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Abstract— Prefetching has been shown to be an effective important to consider the network behavior when users base
technique for reducing resource cost and delay in heterogeneoustheir behaviors on their own best interests.
wireless networks. However, in modern wireless local area net- Recent research has examined the optimal network prefetch-

works, there is little centralized management, with no control . trat for two-tier het works 1111, H
of upper-level functions such as prefetching, and so users are N9 Stratégy for two-lier heterogeneous networks [11]. How

free to behave selfishly. This work focuses on how pricing can be €ver, we make the observation that the optimal prefetching
used to control the suboptimality that results from prefetching strategy for a network is not the same as the optimal strategy
and selfish users in heterogeneous wireless networks, and howfor an individual user [12]. For example, if all users use a
the perceived cost for the user can be optimized. We derive network optimal prefetching strategy with the exception of

an analytic model to characterize the optimal network and defecti the defecti d it tb
Nash Equilibrium prefetching strategies. We present a pricing one detecting user, the detecting user can reduce Its cost by

scheme that optimizes the best achievable perceived cost wherncreasing its level of prefetching. However, by doing $w t

the network is in a Nash Equilibrium. defecting user increases the network load, and so increases
costs for all other users in the network. In a classical tesul
. INTRODUCTION Nash [13] shows that a symmetric equilibrium exists for any

finite multi-player game. Hence, if all users are homogeseou

Speculative prefetching, a technique for predicting and rgnq behave selfishly in selecting prefetching strategies, t
trieving content before it is actually required, has beeswsh resulting prefetching strategy is at Nash Equilibrium, and
to be effective in reducing perceived delay in applicatior@enera”y suboptimal.
where user behavior is predictable. Many aspects of pitefetC |y this paper, we derive an analytic model to calculate
ing has been studied for web traffic in traditional homogeiseogng compare the network optimal prefetching strategy and
networks. Work has focused on prefetch prediction strafegihe Nash Equilibrium stategy. The main contribution of this
[1], [2], and [3], mobile wireless networks [4], [5], [6], I7 work is the optimization of the pricing scheme such that the
and multi-user effects [8]. best achievable perceived cost, from the perspective of the

While prefetching has been studied for many years, it haser, is minimized, while the network is stable, or at Nash
only been deployed more recently on a large scale. The recgguilibrium.
versions of the Mozilla/Firefox web browsers have support we begin by describing our system model in Section II.
for special prefetch tags to instruct the browser to préfet¢n Section Ill, we characterize the expected perceived, cost
links [9]. In this implementation, the information used take and compare the optimal and stable prefetching strategies.

prefetching decisions is supplied by the server. The Googection IV discusses how pricing can be optimized. Finally,
search engine now utilizes this prefetching feature to ceduwe conclude with Section V.

access delay for top search results [10].
Now, with the popularization of wireless networks, many Il. SYSTEM MODEL
access technologies have emerged, but no single technologwe first describe the mobility, network, and traffic models
is best suited for every application. For example, whildutat  that will be used for this discussion.
access can be made to be ubiquitous, it is expensive and has
a limited bandwidth. On the other hand, wireless local aréa Mobility Model
networking technologies (WLAN) such as WiFi offer high We consider a two-tier wireless network consisting of small
bandwidths at low cost, but have limited coverage. In ord&igh-bandwidth hot spots (WLAN) using a technology such
to create efficient networking solutions, access technetogas WiFi, scattered throughout a ubiquitous wireless networ
should be made to cooperate in heterogeneous networks. fELL) using a technology such as cellular access. Mobile
this reason, we examine the effects of prefetching for a twasers roam throughout the CELL sporadically entering and
tier heterogeneous network. leaving WLANS, as shown in Figure 1. Since we are assuming
In modern wireless network access standards such as Wikat WLANs are much faster and cheaper to use than the
there tends to be little centralized management, and noosUpCELL, a user will use a WLAN exclusively when the user has
for higher-level functions such as prefetching. Therefitres access to the WLAN. Therefore, we can model the mobility of



2

s
- s
- /

7 /

WLAN  WLAN

\
/ /
\
\ // //
\ /
\ \ v / e
\ N Lo LAN
N e / {
/
/

~——>

7 CELL

wireless access points in the CELL and WLAN are connected
to a high speed backbone network. Thus, the traffic is only
limited by the wireless access media. In the CELL, users
are given dedicated downlink access channels with a fixed
bandwidths,.. In each WLAN, however, users share a single
wireless access point with a fixed bandwidtl, where a FIFO
queue is formed for downlink traffic The per-byte prices to
use the CELL and WLAN arer. and «,, respectively.

Next, we first define two costResource costelated too,,

and o, is the per-byte cost that the service provider charges
the user for bandwidth utilizatiorDelay costis the value of
time associated with the delay incurred while a user waits fo
a requested document to download. When combined together,
we obtain theperceived costExisting literature has shown
that a user’'s perceived value of time can be estimated using
the user’s level of income [17]. We will denote the user'sueal

of time oy in dollars per unit time. Users base their behavior
on the perceived cost.

Fig. 1. Mobility in a two-tier heterogeneous network

C. Traffic Model

i Each user generates traffic following a Poisson process with
! rate \,.. We assume that with each document that a user
accesses, there afé other documents that the user will access
next with significant probabili§ So, with each document that
usern downloads, the user’s device immediately attempts to
prefetch, in the background, the, documents that will be
accessed next with highest probability. We églithe prefetch-
a user using a two-state alternating renewal procBsg AN ing strategyfor usern, and we manipulaté,, to control the
and CELL), where the user is in either a WLAN or thelevel of prefetching. Each document has an associated sxcces
CELL. It is well known that a phase-type”@) distribution probability that is provided by the document’s source [3], [
can be used to model any positive distribution [14], and 48 [7], [16]. Clearly, when a user prefetchés documents,
we usePH random variables to represent the residence tinf@0se documents will be thé, documents that the user
of a user in thedV LAN and CELL states. Now, since eachWill most probably access next. Hence, when documents
PH process can be associated with a Markov process, #€ prefetched, the probability that the user will access a
m. andm, represent the number of phases in the respectipéefetched documgnt is a cumulative distribution function
WLAN and CELL Markov processes, as shown in Figurd'»(kn). FOr convenience, we denofe,,(k,) = 1 — Fp(kn).

2. The Markov process can be described by an infinitessimaiSince the download times of documents is typically small,
generator matrix we assume that a batch of prefetched documents is success-

fully received when the last document of the batch arrives.
A — [ —Qu  tuwac ] ’ (1) Furthermore, we make the assumption of exponentially dis-
tea, —Qe tributed document sizes for analytical tractability. Howe we
where a,,, of size ( x m,), are the inital WLAN state later show by simulation that the distribution of the docutne
probabilities,—Q.,, of size (n., x m.,), contains the transition Sizes has little effect on the results.
rates betweerWLAJ_V states, and,, = Qu1, of size @“’ X Ill. OPTIMAL AND STABLE PREFETCHINGSTRATEGIES
1), are the absorption rates ®F LAN states. Likewise, we ) . ) o
havermn,, a., —Q., andt, for CELL. As mentioned earlier, prefetching can be optimized for a
To model user mobility in practical two-tier systems, thfeterogeneous network to reduce resource cost and delay for
entries in (1) can be estimated based on historical datelAlthough it is possible to consider a prioritized queue i WLAN,

collected by the service provider. The reference [15] @iesi given that we are studying selfish users, users would dasdiftraffic as
the implementation and analytical details of such an examphigh-priority, unless a differential pricing scheme is uskldwever, current
wireless services do not differentiate pricing based officralass, and in

B. Network Model practice it is difficult to implement.
2While we do not assume any specific application, caching is imetged
Since most applications that can use prefetching, such casome applications such as web browsing. When documentsciredcand
web surfing, news forum browsing, or database access, hd$&s repeatedly access the same document, the rate at whishreguest

traffi tt that hiahl trical IV cdesi documents is effectively decreased. While it is possible toifpaiir model
rafmc patterns that are nighly asymmetrical, we only CO8BI i, gccommodate caching by scaling document access rates, téiks dee

downlink traffic. We assume that both the base stations asgplication dependent and thus are beyond the scope ofabisrp

Fig. 2. Mobility as a Markov process
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the user. However, the optimal prefetching strategy is gelye INTEGRATION LIMITS

not a Nash Equilibrium and therefore selfish users would not

. ) . . : ) () o 0
choose to behave optimally. In this section, we first give an Casel by twe b1 b
Tsg < Ty < Ty ts tw tg o)

introduction to the notion.of the optimal and stable strigeg To<Ty<T0 te ot o
followed by the calculation of the expected costs used to T, <Tg <Tw ts - 0 ts
determine these strategies, and then we discuss the diffese Tr <Tw<Ts 0 ts 0 tw
between these strategies. Tw<Ts,Tr 0 ts tw o
A. Overview of the Optimal and Stable Strategies
Letk = (ki,...,ky) be the prefetching strategies of user§ we consider integrals of the form
1,...,N. Let ¢™ (k) be the perceived cost of a document o OO
for usern in the WLAN. The perceived cost is a weighted / "2 / ")ty dtwdts 3)
combination of the resource cost and delay cost. Now, given o Ji St

the expression for the expected perceived cost, it is nfic alif
to determine the network optimal prefetching strategy. &
assume fairness in that all users use the same strategy,
setk; = ky = ... = ky = k. Substituting intoc(™ (k),
we obtain a single variable functiod™ (k) which can be
easily optimized numerically to obtain the optimal prefabg

Wthen the integration limits fot,. andt,, are as shown in Table
IV(Pr each case.

gefore we can discuss the costs, we must first describe
the behavior of the WLAN queue. Suppoge= "W is the
service rate for a single document in the WLAN. When user
n accesses a document, this document may or may not have

strategyk™. )
9y . . been prefetched. If the document was previously prefetched
Next, supposev —1 users are using the prefetching strateg%en the user only requests, documents as prefetches in
ka4, and one user is usingsz. That is, sayk; = ... = kn_1 =

preparation for the next document access. If, however, the
document was not prefetched, then the user must regyest
documents. To simplify the analysis, we assume that the user
meaning that* is not a Nash Equilibrium. That is, usé¥ a'W.aVS makes requests fér, documents. T_his assumptiorj Is
can gain by prefetching a different amount. To find the Nas\11a“d becau_se wheh,, is small, th_e queue is rarely occupied,

0 k, has little effect. Whenk,, is large, howeverk, and

Equilibrium, where given the strategy of all users, no sng L . s .

user would choose to behave otherwise, we solve the syst@?’nJr 1 are 'S|m|Iar.' This assumption is shown to be valid by
- Simulation in Section IV.

of equations

To calculate the distribution of the WLAN sojourn time,

ks and ky = kp. Substituting, we obtain a two-variable
function c¢(™ (k4, k). Suppose we fix, = k* and optimize
™ (k*, kp) overkp. We would see that in general # k*,

C(n) . .
0= %ﬁ’k‘g) ) (2) We use the well known Pollaczek-Khinchin formula for the
ka=kp Laplace transform of the sojourn time density of &fyG/1
gueue [18]

We will call the Nash Equilibrium for the perceived cost,

the stable prefetching strategy £ (ki) = s(1—p(k)) fx (k; 5) @
Let c,@”)(k) and cg”)(k) be expressions for the expected re- Tt s = A+ Afx(k;s)

source cost and delay. Likewise, we can also find the resgecti N N ) o

optimal strategies* and &}, and the stable strategiég and wherep(k) = <=3, _, k. is the utilization of the WLAN,

k2 when resource cost alone or delay alone is considered./ (k; s) is the Laplace transform of the density for a batch
of documents, and = N\, is the aggregated WLAN traffic.

B. Analysis of the Expected Costs Since we are assuming that documents are exponentially

. . . istributed, the service tim&’,, for a batch ofk,, documents
We assume that since both the price and bandwidth of LE) " "

§ usern is Erlang distributed with Laplace transformed
CELL is significantly higher than that of the WLAN, a userden:i?y f:}nclzfionr g distribu W P rans
would only prefetch in the WLAN. Thus, we calculate the

cost to request the next document at the time when a user . oo\
makes a decision on the number of documents to prefetch in fx, (knis) = s+ : ®)
the WLAN.

The costs associated with downloading a document d&/hen there areV identical and independent (iid) users in
pend on whether the document was previously successfufif WLAN, the arrival process at the WLAN, an aggregation

prefetched, and if not, the current network that the user ¢ iid Poisson processes, is also Poisson, and the Laplace
in. So, the costs depend on the relationships betwigerthe transform of thg density of general service tidkiefor a batch
sojourn time of the WLAN queueZ}., the request interarrival ©f documents is

time, andT,,, the residual residence time of the user in the 1 X 0 kn,

WLAN. We can calculate the expected resource cost and delay fx(k;s) = N Z ( ) ) (6)

cost by considering the five possible cases, enumeratdd by a1 \S TR




We must also first calculate the residual residence time where Pi(;’) is the ij*" entry of P(®), (") are constants,
a user in a WLAN. An important property aPH renewal anda.; are the elements of.. Likewise, we can compute
processes is that the residual time aP& renewal process is wi(“‘) andp,.(t) for the probability that the user is in a CELL.
a PH random variable. In fact, we can calculate the densityherefore, given that the user has just entered the CELL, the

function of the WLAN residual residence time by, (t,) = resource cost for a requesseconds later is
qe it Q, 1, whereq = (a, Q' 1) 'a, Q' [14]. Let
Q,, be diagonalized a§,, = Vdiag{v;}V~', wherev; are TRQ(t) = Pew(t)w + Pec(t) e (12)
the eigenvalues of),, and V contains the eigenvectors of )
Q... The WLAN residual residence time is therefore and the delay is
fr, (tw) =aV diag{v; e Vite} VLY, @) drq(t) = Pew () E[TS] + pec(t) D, (13)
We next describe the costs involved in each case. where D = W is the expected download time in the CELL.

1) Case 1.Ts < T, < T,: In this case, the prefetchedwe weight the contribution to the expected costs by the
documents arrive before the next request and before the usesbability that a request is made By, (k).
leaves the WLAN. If the next document that the user requests3) Case 3:7,. < Ts < T,: In this case, the user makes
was prefetched, then there is no additional resource coet, ahe next request before the prefetched documents arrive on
the delay is zero. If, however, the next document that the ugRe WLAN, so the user makes a new request on the WLAN.
requests was not prefetched, which occurs with probabili§ince we expect théf, is typically much larger thafi’s, the
Fop(kn), then the user must make a request on the WLANccurrence ofl, < T's means that eithet’, is very small,
which will incur an additional resource cost of,. To find or Ty is very large, and the WLAN queue is backlogged.
the expected time to service a request fasiregle document There is a strong correlation between the sojourn time of
in the WLAN, we first find the expected waiting time using the prefetched documents and that of the newly requested

AE[X?] document. To simplify the analysis, we assume that the two
201 - p(k) (8) sojourn times are the same. Thus, the resource cest iand
P the delay isTs.

where B[ X?] = %2521 k%’* [18], is the second raw mo- 4) Case 4.7, < T,, < Ts: In this case, the user makes
ment of the Erlang distributed batch service time. Theesforthe next request before the prefetched documents arrive on

we obtain the expected delay for a single document the WLAN, so the user makes a new request on the WLAN.
N However, the user leaves the WLAN befdfg, the arrival
BT} = 1 I Z kn + Ky 9) time of the original prefetch, so it is impossible for the wegt
S — u2 to arrive on the WLAN in time. Henc€l,, — T, seconds after

the request, the user leaves the WLAN and makes a request

glgct:ir;hear:ttshls Is different from the sojourn time for a bat¢h %n the CELL. The resulting resource cost for both the WLAN

2 C oo T T In thi h fetch dand the CELL iso,, + . and the delay cost i$,, — T;. + D.
doc)um:r?tes a.rri\S/e<bef1c§re< thé .ner:d r;j:;te'butethpereuzecr‘sen 5) Case 5T, < T, T;: In this case, the user leaves the
. ! NGALAN before the arrival of the prefetched documents and the
request arrives after the user has left the WLAN. Hence, if v P Y

document was not prefetched, which occurs with probabilig% Ztr rceoquulgsé'e\/\i/: e;vt\?f Allj\lsirr ioeCSETf k%:ihse Cr;z): irsegl;rii;rthe
.F”P(k")' the user must make a requést—T,, seconds after to Case 2, with the exception thagq (t) anddrg(t) are not

it enters the CELL. When the user makes the next requevsvtéighted byF,, (kn)
. - . np n)-.

the user may be in a WLAN or in a CELL. We can determine The integrands and integration limits from the five cases

the probabilities of being in either a WLAN or the CELLare summarized in Table Il and Table | respectively. Using

H H @a _ LAt
afters ;econds uglng .the ma’Fr|x expo'nen . t) = [19]. the integrands(l)(tr,tw,tg) We can obtain the resource cost
Assuming thatA is diagonalizable with eigenvalues, we by

can write
10, )

M ) 5 o0 w,2 r2
P(t) = Udiag{e "}U1 =Y POet  (10) (k)= / / Ottt dt dtdts.
im1 =170 t t

(1) )
w,1 1
. . . (14)
where U contains the eigenvectors @, P() = w;u/, and Likewise, we can obtain the delay coe}” (k) using the

M = m. + m,. So, given that a user has just entered thategrandsd(®)(t,,t.,,ts). The resulting expected resource
CELL, the probabilityp.,(t) that the user is in a WLAN cost is

seconds later is given by

M Moy M
peu(t) =Y aci [ 3P et = wi et (1)
i=1 j=1 i=1

T

acAp

vi+ Ar

cs‘n)(k) = qVdiag {cj (1 - Fp(knw;s(k; v+ AT)) +

* vy
—oe fipg (kivg) +

P f;s(k;uﬁxr)}v*luawkn (15)
J r



TABLE I

INTEGRANDS —
©  Exponential (simulated)
Casel 7D (tr, b, t5) dD (b, tw, ts) 2 Enang cmoten

Tg < Tr < Tw Fop(ki)aw an(ki)E[Té] 0.15f % Gaussian (simulated)
Ts < Ty <Tr F"p(ki)'rRQ (T — Tw) an(k:i)dRQ (T — Tw) Z 014 Exponential (analytic)
T, <Ts < Tw Qo Ts B

Tr <Tw<Ts (aw + ac) at(tr —tw + D) § 0.13

Tw <Tg, Ty TRQ(TT—TU,) dRQ(TT —Tw) %

and the expected delay cost is

F (k )E[Tl]/\ Bf* (k; 5) © ° Prefelloched Documellfﬂs (k) 20 =
(W)(k) = qVdiag { —2 TS TR b (A + Aw) — s
Ar + Aw S s . . s .
s=vj Fig. 3. The effect of document size distribution on perceigedt
afx  (kss) . »
s (- 2 T N P S N
ds (Vi + Ar)Ar v+ Ar S i .
s=vj+ir K = 50, and N = 10. Unless otherwise specified, these
. DfE (s o) parameters are used in later discussions. In the analytieimo
TVj T, ’ . . . .
+an<kn>z S o) Ppg Geiwj 20 + —2— we had assumed exponentially distributed document sizes.
s=v; However, as the simulation results show in Figure 3, the
( v Ar D) e >+< AD L ) resulting perceived cost does not change significantly even
e+ 1) v O+ vp) Tsom vitAr (v Ar) document sizes have Erlang, truncated Pareto, or Gaussian
M distributions. Likely, this is because when few documents
+Zsidﬁu—%<ku +M~))}V 1 as are prefetched, there is little backlog in the WLAN, so
- ! the delay caused by queueing is insignificant and document

We obtain the perceived cost by Combining the per-by'&;ze diStri_bu_tion has little effect. On the other hand, b? th
resource cost and the delay usifig, the expected documentCentral Limit Theroem we see that when many documents
size, and,, the value of a user's time. So, the perceived codte prefetched, the distribution of the total size of a batch

is of documents approaches Gaussian in shape, regardless of
(k) = Wl (k) + atcgn) (k). (17) distribution.
C. Validation D. Discussion of the Stable and Optimal Strategies

The accuracy of the analytic model was verified by simula- We first discuss the resource cost and delay separately
tion. The Java-based simulator that we implemented matleli® gain insight into how resource cost and delay affect the
user mobility between the WLAN and CELL networks angberceived cost. Figure 4 shows how the optimal and stable
real simulation of the WLAN queue. prefetching strategiesy? and k; respectively, are affected

We know that web document access frequency followswghen resource cost alonis considered. When the WLAN
Zipf-like distribution, and that there is a weak correlatiojs very cheap with respect to the CELE is very small,
between document size and access frequency [20]. Therefeiied each user can reduce its own resource cost by prefetching
for the remainder of this discussion we use a specific a Zigfrany documents. However, in doing so, each user increases

like cumulative distribution function the resource cost for all other users. For all users in the
In(ky +1)(1 ) O<hy <K network to minimize resource cost for everyone, the optimal
Fp(kn) = 11“(_K6+1) k> 'IL{ (18) prefetching strategy:*, as shown in Figure 4, is to prefetch

far less than that the stable strategfy When the ratio?* is
where ¢, assumed to be very small, is the probability thdtigher, the optimal and stable strategies are very closis Th
the user does not choose any of tRiedocuments. We point suggests that if only resource cost is considered, thengrici
out that the above analysis holds regardless of the disivibu ratio < should not be too small.
used. F|gure 5 shows how the number of users affects the optimal
Figure 3 shows the analytical and simulated perceived castd stable prefetching strategiég,andk;; respectivelywhen
for different document size distributions, plotted wi#h% delay aloneis considered. For small numbers of users, the
confidence intervals. Each data point shown representsethegtable strategy is to prefetch as many documents as possible
sults from ten simulation runs. All of the mobility modelsags (in this caseK = 50, the maximum number of documents),
Erlang-distributed residence times in the WLAN and CELLwhich is significantly greater than the optimal strategyisTh
with mean residence times of., ., andt,.;. respectively. problem, when delay alone is considered, arises when a flat-
The parameters used wetg = $0.1/M B, a. = $0.01/K B, rate pricing scheme is used. This result suggests that eaftat-
ap = $20/h, B, = 10Mbps, 8. = 100kbps, W = 50K B, pricing scheme results in significant suboptimality whearas
My =4, Mme =4, tresw = 608, tres,c = 60s, A\, = 1/20s71, are selfish.
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Fig. 4. The effects ofz—w on prefetching, consideringesource cost only Fig. 6. The effects ofx; on prefetching, considering perceived cost
e mEmmm, —=— i network. Therefore, the goal is to manipulate the pricing
i such that the stable prefetching strategy of the perceiest ¢
T " coincides with the optimal strategies of the resource codt a

delay. In this way, the system performs optimally, and na use
would opt for a different prefetching strategy.

We propose a hybrid pricing scheme where the service
provider charges a fixed monthly feg- in addition to the per-
byte costsy,, anda,. The feear is set by the service provider
to make the wireless network profitable, and does not affect
55 5 5 is 25 7 %0 the prefetching strategies of the users. In the extreme case

numperofsers @ whena,, anda, are zero, the network uses flat-rate pricing,
Fig. 5. The effects of the number of WLAN users on prefetchigsidering where d,e'aY alone I_S CO_nSIdered for prefetching deCISIAB%
delay only we saw in Figure 5, in this case the network can become highly
suboptimal.
We assume that g is reasonably set by the service provider,

Figure 6 show the plots of the stable and network optimahd thus does not affect the user’'s per-document perceived
prefetching strategies;* and k® respectively, when resourcecost. We assume that all users subscribe to the network
cost and delay are combined into perceived cost. In thisgardless ofar, since issues of network participation are
figure, as the value of timey is increased, the tendencybeyond the scope of this discussion.
for suboptimality increases. For small,, the behavior of  Since the expected cost expressions are linear with respect
perceived cost follows that of resource cost, but for large «,, anda., we are only interested in thratio between these
oy, the behavior of perceived cost follows that of delay. ltwo costs. Therefore, we fix, and varya,,. We expect that as
practiceo; tends to be small (e.§20 per hour is equivalentto <= decreases, there is increased benefits to prefetching. Now,
$0.0056 per second), and so resource cost typically dommatwﬂen «,, IS decreased and. is fixed, the service provider
the perceived cost. would increasexr to recuperate lost profits. The goal of this
optimization is to manage the suboptimal behavior of selfish
users such that users can achieve the best possible pérceive

In the following section, we discuss how the pricing raticost by manipulating the ratig=. The exact values of,,
in a hybrid pricing scheme can be optimized. a., and ar depend on the percelved utility of data and the
cost for the service provider to run a wireless network, and i
beyond the scope of this paper.

Suppose we consider a scenario whegeis fixed at$20 Figure 7 shows the stable and optimal strategies as the
per hour. Using the perceived cost, we can calculate that fhricing ratio is changed. We see that 3% changes, not
stable prefetching strategy k&$ = 6.1885, which is the actual only does the degree of suboptimality change but we can also
strategy that selfish users would use. However, the optimmanipulatek®.
resource cost strategy k. = 5.6130, meaning that the users We are interested in finding theest achievable perceived
are paying more than necessary, and the optimal delaygyrateost for selfish users. That is, the perceived cost when users
is k = 11.5736, meaning that the users are also waitingll use the stable prefetching strategy. Fixing a., we can
longer than necessary for requests. find the optimal WLAN pricea, by solving

In practice, it is easy to manipulate the pricing but it is
difficult to change the bandwidth given the hardware in the o, = arg ming,, {C(")(ks(aw)%aw)} (19)
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A. Optimizing the Pricing Ratio
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ods to control the effects of selfish users.

In this paper, we studied the optimal pricing for a two-
tier heterogeneous network with prefetching and selfisisuse
Using an analytic model to quantify the expected perceigt co
associated with the number of documents a user prefetches,
we demonstrated the effects of variables such as pricirg, th
number of WLAN users, and the value of time on the stable
and optimal prefetching strategies. We showed that théngric
ratio can be manipulated to optimize the best achievable
perceived cost for users, such that the network is in a Nash
Equilibrium. Finally, there are many mechanisms such &st tru
and courtesy that govern human interaction. The assumption

Fig. 7.
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wherek® () is the solution to (2) using.,. While intuitively !
one would expect the best achievable perceived cost to alwajg
decrease asgy,, decreases, it is not the case, as shown [i0]
Figure 8. From this figure, we can see that to a certain degr@é}
reducing «,, While fixing «. decreases the perceived cost
for the user. However, as we continue to decrease the [12]
best achievable perceived cost increases rapidly. Thikely|
because a Iowe?(;—:j encourages more prefetching. When usefss)
prefetch too many documents, the WLAN becomes too heavil
loaded and the WLAN queueing delay increases, prefetchiﬁé
becomes less effective for all users, and so the best atiéeva s)
perceived cost increases.

Figure 8 also shows the effect of, the value of time, on the
best achievable perceived cost. As the value of time inesas
the weight of delay cost increases. Since the prefetching
strategy when only delay is considered is significantly bigh
than that when only resource cost is considered, more ptefet
ing is encouraged. However, when only delay is considered,
the suboptimality is significantly greater, and so the belf
achievable perceived cost is increased. [19]

17]

V. CONCLUSIONS [20]

Speculative prefetching has been shown to be an effective
technique for reducing resource cost and delay in heteroge-
neous wireless networks. In modern WLANS, there is little
centralized management, so it is important that we find meth-

that users behave only in their own best interest provides a
worse case analysis of selfish behavior.
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