λ, we arrive

at the following equivalent optimization problem w.r.t. multicast
beamforming vectors {wdl

n} over S frames:

P1 : min
{wdl

n}
S−1
n=0

S−2∑
n=0

H(wdl
n)

S−1∏
s=n+1

Gs +H(wdl
S−1) s.t. (7).

Note that by Proposition 1, Gn > 0, for ηn < 1
λ

, n ∈ S, and∏S−1
s=n+1Gs > 0. Thus, P1 can be decomposed into S subproblems

to solve, one for each frame n, given by

P2,n : min
wdl
n

M∑
i=1

∑
k∈Ki

∑
j 6=i |h

H
k,nw

dl
j,n|2 + σ̃2

d

|hHk,nwdl
i,n|2

s.t.
M∑
i=1

‖wdl
i,n‖2 ≤ DmaxP.

Problem P2,n is a multi-group multicast beamforming problem
with M multicast beamforming vectors, one for each device group,
to optimize. The objective is a total sum of interference-and-noise-
to-signal ratios at the BS receiver as the result of downlink-uplink
processing. The family of multicast beamforming problems is non-
convex and NP-hard [15,18]. We propose to use PGD to solve P2,n.
Since we can compute the closed-form gradient updates fast, PGD
is suitable for solving P2,n. Furthermore, it is guaranteed to find an
approximate stationary point of P2,n in polynomial time [19, 20].

5. SIMULATION RESULTS
We consider the image classification task under an LTE system set-
ting. Following the typical LTE specifications, we set the system
bandwidth 10 MHz and the maximum BS transmit power 47 dBm.
The channels are generated i.i.d. as hk,t =

√
Gkh̄k,t with h̄k,t ∼

CN (0, I), and Gk being the path gain from the BS to device k,
modeled as Gk[dB] = −169.2 − 35 log10 dk − ψk, where the BS-
device distance dk ∈ (0.02, 0.5) km, and ψk represents shadow-
ing with standard deviation 8 dB. Noise power spectral density is
N0 = −174 dBm/Hz, with noise figure NF = 8 dB and 2 dB
at the device and BS receivers, respectively. We use the MNIST
dataset [21] for the multi-model training and testing. It consists
of 60, 000 training samples and 10, 000 test samples. We consider

training two types of convolutional neural networks: i) Model A: an
8 × 3 × 3 ReLU convolutional layer, a 2 × 2 max pooling layer,
and a softmax output layer with 13, 610 parameters. ii) Model B: an
8 × 3 × 3 ReLU convolutional layer, a 2 × 2 max pooling layer,
a ReLU fully-connected layer with 20 units, and a softmax out-
put layer with 27, 350 parameters. The training samples are ran-
domly and evenly distributed across devices. The local dataset at
device k has Sk = 60, 000/K samples. For the local training us-
ing SGD at each device, we set λ = 3, J = 100, mini-batch size
|Bkτm,t| = 600/K,∀k, τ,m, t, and the learning rate ηn = 0.2, ∀n.
We set weight ρk = M/K,∀k in the uplink model aggregation.
All results are obtained by taking the current best test accuracy and
averaging over 20 channel realizations.

Besides our proposed method, denoted by MultiModel, we con-
sider three schemes for comparison: i) Ideal: Perform multi-model
FL via (6) with noise-interference-free downlink/uplink and perfect
recovery of model parameters. ii) ZF: Perform multi-model FL
via (6) using the zero-forcing (ZF) multicast beamformers proposed
in [22]. iii) SingleModel: Use the single-model FL with downlink
multicast beamforming for signal-to-noise-ratio maximization con-
sidered in (31) of [13] to train multiple models sequentially with K
devices.

Fig. 2-Left shows the test accuracy after 30 communica-
tion rounds vs. training M models, all from Model A. We set
(N,K) = (128, 12). Our proposed MultiModel outperforms all
other alternatives. Its performance remains roughly unchanged as
M increases and can achieve ∼ 97% test accuracy after 30 rounds,
while other schemes noticeably deteriorate as M increases. Con-
sider M = 2, and one from Models A and B each. Fig. 2-Middle
and Right show the test accuracy over round t for Models A and
B, respectively. We set (N,K) = (128, 10). The shadow area
for each curve indicates the 90% confidence interval. MultiModel
again outperforms other alternatives for both Models A and B. Be-
tween Models A and B, we see that Model B, which is the larger
one, achieves slightly higher test accuracy than Model A under both
multi-model and single-model training.

6. CONCLUSION
Multi-model wireless FL with imperfect transmission/processing
over noisy channels is considered in this paper. We formulate the
downlink-uplink transmission process and obtain the per-model
global update expression in each round. We design downlink beam-
forming to maximize the FL training performance. Using an upper
bound on the optimality gap of the global model update, we opti-
mize downlink multicast beamforming for sending multiple models
simultaneously to device groups, which leads to a multi-group mul-
ticast beamforming problem for minimizing the sum of inverse
received SINRs. Simulation results demonstrate the effectiveness of
the proposed multi-model method compared with the other alterna-
tives.
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