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Abstract—We consider a wireless cellular network with mul-
tiple amplify-and-forward (AF) relays in each cell, assisting
the communication of multiple source-destination pairs with
relay transmission beamforming. Our objective is to minimize
the maximum interference power among all active receivers in
a neighboring cell subject to per-relay power and minimum
received SNR constraints. We propose an efficient algorithm to
obtain the optimal relay beamforming vectors. We show that
even though the optimization problem is non-convex, it has
zero Lagrange duality gap and can be converted to a semi-
definite programming problem. The performance of the proposed
algorithm is studied numerically, both for the case where the
interference channel information is exactly known and for the
case of inaccurate channel information due to either limited
feedback or channel estimation error. It is demonstrated that
the min-max interference approach substantially outperforms
the alternative where we simply minimize the maximum relay
transmission power.

I. INTRODUCTION

Modern cellular systems suffer from inter-cell interference

due to the small frequency reuse factor in a cell [1]. The

other types of interference, intra-cell interference and co-

antenna interference, can be avoided by orthogonal transmis-

sion of users in a cell such as time-division multiple access

and orthogonal frequency-division-multiple-access (OFDMA).

Hence, we focus on inter-cell interference in this paper. In

particular, we study how to use multiple relays in beamforming

to reduce such interference.

Wireless relaying has been a subject of many studies in

the literature and is specified in standards such as LTE-

Advanced [2] and WiMax [3]. The design of relay cooperative

networks in interference limited environments has been con-

sidered under various criteria such as capacity, throughput,

area spectral efficiency, and received signal-to-interference-

plus-noise ratio (SINR) [4]–[8]. The objectives of these work-

s do not include inter-cell interference reduction. Inter-cell

interference mitigation techniques for relay networks with

orthogonal-based transmission have been studied in [9]–[13].

The authors of [9] have proposed a radio resource management

strategy for relay-user association, resource allocation, and

power control. In [10], the performance of different relay

strategies has been studied in interference-limited cellular

systems. In [11], a joint subcarrier allocation, scheduling,

and power control scheme has been proposed for OFDMA-

based relay inter-cell interference limited networks. For relay-

aided cellular OFDMA systems, the authors of [12] have

proposed an interference coordination heuristic scheme. In

[13], a game theoretic framework has been developed to

mitigate interference in OFDMA relay networks. However,

none of these works aims to directly minimize the inter-

cell interference. Furthermore, none of them considers relay

beamforming, which can lead to a complicated optimization

problem.

In this work, we present a novel approach to optimally

design relay beamforming in order to minimize inter-cell

interference. We consider a cellular network where each cell

has multiple single-antenna amplify-and-forward (AF) relays

collaborating for the communication of multiple independent

sources and destinations using orthogonal spectrum resource.

The goal of this paper is finding the optimum relay beamform-

ing in order to minimize the maximum received interference

at the receivers in a neighboring cell. Our numerical results

show that substantial reduction of interference can be achieved

by using a moderate number of relays.

We first formulate the relay beamforming problem in or-

der to minimize the maximum interference under minimum

received SNR and per-relay power constraints. Then, the

original non-convex problem is recast as a second-order-conic

programming (SOCP) problem, through which we show that

the original problem has zero Lagrange duality gap and hence

the Lagrange dual method can be applied. We transform

the dual problem into a semi-definite-programming (SDP)

problem with much fewer variables and constraints compared

to the original optimization problem. Hence, the computation

complexity in finding the optimal beamweights is reduced

significantly. Expressed in the SDP form, the dual problem

can be solved by the interior-point methods having polynomial

complexity. Three cases for the optimum dual variables are

identified and the optimal relay beamweights are obtained

accordingly. Furthermore, observing a form of the uplink-

downlink duality [14]–[16], we derive a semi-closed form

expression for the optimal relay beamweights. We evaluate

the performance of min-max interference, both when true

interference CSI is available and when there is only limited

channel feedback or channel estimation error.

The rest of this paper is organized as follows: In Section

II, the system model is described. The min-max interference

problem is solved in Section III. Numerical results are pre-

sented in Section IV, and conclusions are drawn in Section

V.

Notation: We use ‖ · ‖ to denote the Euclidean norm of a

vector, and � to denote element wise multiplication. We use

(·)T , (·)H , and (·)† to denote transpose, Hermitian, and matrix

pseudo-inverse, respectively. The conjugate is represented by



(·)∗. The notation diag(A) represents a vector consisting of

the diagonal elements of a matrix A. We use I to denote an

N ×N identity matrix, and Y � Z to indicate that Y−Z is

a positive semi-definite matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a cellular system where each cell contains M
source-destination pairs and N relays, and all nodes are e-

quipped with a single antenna. A multichannel communication

system (e.g., OFDMA) consisting of M subchannels is used in

each cell. Each source transmits data to its destination through

the relays using a separate subchannel, and transmission

among different pairs are orthogonal. We assume that the half-

duplex AF protocol is used for relaying, and the direct path is

ignored. Different subchannels of each relay may be assigned

to multiple source-destination pairs. In this work, we study the

interference caused by N relays in one cell (desired) to the

M destinations in its neighboring cell.

Assume that the m-th source-destination pair communicate

through N relays over subchannel m. In the desired cell, the

received signal at relay i is given by ym,i =
√
P0hm,ism +

nr,m,i, where hm,i is the subchannel m between source m
and relay i, sm is the transmitted symbol with E[|sm|2] = 1,

P0 is the transmission power, and nr,m,i is the AWGN with

variance σ2
r . Next, the relay i multiplies the received signal

over subchannel m with a complex beamweight, denoted

by wm,i, for forwarding. Let gm,i denote the subchannel m
from relay i to destination m. Then, the received signal at

destination m from all relays is given by

rm =
√
P0g

T
mWmhmsm + gT

mWmnr,m + nm (1)

where hm
Δ
= [hm,1, · · · , hm,N ]T , gm

Δ
= [gm,1, · · · , gm,N ]T ,

Wm
Δ
= diag(wm,1, · · · , wm,N ), and nr,m

Δ
=

[nr,m,1, · · · , nr,m,N ]T are the channel vectors at the

first hop and second hop, the beamweight matrix, and the

noise vector, through all relays for the m-th source-destination

pair, respectively. In addition, nm is the AWGN at destination

m with variance σ2
d. The received SNR at destination m is

given by

SNRm =
P0w

H
mFmwm

wH
mGmwm + σ2

d

(2)

where wm
Δ
= diag(Wm), Fm

Δ
= (fmfHm )∗ with fm = gm �

hm, and Gm
Δ
= σ2

r diag((gmgH
m)∗).

Each transmitting relay causes interference to its neighbor-

ing cell. We focus on the interference from N relays in one cell

to the M destinations in the neighboring cell. Let g̃m denote

the corresponding interfering channel vector over subchannel

m from N relays of the desired cell to destination m of its

neighboring cell. The received interference at destination m of

the neighboring cell is given by r̃m = g̃T
mWm(

√
P0hmsm +

nr). The corresponding received interference power is given

by Im Δ
= P0w

H
mF̃mwm+wH

mG̃mwm, where F̃m
Δ
= (f̃mf̃Hm )∗,

f̃m
Δ
= g̃m � hm and G̃m

Δ
= σ2

r diag((g̃mg̃H
m)∗) are the

interference corresponding to the forwarded signal and the

amplified noise from the relays.

Let Pr denote the total power available at each relay.

Power allocation over each subchannel at relay i should satisfy∑M
m=1 |wm,i|2[Ry,m]i,i ≤ Pr, where Ry,m

Δ
= P0hmhH

m +
σ2
rI.
We assume perfect knowledge of CSI including the interfer-

ing channels in designing the relay beamweights of the desired

cell. In Section IV, we further study through simulation the

case where the interfering CSI is imperfect.

B. Problem Formulation

Define Rm
Δ
= diag([Ry,m]1,1, · · · , [Ry,m]N,N ), and let Di

denote the N ×N diagonal matrix with 1 in the i-th diagonal

and zero otherwise. Rewrite the interference power Im =

wH
mB̃mwm, where B̃m

Δ
= P0F̃m + G̃m, for m = 1, · · · ,M .

Our goal is to design the relay beamweights of the desired

cell to minimize the maximum interference to its neighboring

cell, subject to per-relay power constraint and minimum SNR

guarantee.1 The optimization problem is given by

min
w1,··· ,wM ,θ̃

θ̃ (3)

subject to wH
mB̃mwm ≤ θ̃, m = 1, · · · ,M, (4)

M∑
m=1

wH
mRmDiwm ≤ Pr, i = 1, · · · , N, (5)

P0w
H
mFmwm

wH
mGmwm + σ2

≥ γm, m = 1, · · · ,M. (6)

We use θ̃
o

to denote the minimum objective under the optimal

solution.

III. MINIMIZING MAXIMUM PER-SUBCHANNEL

INTERFERENCE

The solution of the min-max interference problem (3) is

provided in this section. We reformulate the problem which

leads to a semi-closed form solution in the Lagrange dual

domain. In order to obtain the optimal {w1, · · · ,wM}, an

SDP-based algorithm with polynomial worst-case complexity

is proposed. Then three cases for the dual variables are studied

and the optimal {w1, · · · ,wM} are determined accordingly.

A. Strong Duality

Since the SNR constraint (6) is not convex, the problem (3)

is non-convex. In the following, we show that (3) has zero

duality gap and can be solved in the Lagrange dual domain.

Proposition 1: Strong duality holds for the min-max inter-

ference problem (3).

Proof: We omit the details and provide an outline of the

proof. We first show that the problem (3) can be reformulated

as a second-order conic programming (SOCP) problem. It is

1We assume that the beamweights of the neighboring cell are also optimized
such that the maximum interference in the desired cell is minimized. As
future work, we may study how to set a pre-determined maximum interference
power for the cells such that the minimum received SINR at the receivers is
maximized.



known that the SOCP has zero conic duality gap [17]. Then

we show that the Lagrange dual of the problem (3) and the

Lagrange dual of the SOCP are equivalent.

Note that the problem (3) could be solved numerically by

solving the above equivalent SOCP with MN + 1 variables

and 2M + N constraints. To gain insight into the structure

of the beamweights, an efficient algorithm using the Lagrange

dual domain is proposed. In the following, we provide a semi-

closed form solution of (3) using SDP. Through the proposed

algorithm, the structure of beamweights is derived and the

computational complexity is reduced.

B. The Semi-Closed Form Solution

Using the results of Proposition 1, we can obtain the

optimum solution of (3) through the dual problem. Let μ
Δ
=

[μ1, · · · , μM ]T , λ
Δ
= [λ1, · · · , λN ]T , and α

Δ
= [α1, · · · , αM ]T

denote the Lagrange multipliers associated with the max inter-

ference constraint (4), per relay power constraint (5), and SNR

constraint (6), respectively. The Lagrangian of (3) is given by

L({wm}, θ̃,λ,μ,α) =
∑M

m=1 αmσ2 + θ̃(1 − ∑M
m=1 μm) −

Pr(
∑N

i=1 λi) +
∑M

m=1 w
H
m

(
Km − αmP0

γm
fmfHm

)
wm, where

Km
Δ
= RmDλ + μmB̃m + αmGm (7)

and Dλ
Δ
= diag(λ1, · · · , λN ).

The dual problem of the problem (3) is given by

max
λ,μ,α

min
wm,θ̃

L({wm}, θ̃,λ,μ,α) (8)

subject to λ � 0,μ � 0,α � 0. (9)

We observe that, after the inner minimization of (8), the

dual problem (8) is equivalent to

max
λ,μ,α

M∑
m=1

αmσ2 − Pr(

N∑
i=1

λi) (10)

subject to Km � αmP0

γm
fmfHm , m = 1, · · · ,M (11)

M∑
m=1

μm ≤ 1, (12)

and (9).

This is because the constraints (11) and (12) are implicit in

the optimal solution of the problem (8). To see this, suppose

one of the constraints (11) or (12) is not satisfied. Then there

is some {wm, θ̃} such that the inner minimization of (8) leads

to L({wm}, θ̃,λ,μ,α) = −∞, which is not an optimum

solution of (8).

In order to solve the dual problem (10), we first discuss the

feasibility of constraint (11) in the following lemma.

Lemma 1: If either μm > 0 or λ 	 0, then αm > 0, i.e.,
the Lagrange dual variable associated with the SNR constraint

(6) is strictly positive.

Proof: We can show that the constraint (11) is equivalent

to RmDλ + μmB̃m + αm

(
Gm − P0

γm
fmfHm

) � 0 and Gm −
αmP0

γm
fmfHm is an indefinite matrix.

The above lemma provides the condition under which the

SNR constraint (6) for the m-th source-destination pair is

met with equality. In the following, we provide the solution

assuming α 	 0, i.e., the SNR constraint (6) is met with

equality for all m. The solution for other cases is obtained

similarly and is presented in Section III-D.

Theorem 1: If α 	 0, the optimum beamforming vector

wo
m of the min-max interference problem (3) is given by

wo
m = ζmKo

m
†fm (13)

where

ζm
Δ
= σ

[ P0

γm
|fHmKo

m
†fm|2 − fHmKo

m
†GmKo

m
†fm

]−1
2

(14)

with Ko
m obtained by substituting the optimum dual variables

into (7).

Proof: See Appendix A.

Note that wo
m in (13) is a semi-closed form solution,

because it still depends on the optimum dual variables

{λo,μo,αo}. In the next section, we provide an SDP-based

numerical solution to find the dual variables.

C. The Optimal Dual Variables Through SDP

To determine the optimum {λo,μo,αo}, instead of solving

the dual problem (10) directly, we reformulate it into an SDP

problem.

Proposition 2: Denote x
Δ
= [αT ,λT ,μT ]T , a

Δ
=

[−σ21T
M×1, Pr1

T
N×1,0

T
M×1]

T and b
Δ
= [0T

(M+N)×1,1
T
M×1]

T .

The dual problem (10) can be re-expressed as the following

SDP

min
x

aTx (15)

subject to

2M+N∑
i=1

xiΨm,i 
 0, m = 1, · · · ,M, (16)

x � 0, bTx ≤ 1 (17)

where Ψm,m = P0

γm
fmfHm − Gm, Ψm,M+j = −RmDj for

j = 1, · · · , N, Ψm,M+N+m = −B̃m for m = 1, · · · ,M , and

all other Ψ are zeros.

Standard SDP softwares such as SeDuMi can be used to

solve (15). Note that the original problem (3) with 2M + N
constraints and MN + 1 variables is converted to an SDP

problem with M + 2 constraints and 2M + N variables. In

addition to reducing the computation complexity, the semi-

closed form solution (13) shows the structure of optimum

beamweights.

D. Three Cases of Dual Variables

In the following, we partition the set of optimum dual

variables in the dual problem (10) into three cases and propose

an algorithm to obtain the the optimum beamforming vectors

(if existent) for each case.



1) Case 1: If μo
m = 0, for m = 1, · · · ,M , there is no

solution for the original problem (3). In other words, there

should be at least one active constraint (4). This case happens

due to the infeasibility of (3), i.e., either the minimum SNR

guarantees (6) cannot be achieved or per relay power exceeds

the given threshold in (5).

In the following, we assume μo
m > 0 for some m.

2) Case 2: If ∀m ∈ {1, · · · ,M}, μo
m > 0 or λo 	 0, we

have αo
m > 0 for m = 1, · · · ,M in (10). In other words, if

Ko
m − αo

mGm 	 0, then αo
m > 0, for all m, and the solution

is given by Theorem 1.

3) Case 3: If αo
m = 0 for some m, i.e., there exists m

such that μo
m = 0 and λo � 0 as shown in Lemma 1, we

cannot use (13) for m = 1, · · · ,M . Let m̃ denote the pair

with μo
m̃ > 0. For simplicity, suppose μo

m = 0 for m 
= m̃
and λo

i = 0 for some i. Suppose that αo
m̃ > 0 and αo

m = 0
for m 
= m̃. We can simply extend our solution to the case

in which αo
m > 0 for arbitrary m’s. Similar to the proof of

Theorem 1, we have
αo

m̃P0

γm̃
fHm̃Ko

m̃
†fm̃ = 1. Hence, we can

use the solution (13) to obtain the beamforming vector of m̃.

Then assuming the original problem (3) is feasible, we have

θ̃o = αo
m̃σ2 − Pr(

∑N
i=1 λ

o
i ). Let M Δ

= {1, · · · ,M}\{m̃}. In

order to obtain the beamforming vectors for m 
= m̃, we need

to solve the following feasibility problem

find w1, · · · ,wm̃−1,wm̃+1, · · · ,wM (18)

subject to wH
mB̃mwm < θ̃o,m ∈ M,
M∑

m=1

wH
mRmDiwm ≤ Pr, i = 1, · · · , N, (19)

P0w
H
mFmwm

wH
mGmwm + σ2

≥ γm,m ∈ M. (20)

Note that we can always scale wm such that (20) meets with

equality for m 
= m̃. Among the infinite set of possible

solutions of wm for m 
= m̃, we propose to extract one

using the following algorithm. The essence of this algorithm

is to remove the m̃-th pair from consideration and solve the

resultant min-max interference problem to find the optimum

beamweights associated with the other pairs.

Denote wo
m̃

HRm̃Diw
o
m̃

Δ
= ei for i = 1, · · · , N . We can

solve the following problem

min
w1,··· ,wM ,δ

δ (21)

subject to wH
mB̃mwm ≤ δ,m ∈ M, (22)

M∑
m=1,m�=m̃

wH
mRmDiwm ≤ Pr − ei, ∀i, (23)

P0w
H
mFmwm

wH
mGmwm + σ2

≥ γm,m ∈ M. (24)

Let δo denote the optimum value of (21), and suppose αo
m̌ > 0.

If δo < θ̃o, then we can find wo
m̌. If δo ≥ θ̃o, then (3) is

infeasible. In the following, the SDP to obtain the optimum

Algorithm 1 Minimizing the maximum interference

1: Solve the SDP problem (15) finding αo,μo,λo

2: Obtain Υ
Δ
= {m | αo

m > 0}
3: if Υ == {1, · · · ,M} then
4: Compute Ko

m (7)

5: Compute the coefficient ζm (14) and wo
m (13), ∀m

6: else
7: Find wo

m (13) for all m ∈ Υ
8: Update ā (25), b̄ (26), and Ψ̄m,i

9: Solve (27) finding l ∈ {1, · · · ,M} \Υ with αo
l > 0

10: Compute ζl, w
o
l (13), and update Υ = Υ

⋃{l}
11: end if

dual variables of (21) is summarized. Define

ā
Δ
= [âT1 , Pr − e1, · · · , Pr − eN , âT2 ]

T , (25)

b̄
Δ
= [0T

(M+N)×1, b̂
T
1 ]

T (26)

where â1 ∈ RM×1, â2 ∈ RM×1, and b̂1 ∈ RM×1 are obtained

by substituting a(m̃) = 1, a(M+N+m̃) = 1 (or any arbitrary

positive value), and b(M +N + m̃) = 0, respectively.

The dual problem is equivalent to

min
x

āTx (27)

subject to

2M+N∑
i=1

xiΨ̄m,i 
 0,m = 1, · · · ,M.

x � 0, b̄Tx ≤ 1

where Ψ̄m̃,i = 0 and Ψ̄m,i = Ψm,i for m ∈ M and

i = 1, · · · , 2M + N . By the definition of ā in the objective

(27), any positive αm̃ or μm̃ would be penalized. Solving (27)

is equivalent to removing the terms associated with the m̃-

th pair in both the objective and constraints of (3), where

only the maximum per-relay power upper-bounds are updated

according to the power consumed by the m-th pair.

The steps required to solve the min-max interference prob-

lem (3) are summarized in Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we provide simulations results to evaluate the

performance of the proposed min-max interference algorithm.

In the simulations, we set σ2
r = σ2

d = 1, P0/σ
2
r = 10 dB, and

Pr/σ
2
d = 20 dB. The number of feasible realizations is set

to 500. The minimum SNR targets are set to γm = 5 dB for

m = 1, · · · ,M . The channel vectors hm and {gm, g̃m} are

assumed i.i.d. zero-mean Gaussian with variance 1.

To study the behavior of the maximum interference as

the number N of relays increases, we plot the CDF of the

maximum interference power under various N in Fig. 1.

Also shown in Fig. 1 is the maximum interference under the

optimization problem where the objective is to minimize the

maximum transmission power over all relays while meeting

the minimum SNR guarantees. The min-max relay power

problem can be solved using a similar technique to the one

proposed in this paper. The number of antennas are chosen
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Fig. 1. CDF of maximum received interference power over subchannels
when M = 2.

as N = 2i for i ∈ {0, · · · , 5}. It can be noticed that as N
increases, the maximum interference CDF curves are shifted

to the left for both optimization objectives. It can be seen

that the curves for the min-max interference do not converge

as N becomes very large. In fact, those curves are uniformly

shifted to the left. Note that the min-max interference approach

outperforms the per-relay power approach for each N, and the

performance gap increases as N increases.

So far, true interference CSI is assumed to be known

perfectly at the relays. In practice, obtaining such interference

CSI may not be possible. In order to observe how robust

the proposed algorithm is with respect to imperfect CSI, we

consider the following scenarios with two types of imperfect

CSI, i.e., limited number of CSI feedback (FB) bits and

channel estimation error.

In Scenario 1, the receiver knows the interference CSI

perfectly. However, the FB bits to the relays are limited.

We consider equiprobable quantization of channel values. Let

B denote the number of available FB bits. Every real and

imaginary part of a channel is quantized with equal probability

according to the channel.

In Scenario 2, the channels are estimated at the receiver

with error and the exact estimated channel is fed back to the

relays. In order to model the channel estimation error, let us

define ĥ = h+ αh̃, where h is the true channel coefficient, ĥ
is the estimated channel coefficient used for optimization, and

h̃ ∼ CN (0, 1) is the error. The coefficient α is set to adjust

the variance of error.

In Fig. 2, the CDF of the maximum received interference

under true interference CSI is compared with that of Scenario

1 with B = 6. It can be seen the performance of the maximum

received interference in Scenario 1 is very close to the that of

true CSI even for N = 8. As expected, the performance gap

between the limited FB case and the true CSI case increases

as N increases. In addition, the min-max interference under

limited FB still outperforms the min-max per-relay objective

in terms of maximum received interference.

Finally, Fig. 3 shows the CDF of the maximum received

interference under true interference CSI as compared with

that of Scenario 2 with estimation error for α = 0.01. The
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Fig. 2. Comparing the empirical CDF of maximum received interference
power under true interference CSI with the limited FB case based on
equiprobable quantization.
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Fig. 3. Comparing the empirical CDF of maximum received interference
power under true interference CSI with the case of Gaussian estimation error
(α = 0.01) for M = 2.

performance under Scenario 2 is very close to that of true

CSI. As expected, performance degrades as α increases, and

is very poor when α = 0.5, i.e., estimation error’s variance is

half of the variance of true CSI. In addition, we see that the

performance gap between Scenario 2 and the true CSI case

increases as N increases.

V. CONCLUSION

In this paper, we have considered a multi-relay cellular

network, where each cell has multiple source-destination pairs

communicating in orthogonal channels with assistance from

the relays. In order to manage inter-cell interference, we have

formulated the min-max interference problem, under per-relay

power and guaranteed received SNR constraints. We have

shown that the strong duality property holds for this non-

convex problem. Using the Lagrange dual domain, an efficient

SDP-based algorithm has been proposed to find the optimum

relay beamweights.

APPENDIX A

PROOF OF THEOREM 1

Since α 	 0, we have Km 	 0 for m = 1, · · · ,M . Using

[15, Lemma 1] and rewriting the expression of the matrix



inequality (11), the dual problem (10) can be expressed as

max
λ,μ

max
α

M∑
m=1

αmσ2 − Pr(
N∑
i=1

λi) (28)

subject to
αmP0

γm
fHmK−1

m fm ≤ 1, m = 1, · · · ,M (29)

(12), (9).

Note that (μ,λ) satisfies the condition in Lemma 1, i.e., the

optimum solution of (28) remains in the feasible set defined

by Lemma 1. For the rest of the proof, we use the general

approach in [15] by establishing the duality between (28) and

SIMO beamforming problem. Let us consider the following

problem

max
λ,μ

min
α

M∑
m=1

αmσ2 − Pr(
N∑
i=1

λi) (30)

subject to
αmP0

γm
fHmK†

mfm ≥ 1, m = 1, · · · ,M (31)

(12), (9).

There are two differences between (28) and (30). The inner

maximization becomes minimization and the SNR inequality

is reversed. For a given (λ,μ), we show that Φ(αm)
Δ
=

αmP0

γm
fHmK†

mfm is a monotonically increasing function of

αm > 0 for m = 1, · · · ,M . Substituting (7) into Φ(αm), we

have Φm(αm) = P0

γm
fHm

(
1

αm
(RmDλ + μmB̃m) + Gm

)†
fm,

which is a monotonically increasing function of αm. Hence,

both (29) and (31) are met with equality at optimality, and

the solution of both (28) and (30) is the same αo
m that

satisfies Φm(αo
m) = 1 for m = 1, · · · ,M . This implies

that the optimization problems (28) and (30) are equivalent.

Note that (30) is actually obtained by substituting w̄m =
αmP0∑M

m=1 αmσ2−Pr(
∑N

i=1 λi)
K†

mfm into

max
λ,μ

min
wm,α

M∑
m=1

αmσ2 − Pr(
N∑
i=1

λi) (32)

subject to
αmP0|wH

mfm|2
‖K 1

2
mwm‖2

≥ γm, m = 1, · · · ,M (33)

(12), (9).

The inner minimization of (32) is the SIMO beamforming

problem where the M receivers each are equipped with N
antennas. For the m-th receiver, the noise covariance matrix is

K̄m
Δ
=

∑M
m=1 αmσ2−Pr(

∑N
i=1 λi)

αmP0
Km, and the transmit power

is
∑M

m=1 αmσ2 − Pr(
∑N

i=1 λi). The solution of the SIMO

beamforming problem, i.e., the inner minimization of (32),

is given by w̄o
m = K̄†

mfm. Substituting w̄o
m into (32), (30) is

derived. Note that the optimum w̄o
m can be scaled by any non-

zero coefficient ξ such that ξw̄o
m is also an optimum solution.

The dual problem (10) is equivalent to the SIMO beamforming

problem (32). Due to the zero duality gap shown in Proposition

1 and the fact that w̄o is unique up to a scale factor, the

optimum solution of (3) is given by wo
m = ζmKo

mfm. Since

αo
m > 0, the SNR constraint (6) is met with equality based

on the slackness condition. Substituting wo
m into the equation

P0w
H
mFmwm

wH
mGmwm+σ2 = γm and after some manipulations, (14) is

obtained and the proof is complete.

REFERENCES

[1] J. Andrews, W. Choi, and R. W. Heath, Jr., “Overcoming interference
in spatial multiplexing MIMO cellular networks,” IEEE Wireless
Commun. Mag., vol. 14, pp. 95–104, Dec. 2007.

[2] 3GPP TS 36.211 V8.2.0 3rd Generation Prtnership Project; Technical
Specification Group Radio Access Network; Evolved Universal Ter-
restrial Radio Access (E-UTRA); Physical Channels and Modulation
(Release 8), Mar. 2008.

[3] IEEE standard for local and metropolitan area networks part 16:
Air interface for fixed broadband wireless access systems, IEEE Std
802.16- 2004, pp. 1C857, 2004.

[4] I. Krikidis, J. S. Thompson, S. Mclaughlin, and N. Goertz, “Max-
min relay selection for legacy amplify-and-forward systems with
interference,” IEEE Trans. Wireless Commun., vol. 8, pp. 3016–3027,
June 2009.

[5] S. Ren and M. van der Schaar, “Distributed power allocation in mul-
tiuser multi-channel cellular relay networks,” IEEE Trans. Wireless
Commun., vol. 9, pp. 1952–1964, June 2010.

[6] R. W. Heath, Jr., T. Wu, Y. Kwon, and A. Soong, “Multiuser MIMO
in distributed antenna systems with out-of-cell interference,” IEEE
Trans. Signal Process., vol. 59, pp. 4885–4899, Oct. 2011.

[7] T. Ahmad, R. Gohary, H. Yanikomeroglu, S. Al-Ahmadi, and G.
Boudreau, “Coordinated port selection and beam steering optimization
in a multi-cell distributed antenna system using semidefinite relax-
ation,” IEEE Trans. Wireless Commun., vol. 11, pp. 1861–1871, May
2012.

[8] A. Ramezani-Kebrya, I.-M. Kim, F. Chan, R. Inkol, and H.-K. Song,
“Detection for an AF cooperative diversity network in the presence of
interference,” IEEE Commun. Lett., vol. 17, pp. 653–656, Apr. 2013.

[9] M. Pischella and J. Belfiore, “Power control in distributed cooperative
OFDMA cellular networks,” IEEE Trans. Wireless Commun., vol. 7,
pp. 1900–1906, May 2008.

[10] S. W. Peters, A. Y. Panah, K. T. Truong, and R. W. Heath, Jr.,
“Relaying architectures for 3GPP LTE-Advanced,” EURASIP J. Adv.
Signal Process, vol. 28, pp. 1455–1468, 2009.

[11] Y. Hua, Q. Zhang, and Z. Niu, “Resource allocation in multi-cell
OFDMA-based relay networks,” in Proc. IEEE INFOCOM, pp. 2133–
2141, Mar. 2010.

[12] L. Liang, G. Feng, and Y. Zhang, “Integrated interference coordination
for relay-aided cellular OFDM system,” in Proc. IEEE ICC, pp. 1–5,
June 2011.

[13] L. Liang and G. Feng, “A game-theoretic framework for interference
coordination in OFDMA relay networks,” IEEE Trans. Veh. Tech.,
vol. 61, pp. 321–332, Jan. 2012.

[14] M. Dong, B. Liang, and Q. Xiao, “Unicast multi-antenna relay beam-
forming with per-antenna power control: optimization and duality,”
IEEE Trans. Signal Process., vol. 61, pp. 6076–6090, Dec. 2013.

[15] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna
downlink with per-antenna power constraints,” IEEE Trans. Signal
Process., vol. 55, pp. 2646–2606, June 2007.

[16] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic
optimization for fixed MIMO receivers,” IEEE Trans. Signal Process.,
vol. 54, pp. 161–176, Jan. 2006.

[17] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge,
U.K.: Cambridge Univ. Press, Mar. 2004.


