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Abstract—We consider a general multi-user mobile cloud com-
puting system where each mobile user has multiple independent
tasks. These mobile users share the communication resource
while offloading tasks to the cloud. We aim to jointly optimize
the offloading decisions of all users as well as the allocation of
communication resource, to minimize the overall cost of energy,
computation, and delay for all users. The optimization problem is
formulated as a non-convex quadratically constrained quadratic
program, which is NP-hard in general. An efficient approximate
solution is proposed by using separable semidefinite relaxation,
followed by recovery of the binary offloading decision and optimal
allocation of the communication resource. For performance
benchmark, we further propose a numerical lower bound of the
minimum system cost. By comparison with this lower bound, our
simulation results show that the proposed algorithm gives nearly
optimal performance under various parameter settings.

I. INTRODUCTION

Mobile cloud computing extends the capabilities of mobile

devices and improves the user experience with the help of

abundant cloud resources [1] [2]. By offloading tasks to the

cloud, mobile users aim to reduce its own energy consumption.

However, the quality of service (QoS) of those offloaded tasks

may be affected since there are additional costs such as the

communication delay between mobile users and the cloud [3].

To reduce transmission latency, the authors of [4] pro-

posed an architecture replacing the remote cloud with near-

by cloudlets. Authors in [3] [5] studied the energy saving

and performance tradeoff when a single user offloading its

entire application to the cloud. Multi-user scenarios with a

single application or task per user were addressed in [6]

[7] [8]. Different from the whole-application offloading in

above studies, the authors of [9]–[12] considered application

partitioning for a single user. In [9], the authors proposed

a system named MAUI to efficiently process the partitioned

tasks. Clonecloud [10] and Thinkair [11] were proposed with

further improvements. In [12], a multi-radio interface scenario

was considered. In all cases, the partitioning problem results

in difficult integer programs. In [13], we also studied the

single user scenario with multiple independent tasks and a

computing access point. The offloading decisions were make

by considering the worst-case offloading delay.
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In this work, we further study the interaction between

multiple users and the cloud. The multi-user scenario adds

substantial challenge to system design, since we need to jointly

consider both the offloading decisions and the sharing of

communication resource among all users as they compete to

reach the cloud through a wireless link with limited capacity.

We aim to conserve energy and maintain the QoS for all users.

In particular, the transmission delays of the offloaded tasks

of a user will be affected by its assigned communication re-

source. Furthermore, optimal offloading decision and resource

allocation must take into consideration the computation and

communication energies, system utility cost, and communica-

tion and processing delays at all local user devices and the

remote cloud.

We focus on jointly optimizing the offloading decision and

the communication resource allocation of all tasks, to mini-

mize a weighted sum of the costs of energy, computation, and

the delay for all users. The resultant mixed integer program-

ming problem can be reformulated as a non-convex quadrat-

ically constrained quadratic program (QCQP) [14], which is

NP-hard in general. To solve this challenging problem, we

propose an efficient heuristic algorithm based on separable

semidefinite relaxation (SDR) [15], with recovery of the binary

offloading decision and subsequent optimal allocation of the

communication resource. We also provide the lower bound of

the minimum cost as the benchmark for performance compari-

son. Simulation results show that the proposed algorithm gives

nearly optimal performance under various parameter settings.

Furthermore, our method is scalable to a large number of

users and tasks where computational complexity of exhaustive

search becomes prohibitive.

The rest of this paper is organized as follows. In Section

II, we describe the system model and present the problem

formulation. In Section III, we provide details of the proposed

algorithm and the lower bound of minimum system cost. We

study the numerical results in Section IV and conclude in

Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Mobile Cloud Offloading with Multiple Users and Tasks

Consider a general cloud access network consisting of one

cloud server, one access point (AP), and N mobile users, each

havingM independent tasks, as shown in Fig. 1. Note that our
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Fig. 1. System model

system model can be easily extended to the case where each

mobile user has a different number of tasks. The connections

between mobile users and the AP are wireless, while a wired

connection is used between the AP and the cloud. Each mobile

user can process its tasks locally or offload some of them to

the cloud for processing through the AP. Let xij denote the

offloading decision for task j of user i, given by

xij =

{

0 process task j of user i locally;

1 offload task j of user i to the cloud.

B. Cost of Local Processing

The input and output data sizes and the application type of

task j of user i are denoted by Din(ij), Dout(ij), and App(ij),
respectively. In this work, App(ij) measures the number of

processing cycles per input data. For task j being locally

processed by user i, the corresponding energy consumed for

processing is denoted by Elij and the processing time is

denoted by Tlij .

C. Cost of Remote Processing

For task j of user i being offloaded to the cloud through

the AP, we denote the energy consumed for transmitting

and receiving data between the mobile user and the AP

by Etij and Erij , respectively. For the wireless connections

between mobile users and the AP, we denote the uplink

and downlink transmission times by Ttij = Din(ij)/cui
and

Trij = Dout(ij)/cdi
, respectively, where cui

and cdi
are

uplink and downlink bandwidths allocated to user i for data
transmission. Their values are constrained by the capacities of

the corresponding wireless links, denoted by CUL and CDL,

respectively, as well as the number of tasks of other users

offloaded to the cloud through the AP.

Since the AP has to further offload the task to the cloud,

we denote the required transmission time between the AP and

the cloud by Tacij = (Din(ij)+Dout(ij))/Rac, and the cloud

processing time by Tcij = Din(ij)App(ij)/fC . We assume

the wired transmission rate Rac between the AP and the cloud

and the cloud processing rate fC for each user are pre-fixed

values. Thus, Tacij and Tcij only depend on the size of each

task itself. Finally, the system utility cost of processing user

i’s task j at the cloud is denoted by Ccij . The above notations

are summarized in Table I.

D. Problem Formulation

We aim at reducing mobile users’ energy consumption and

maintain the QoS of processing their tasks, measured by the

delays incurred due to transmission and/or processing. For this

TABLE I
NOTATIONS AND THEIR CORRESPONDING DESCRIPTIONS.

Notation Description

Elij local processing energy of user i’s task j
Etij , Erij uplink transmitting energy and downlink

receiving energy of user i’s task j between
the mobile user and the AP

Tlij , Tcij local processing time and cloud processing

time of user i’s task j
Ttij , Trij uplink transmission time and downlink

transmission time of user i’s task j
between the mobile user and the AP

Tacij transmission time of user i’s task j between
the AP and the cloud

CUL, CDL uplink transmission capacity and downlink

transmission capacity between mobile users

and the AP

cui
, cdi

uplink transmission rate and downlink

transmission rate assigned to user i’s tasks
Ccij system utility cost of user i’s task j
Rac transmission rate for each user between the

AP and the cloud

fC cloud processing rate for each user

β weight of the system utility cost

ρi weight of the delay of processing user i’s
tasks

goal, we define the total system cost as the weighted sum

of total energy consumption, the costs to offload and process

all tasks, and the corresponding transmission and processing

delays for all users. Our objective is to minimize the total

system cost by jointly optimizing the task offloading decisions

xij and the communication bandwidth resource allocation ri =
(cui

, cdi
). This optimization problem is formulated as follows:

min
{xij},{ri}

N
∑

i=1

[ M
∑

j=1

(Elij (1− xij) + ECij
xij)

+ ρimax{TLi
, TCi

}
]

(1)

s.t.

N
∑

i=1

cui
≤ CUL, (2)

N
∑

i=1

cdi
≤ CDL, (3)

cui
, cdi

,≥ 0, ∀i, (4)

xij ∈ {0, 1}, ∀i, j, (5)

where ECij
, (Etij + Erij + βCcij ) is the energy cost

of offloading and processing task j of user i to the cloud;

it is a weighted sum of transmission energy and system

utility cost, with β being the relative weight; In addition,

TLi
,

∑M

j=1 Tlij (1 − xij) is the processing delay of tasks

processed by the mobile user i itself, TCi
is the overall

transmission and remote-processing delay for tasks of mobile

user i processed at the cloud, and ρi is the weight on the task



processing delay relative to energy consumption in the total

system cost. Depending on the performance requirement, the

value of ρi can be adjusted to impose different emphasis on

delay and energy consumption. Constraints (2) and (3) are the

uplink and downlink bandwidth resource constraints.

The above mixed-integer programming problem is difficult

to solve in general. Moreover, we note that the overall delay

for remote processing, TCi
, is challenging to calculate exactly.

This is because, when there are multiple tasks offloaded by

a users, the transmission times and processing times may

overlap in an unpredictable manner, which depends on the

offloading decision, communication resource allocation, and

task scheduling order. In fact, since TCi
consists of the uplink

transmission times, remote-processing time, and downlink

transmissions times of all tasks, it may be viewed as the output

of a multi-machine flowshop schedule, which remains an open

research problem [16]. Since TCi
is not precisely tractable, we

will use both upper and lower bounds of TCi
in our proposed

solution and performance benchmarking. They are shown to

give total system costs that are close to each other.

III. MULTI-USER MULTI-TASK OFFLOADING SOLUTION

The joint optimization problem (1) is a mixed-integer non-

convex programming problem, which is NP-hard in general.

To find an efficient solution to the original problem (1), in the

following, we first propose both upper bound and lower bound

formulations of TCi
, then transform the optimization problem

(1) into a separable QCQP, and finally propose a separable

SDR approach to obtain the binary offloading decisions {xij}
and the communication resource allocation {ri}.
A. Bounds of Remote-Processing Delay

When a mobile user offloads more than one task to the

cloud, there will be overlaps in the communication and pro-

cessing times as mentioned above, making it difficult to exactly

characterize the overall delay TCi
. Next, we first provide a

upper bound of TCi
as the worst case delay formulation:

TU
Ci

,

M
∑

j=1

(
Din(ij)

cui

+
Dout(ij)

cdi

+ Tacij + Tcij)xij , ∀i. (6)

Since the worst case delay sums the transmission delays and

processing delays together without any overlap, it will always

be greater than the real delay given the same offloading

decision and resource allocation. On the other hand, we

separate the offloading delays of all mobile users into several

components and only consider the largest one as the lower

bound of TCi
:

TL
Ci

, max{Tui
, Tdi

, Tuaci , Tdaci , TC′

i
}, ∀i, (7)

where Tui
,

∑M

j=1 Din(ij)xij/cui
and Tdi

,
∑M

j=1 Dout(ij)xij/cdi
are total uplink and downlink

transmission time between the user and the AP for

user i, respectively, Tuaci ,
∑M

j=1 Din(ij)xij/Rac and

Tdaci ,
∑M

j=1 Dout(ij)xij/Rac are total uplink and downlink

transmission time between the AP and the cloud for user i,

respectively, and TC′

i
,

∑M

j=1 Din(ij)App(ij)xij/fC is the

total cloud processing time for user i.
In the following, we will use the worst case delay TU

Ci
in

optimization problem (1) to obtain an approximate solution,

which can provide an upper bound to the total system cost.

We then use TL
Ci

similarly, to obtain a lower bound of the

total system cost, for performance benchmarking. In Section

VI, by comparing both cases, we show that the proposed

algorithm based on the worst case formulation gives nearly

optimal performance.

B. QCQP Transformation and Semidefinite Relaxation

We transform the optimization problem (1) with TU
Ci

into a

separable QCQP. We first rewrite the integer constraint (5) as

xij(xij − 1) = 0, ∀i, j. (8)

Furthermore, we introduce additional auxiliary variables ti for
max{TLi

, TU
Ci
}, Dui

for
∑M

j=1 Din(ij)xij/cui
, and Ddi

for
∑M

j=1 Dout(ij)xij/cdi
in the optimization problem (1). Let

di = (Dui
, Ddi

). The problem (1) is now transformed into

the following equivalent problem

min
{xij},{ri,di,ti}

N
∑

i=1

[ M
∑

j=1

(Elij (1− xij) + ECij
xij) + ρiti

]

(9)

s.t.

M
∑

j=1

Tlij (1− xij) ≤ ti, ∀i

Dui
+Ddi

+
M
∑

j=1

(Tacij + Tcij )xij ≤ ti, ∀i

M
∑

j=1

Din(ij)xij − cui
Dui

≤ 0, ∀i

M
∑

j=1

Dout(ij)xij − cdi
Ddi

≤ 0, ∀i

(2)− (4), and (8).

Define wi , [xi1, . . . , xiM , cui
, Dui

, cdi
, Ddi

, ti]
T , ∀i, and

ei as the (M + 5)× 1 standard unit vector with the ith entry
being 1. The optimization problem (9) can now be further

transformed into the following equivalent separable QCQP

formulation

min
{wi}

N
∑

i=1

bT
i wi +

N
∑

i=1

M
∑

j=1

Elij (10)

s.t. bT
li
wi ≤ −

M
∑

j=1

Tlij , bT
ci
wi ≤ 0, ∀i

wT
i Aui

wi + bT
ui
wi ≤ 0, ∀i

wT
i Adi

wi + bT
di
wi ≤ 0, ∀i

N
∑

i=1

bT
Ui
wi = CUL,

N
∑

i=1

bT
Di

wi = CDL

wT
i diag(ej)wi − eTj wi = 0, ∀i, j



wi ≥ 0, ∀i
where

Aui
,





0M×M 0M×2 0M×3

02×M A′
ui

02×3

03×M 03×2 03×3



 ,

Adi
,=





0(M+2)×(M+2) 0(M+2)×2 0(M+2)×1

02×(M+2) A′
di

02×1

01×(M+2) 01×2 0



 ,

A′
si

, −0.5

[

0 1
1 0

]

, for s = u, d,

bi , [(ECi1
− Eli1), . . . , (ECiM

− EliM ), 01×4, ρi]
T ,

bli , −[Tli1 , . . . , TliM , 01×4, 1]T ,

bci , [(Taci1 + Tci1), . . . , (TaciM + TciM ), 0, 1, 0, 1,−1]T ,

bui
, [Din(i1), . . . , Din(iM), 01×5]

T ,

bdi
, [Dout(i1), . . . , Dout(iM), 01×5]

T ,

bUi
, [01×M , 1, 01×4]

T ,

bDi
, [01×M+2, 1, 01×2]

T .

Note that all constraints in the optimization problems

(9) and (10) have one-to-one correspondence. By further

defining zi , [wT
i , 1]

T and dropping the constant term
∑N

i=1

∑M

j=1 Elij from the objective function in (10), we can

homogenize the optimization problem (10) to the following

problem

min
{zi}

N
∑

i=1

zTi Gizi (11)

s.t. zTi Glizi ≤ −
M
∑

j=1

Tlij , ∀i,

zTi Grizi ≤ 0, ∀i, r = c, u, d,
N
∑

i=1

zTi GUi
zi ≤ CUL,

N
∑

i=1

zTi GDi
zi ≤ CDL,

zTi GIjzi = 0, ∀i, j,
zi ≥ 0, ∀i,

where

Gi ,

[

0(M+5)×(M+5)
1
2bi

1
2b

T
i 0

]

, ∀i,

Gli ,

[

0(M+5)×(M+5)
1
2bli

1
2b

T
li

0

]

, ∀i,

Gsi ,

[

Asi
1
2bsi

1
2b

T
si

0

]

, ∀i, s = u, d,

GSi
,

[

0(M+5)×(M+5)
1
2bSi

1
2b

T
Si

0

]

, ∀i, S = U,D,

GIj ,

[

diag(ej) − 1
2ej

− 1
2e

T
j 0

]

, ∀j.

The optimization problem (11) is a non-convex separable

QCQP problem [14], which is still NP-hard in general. To

find an approximate solution, we apply the separable SDR

Algorithm 1 MUMTO Algorithm

1: Obtain optimal solution Z∗
i ’s of the separable SDP prob-

lem (12). Extract the upper-leftM×M sub-matrices Z′∗
i ’s

from Z∗
i ’s.

2: Record the values of diagonal terms in Z′∗
i by pi =

[pi1, . . . , piM ].
3: xo

ij = round(pij), ∀i, j.
4: Set xo = [xo

1, . . . ,x
o
N ]T , where xo

i = [xo
i1, . . . , x

o
iM ].

5: Solve the resource allocation problem (13) based on xo;

6: Compare xo with the solutions from local processing only

and cloud processing only. Set the best one among them

as the solution xs.

7: Output: the proposed offloading solution xs and the cor-

responding optimal resource allocation.

approach [15], where we relax the problem into a separable

semidefinite programming (SDP) problem. Specifically, define

Zi , ziz
T
i . By dropping the rank constraint rank(Zi) = 1, we

have the following separable SDP problem:

min
{Zi}

N
∑

i=1

Tr(GiZi) (12)

s.t. Tr(GliZi) ≤ −
M
∑

j=1

Tlij , ∀i,

Tr(GriZi) ≤ 0, ∀i, r = c, u, d,
N
∑

i=1

Tr(GUi
Zi) ≤ CUL,

N
∑

i=1

Tr(GDi
Zi) ≤ CDL,

Tr(GIjZi) = 0, ∀i, j,
Zi(M + 6,M + 6) = 1, ∀i, Zi � 0, ∀i.

The optimal solution {Z∗
i } to the above SDP problem can

be obtained efficiently in polynomial time using standard SDP

software, such as SeDuMi [17].

Once {Z∗
i } is obtained, we need to recover a rank-1 solution

from {Z∗
i } for the original problem (1). In the following, we

propose an algorithm to obtain the binary offloading decisions

{xij} and the corresponding optimal communication resource
allocation {ri}.
C. Binary Offloading Decisions and Resource Allocation

Define x , [x1, . . . ,xN ]T , where xi , [xi1, . . . , xiM ], ∀i.
Note that, first, only the upper-left M ×M sub-matrix of Z∗

i ,

denote by Z′∗
i , ∀i, is needed to recover the solution x; second,

each diagonal entry in each Z′∗
i is always between 0 and 1.

That is, define pi = [pi1, . . . , piM ] , diag(Z′∗
i ). We have

pij ∈ [0, 1], ∀i, j. We recover the feasible decisions xo
i using

pi, where x
o
ij = round(pij) is the rounding result, and obtain

the overall offloading decision as xo = [xo
1, . . . ,x

o
N ]T .

Once the offloading decision xo is obtained, the optimiza-

tion problem (1) reduces to the optimization of communication



resource allocation {ri}, which is given by

min
{ri}

(

E+

N
∑

i=1

ρimax{TLi
, TU

Ci
}
)

(13)

s.t. (2)− (4)

where E ,
∑N

i=1

∑M

j=1(Elij (1−xij)+ECij
xij) is a constant

value once {xij} are given. This resource allocation problem

(13) is convex, which can be solved optimally using standard

convex optimization solvers.

Note that to obtain the best offloading decision, in practice,

we should compare xo with local processing only and cloud

processing only decisions, and select the one resulting in

the minimum total system cost objective of (1) as the final

offloading decision xs.

We name the above the multi-user multi-task offloading

(MUMTO) algorithm and summarize it in Algorithm 1. Notice

that the SDP problem (12) can be solved within precision ǫ
by the interior point method in O(

√
MN log(1/ǫ)) iterations,

where the amount of work per iteration is O(M6N4) [18],

while there are 2MN choices in exhaustive search to find the

optimal offloading decision. In addition, once the offloading

decision is made, we may schedule the multiple tasks to be

offloaded in any arbitrary order. The resultant TCi
will be less

than TU
Ci
. To measure the effectiveness of this solution, in the

following, we introduce a lower bound of the optimal solution

to the original problem (1).

D. Lower Bound on the Optimal Solution

Previously, the cost function in our original optimization

problem (1) considers the worst case transmission plus pro-

cessing delay (6) for all users, and we know the real cost based

on MUMTO will be lower. However, we are still interested

in the performance of MUMTO compared with the optimal

solution. To find a lower bound of the optimal solution, we

introduce a new optimization problem in which TL
Ci

is used

instead as

min
{xij},{ri}

N
∑

i=1

[ M
∑

j=1

(Elij (1− xij) + ECij
xij)

+ ρi max{TLi
, Tui

, Tdi
, Tuaci , Tdaci , TC′

i
}
]

(14)

s.t. (2)− (5).

Notice that under the same offloading decisions and commu-

nication resource allocation, this new objective function will

always give us a lower cost than the real cost.

Since the above optimization problem (14) is still noconvex,

we formulate a separable SDR problem similar to (12), whose

details are omitted due to page limitation. We note that the

optimal objective of this SDR problem is smaller than the

optimal objective of (14). Hence, it can serve as a lower

bound of the minimum total system cost defined by the original

optimization problem (1).
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IV. PERFORMANCE EVALUATION

We evaluate the performance of MUMTO using computer

simulation in Matlab under different parameter settings. The

following default parameter values are used unless specified

otherwise later. We adopt the mobile device characteristics

from [19], which is based on Nokia N900, and set the

number of mobile users as N = 5. Each user has M = 4
independent tasks. From Tables 1 and 3 in [19], the mobile

device is assumed to have CPU rate 500 × 106 cycles/s and

processing energy consumption 1
730×106 J/cycle. The local

computation time 4.75×10−7 s/bit and local processing energy

consumption 3.25× 10−7 J/bit are calculated when the x264

CBR encode application (1900 cycles/byte) is considered as

App(ij) in our simulations. The input and output data sizes

of each task are assumed to be uniformly distributed from 10
to 30MB and from 1 to 3MB, respectively.

In addition, both uplink and downlink transmission capac-

ities are 150 Mbps (e.g., IEEE 802.11n) between the mobile

users and the AP, and the transmission and receiving energy

consumptions of the mobile user are both 1.42 × 10−7 J/bit

as indicated in Table 2 in [19]. The CPU rate of each server

assigned to each user at the remote cloud is 10× 109 cycle/s.
When tasks are offloaded to the cloud, the transmission rate

Rac is 15 Mpbs. The system utility cost Cci = Din(i) +
α1/fC+α2/CUL+α3/CDL, where α1 = 1018 bit×cycle/s and
α2 = α3 = 1016 bit×Mbps, will be a function of the input

data size, cloud CPU rate, and uplink and downlink capacities.

Also, β = 2.5 × 10−7 J/bit. We further set ρi = 1 J/s as the

weight of the delay to process each user’s task.

For comparison, we also consider the following methods: 1)

the local processing only method where all tasks are processed

by mobile users, 2) the cloud processing only method where

all tasks are offloaded to the cloud, 3) the lower bound of

optimum, which is obtained from the optimal objective value

of the SDR of problem (14). Notice that in all figures the real

cost under the same offloading decision and resource allocation

will always between the costs of the proposed MUMTO and
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the lower bound of optimum. Finally, all simulation results are

obtained by averaging over 100 realizations of the input and

output data sizes of each task.

In Figs. 2, we show the system cost vs. the weight β
on the system utility cost. When β becomes large, all tasks

are more likely to be processed by mobile users themselves.

Both MUMTO and the lower bound of optimum in this case

converge to the local processing only method. Though the

existence of the cloud can provide additional computation

capacity, the processing time at the cloud depends on the cloud

CPU rate fC assigned to each user. In Fig. 3, we plot the total

system cost vs. fC . As expected, a more powerful per-user

cloud CPU can dramatically increase system performance, and

MUMTO coverages to the local processing only method when

the per-user cloud CPU rate is too slow to help.

In Fig. 4, we study the system cost under various values of

weight ρ on the delays. We observe that MUMTO substantially

outperforms all other methods and is nearly optimal. Finally,

we examine the scalability of MUMTO. Fig. 5 and Fig. 6 plot

the total system cost vs. the number of usersN and the number

of tasksM per user, respectively. We see that MUMTO in both

figures is close to the lower bound of optimum, indicating that

it is nearly optimal for all N and M values.

V. CONCLUSION

A general mobile cloud computing system consisting of

multiple users and one remote cloud server has been consid-

ered, in which each user has multiple independent tasks. To

minimize a weighted total cost of energy, computation, and the

delay of all users, we aim to find the overall optimal tasks of-

floading decisions and communication resource allocation. We

show that the resultant optimization problem is a non-convex

separable QCQP. The proposed MUMTO algorithm uses SDR

and binary recovery to jointly compute the offloading decision

and communication resource allocation. By comparison with

a lower bound of the minimum cost, we show that MUMTO

gives nearly optimal performance.

2 4 6 8 10
1000

2000

3000

4000

5000

6000

7000

number of tasks per user

to
ts

l 
c
o

s
t 
(J

)

local processing

cloud processing

MUMTO

lower bound of optimum

Fig. 6. The total cost under different policies versus number of tasks per
user.
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