
Robust Network Flow Classification against
Malicious Feature Manipulation

Yupeng Li
Dept. of Electrical and Computer

Engineering
University of Toronto

Toronto, Canada
yupeng.li@utoronto.ca

Ben Liang
Dept. of Electrical and Computer

Engineering
University of Toronto

Toronto, Canada
liang@ece.utoronto.ca

Ali Tizghadam
Technology Strategy and Business

Transformation
TELUS Communications

Toronto, Canada
ali.tizghadam@telus.com

Abstract—Network flow classification is essential to proper
provisioning of Quality of Service (QoS). Conventional
machine-learning based flow classification methods assume
reliable knowledge of the flow features. However, in practice,
malicious flow generators can manipulate the flow features
to increase the likelihood of certain learning outcomes, e.g.,
in terms of the QoS requirement label. Training a classifier
that is robust to such feature manipulation is imperative. In
this work, we present a study on robust flow classification
against malicious feature manipulation. We leverage a detailed
system model to capture the relation between the classifier
and malicious flow generators and propose a Stackelberg-
game based solution framework to train a robust classifier.
We conduct extensive experimentation using real-world traces.
For flows with manipulated features, the Stackelberg classifier
trained by our solution framework significantly outperforms
a non-robust classifier that is oblivious to manipulation,
achieving accuracy close to that of the non-robust classifier on
unmanipulated flows. Furthermore, the Stackelberg classifier
on manipulated test flows is no worse than the non-robust
classifier on unmanipulated flows.

I. INTRODUCTION

Network flow classification is crucial for network re-
source management, especially to improve Quality of Ser-
vice (QoS) [1]. Classical port-based or payload-based ap-
proaches are severely ineffective, especially for encrypted
traffic [2]–[4]. A series of recent works have proposed
methods that employ machine learning techniques and
shown promising results [2]–[10]. These methods typically
use only the observable flow features, such as the minimum,
mean, maximum, and standard deviation of packet lengths
and packet inter-arrival times.

A common assumption made in these methods is reli-
able knowledge of the flow feature values. However, this
assumption may not hold, especially when malicious flow
generators exist. Such generators have a vested interest in
the classification outcome. They manipulate the features of
their flows to game the classifier for the purpose of increas-
ing the likelihood of outcomes favorable to themselves.
For example, a malicious flow generator can change the
packet inter-arrival times and the packet size in a flow in
an attempt to disguise itself to evade being blocked [11],
or to be prioritized for more network bandwidth so that the

This work has been funded by grants from TELUS and the Natural
Sciences and Engineering Research Council (NSERC) of Canada.

flow is completed faster. Though feature manipulation can
incur a cost [12], [13], the overall benefit to a malicious
generator may be positive.

Such malicious behavior can render conventional
statistics-based methods ineffective. Specifically, malicious
flow generators may be able to manipulate the flow features
to best respond to the classification model committed by the
classifier. Therefore, a flow from a malicious generator can
be misclassified, e.g., in terms of the QoS requirement level.
For example, as explained in Sec. V, our experiments with
real-world traces suggest that a classifier that is oblivious to
such malicious behavior can have a classification accuracy
down to below 40%.

Thus, a classifier that is robust to feature manipulation
is imperative. To the best of our knowledge, none of the
existing flow classification methodologies was designed
against malicious feature manipulation. In this work, we
study the open problem of robust flow classification. The
task is to classify flows into multiple classes corresponding
to different QoS levels, aiming to map each flow to its true
required QoS level. For simplicity in this initial investi-
gation, we consider the linear classification model, which
can be executed efficiently and is commonly used for flow
classification in practice [14]. Our goal is to obtain a flow
classifier that is robust to malicious manipulation.

To obtain such a robust flow classifier is challenging.
First, the feature manipulation of a malicious flow generator
is given as a best response to the classification model. Thus,
the presented features might be a function of the classifi-
cation model itself, which complicates the design space.
Second, the features are manipulated after the classifier
commits to a model. Such ex ante model can hardly best
respond to any malicious manipulation. Third, no training
data with manipulated features are available for training the
classifier.

In this work, we present a system model to capture traffic
flows, classifiers, and feature manipulation. We propose a
solution framework based on the Stackelberg game to train
a robust network flow classifier (see Fig. 1), which we term
the Stackelberg classifier. The framework supposes that the
flow features can be manipulated during model training.
The classifier, after solving a carefully formulated multi-
player Stackelberg game, commits to a classification model



corresponding to the solution, i.e., a Stackelberg equi-
librium, to the game. We conduct extensive experiments
using real-world flow traces [15]. Our experimental results
show that, in the case of manipulated flows, the proposed
Stackelberg classifier significantly outperforms a non-robust
classifier that is oblivious to malicious flow feature manip-
ulation in terms of the classification accuracy. Further, the
Stackelberg classifier on manipulated test flows can achieve
a classification accuracy (up to 0.9) that is higher than that
of the non-robust classifier on unmanipulated test flows.
When classifying flows with unmanipulated features, the
performance gap between the Stackelberg classifier and the
non-robust classifier is small.

The rest of the paper is organized as follows. We first
discuss important related works in Sec. II. Then, we present
the system model and the Stackelberg-game based solution
framework in Secs. III and IV respectively, followed by
performance evaluations in Sec. V. Finally, we give con-
cluding remarks in Sec. VI.

II. RELATED WORKS

Statistics-based flow classification approaches take ad-
vantage of machine learning techniques such as supervised
[3], [5], [16]–[18], unsupervised [8], [19], [20], and semi-
supervised learning [2], [10], [21]. However, these methods
are oblivious to malicious flow feature manipulation, ren-
dering them unsuitable for robust flow classification.

A few recent works study robust flow classification with-
out feature manipulation [3], [20], [22], [23]. To identify
flows from a mixture of known and unknown applications,
Erman et al. [20] integrated a set of supervised training data
with unsupervised learning. Zhang et al. [3] addressed the
problem of zero-day applications in traffic classification,
and proposed a robust binary classifier that can identify
flows of zero-day applications and accurately discriminate
predefined application classes. Wang et al. [22] proposed
to combine flow clustering based on application signatures.
Wang et al. [23] proposed a flow classifier that is robust
to mislabelled training samples, which incorporates noise
elimination and suspected noise reweighing. These works
are different from ours in that none of them takes into
account malicious feature manipulation.

Recently, an increasing number of works investigate
generic machine learning models that are trained or tested
on data controlled by adversarial agents [24]. Some of them
concentrate on classification [25]–[27]. They consider only
one agent that can manipulate the data features and their
approaches are applicable to binary classification. Different
from these works, our solution framework is based on a
specifically formulated system model with multiple flow
generators that captures practical issues in multi-label traffic
flow classification.

III. SYSTEM MODEL

A. Traffic Flows

We consider traffic flows each with M predefined flow
features, denoted by xi ∈ RM . For instance, we can take
standard features such as packet inter-arrival times and

packet lengths as two of the flow features. Each flow has a
truthful level of QoS requirement k ∈ K = {1, 2, · · · ,K}
[17], [28]. Without loss of generality, we assume that the
higher k is, the weaker is the QoS requirement, for example,
less delay sensitive. Let yi ∈ RK be a one-hot vector
denoting flow i’s true level of QoS requirement. We denote
the k-th element of yi as y

(k)
i . Thus, if the true level

is k∗, then y
(k∗)
i = 1 and y

(k)
i = 0,∀k 6= k∗. As an

example, in our experiments shown in Sec. V, the true level
of QoS requirement of each flow is assigned according to
the application it belongs to. Note that the flow features we
choose do not include the application information as such
information is difficult to acquire in most scenarios. Thus,
each flow is associated with a tuple (xi,yi).

The service provider allocates transmission resource to
each flow according to its prediction of the flow’s label, and
each flow generator receives its utility given the service
provider’s resource allocation. A flow generator corre-
sponds to an application, a user, or some other entity who
is concerned about the QoS level of the flow. To represent
the generator’s utility, we consider a general loss function
Lg(ŷi,yi) where ŷi is the predicted score of flow i. In the
tradition of machine learning, a classification model first
computes the score vector ŷi, based on which a specific
label is finally assigned. In this work, for simplicity of
illustration, we assume Lg(ŷi,yi) = bT ŷi, where b ∈ RK

is a weight vector characterizing how an assigned label
would affect the performance of a flow. One can employ
other appropriate loss models here.

B. Classifier

We consider a linear classifier with a decision function
ŷi = ATxi, where matrix A ∈ RM×K . The scores are
then mapped to the predicted QoS level by model hc(xi) =

argmaxk ŷ
(k)
i . It is beneficial to use a linear classifier for

flow classification, especially for classifying flows on the
fly, as it can be efficiently executed. Our evaluation in Sec.
V demonstrates that a linear classifier can achieve sufficient
classification accuracy.

Denote by Lc(ŷi,yi) the loss function of the classifier
with respect to flow i. The loss function in this work is
general, but in our experiments, we adopt the commonly
used Categorical Cross-Entropy Loss as an example [29].
We refer readers to Sec. V for more details. We use
the Frobenius norm of A, Rc(A) =

∑
i

∑
j A

2
i,j , as a

regularizer to reduce overfitting. Therefore, the classifier’s
cost function is Cc(A,yi, ŷi) = Lc(ŷi,yi) + γcRc(A),
where γc ≥ 0 controls the trade-off of the regularizer
against the loss. Since ŷi(xi) is a function of xi, we can
rewrite Cc(A,yi, ŷi) as Cc(A,yi,xi).

C. Feature Manipulation

Flow generators manipulate flow features to game the
classifier in order to obtain better performance. In a high-
speed network, it is generally expensive to build hardware
for packet flow manipulation at line rate [12], [13]. On
the other hand, software-based packet flow manipulation
requires frequent interaction with the memory (e.g., read



TABLE I: Summary of Key Notation.

Notations Meaning

M # of selected features
K # of classes
xi Features of flow i
x̂i Manipulated features of flow i
yi True label of flow i
ŷi Predicted score of flow i
A Parameters of the linear classifier
Lg Loss of flow generator
b Weighting vector of the loss of flow generator
Lc Loss of classifier
Cm Manipulation cost of flow generator
Rc Regularizer of classifier
Cg Cost of flow generator
Cc Cost of classifier

and write operations). Furthermore, some manipulation
such as changing header fields requires more complex
operation. Therefore, software-based manipulation at line
rate is non-trivial and often reduces the performance of the
flow. Thus, we assume that a manipulation cost Cm(x̂i,xi)
is incurred when the feature is manipulated from xi to x̂i.
In this work, we take Cm(x̂i,xi) = ‖a ◦ (x̂i − xi)‖2,
where a = [a1, a2, · · · , aM ]T is a vector representing
the weights of manipulating each feature.1 Then, the cost
function of a malicious generator corresponding to flow i is
Cg(A,xi,yi, x̂i, ŷi) = Lg(ŷi,yi) + γgCm(x̂i,xi), where
γg ≥ 0 controls the trade-off of the manipulation cost
against the flow’s performance loss.

Key notation in this paper are summarized in Table I.

IV. STACKELBERG-GAME SOLUTION FRAMEWORK

Our goal is to train a classifier that is robust to feature
manipulation using a set of traffic flows (with original fea-
tures) as training data. Suppose the set N of n flows are the
flows used to train our classifier, which we call the training
flows. Our approach is to train a classifier supposing that
the features of the training flows can be manipulated, at
some manipulation cost defined in Sec. III, in response
to the classification model. This can be modeled as an
(n+1)-player Stackelberg game played by a leader and n
followers. It consists of two stages [30]. In the first stage,
the classifier (as a leader) decides the model parameters A.
In the second stage, each of the n flow generators (as a
follower) manipulates the original features xi to features
x̂i,∀1 ≤ i ≤ n, to best respond to the classification model
parameterized by A. In this game, the strategies of the
classifier and flow generators are respectively the model
parameters committed and manipulated features chosen.
Thus, the strategy profile of the game is (A, {x̂i}i∈N ).
The cost functions of the classifier and flow generators in
this game are the same as those in Sec. III.

To obtain model parameters that leads to an optimal
cost for the classifier, we need to find a Stackelberg
equilibrium (SE). An SE is defined as a subgame perfect

1Here, ‖ · ‖ is the Euclidean norm and “◦” denotes element-by-element
multiplication.

Nash equilibrium or equilibria (SPNE) of the game, i.e.,
a strategy profile that serves best each player, given the
strategies of other players, and that entails every player
in a Nash equilibrium in every subgame.2 Note that every
finite extensive-form game has at least one SPNE [31].
Obviously, our Stackelberg game can be represented as
a finite extensive-form game, and thus, it has an SE.
In equilibrium, the strategy profile is a solution of the
following problem:

min
A∈RM×K

∑
i∈N
Cc(A,yi, x̂i) (1)

s.t. x̂i ∈ argmin
x′i∈RM

Cg(A,xi,yi, x̂i, ŷi),∀i ∈ N (2)

Each constraint above corresponds to a flow in the training
data and states that the manipulated features x̂i minimizes
the cost function Cg(A,xi,yi, x̂i, ŷi) of the i-th flow gen-
erator given model parameters A are fixed. We observe that,
for given (and fixed) model parameters A, the constraints
are independent of each other. For fixed A, a manipulated
feature xi of the i-th flow best responds to A by minimizing
its own cost

min
x′i∈RM

Cg(A,xi,yi, x̂i, ŷi). (3)

That is, minx′i∈RM Lg(ŷi(x
′
i),yi) + γgCm(x′i,xi), which

is convex in x′i. By applying the Karush–Kuhn–Tucker
conditions, we have

∇ACg(A,xi,yi, x̂i, ŷi) = 0. (4)

That is,

Ab+
γg
2
a ◦ (x̂i − xi) = 0. (5)

Define a′ = [ 1
a1
, 1
a2
, · · · , 1

aM
]T . Thus, x̂i is uniquely

defined as

x̂i = xi −
1

2γg
a′ ◦ (Ab), for all i ∈ N . (6)

By substituting x̂i’s into the above problem, we have

min
A∈RM×K

∑
i∈N

Lc(ŷi(xi)−
1

2γg
AT (a′◦(Ab)),yi)+γcRc(A).

(7)
The convexity of this problem depends on the loss function
Lc of the classifier chosen. We can solve it using efficient
algorithms such as SLSQP [32] and FastCubic [33]. We
denote the optimal solution of problem (7) as A∗. When
there are multiple optimal solutions, we can tie break
arbitrarily. After that the classifier commits to a classifier
parameterized by A∗.

Fig. 1 illustrates our solution framework to train the pro-
posed Stackelberg classifier. We term the classifier trained
by this solution framework the Stackelberg classifier.

2In our game, a subgame is either the Stackelberg game itself or the
game in which model parameters are given and fixed and flow generators
are the only players.



Traffic flows as training data

Suppose the features can be manipulated

Solve a Stackelberg game

Commit to a model A*

Fig. 1: A Stackelberg-game based solution framework to
train a robust classifier.

V. EXPERIMENTAL EVALUATION

A. Methodology

1) Data Trace: We use packet trace for different periods
of the 24-hour day from [15], [34]. All packets in the trace
are TCP packets. One TCP connection corresponds to a
flow. The data trace contains 377,526 flows in total. Each
record of the trace consists of a variety of characteristic
features for a flow. We consider 100 standard features
including the minimum, mean, maximum, and standard
deviation of client to server (and server to client) packet
lengths and packet inter-arrival times, number of client
to server (and server to client) packets and bytes, and
the duration of the network connection. They are features
numbered 3-9, 195-208, 10-30, 153-194, 210-215, 31-40
in [18]. These features are chosen since they are easier to
manipulate by a flow generators in practice. Note that the
chosen flow features do not contain the application type, as
such information is usually difficult to acquire.

For performance evaluation, we extract from the packet
trace 12 application types, which are www, mail, ftp-
control, ftp-pasv, attack, p2p, database, ftp-data, multime-
dia, services, interactive, and games. We further assume
four different QoS levels (k = 1, 2, 3, 4). We assign each
flow a QoS level (as its true label) according to the applica-
tion it belongs to, roughly based on the application’s delay
requirement, as follows: k = 1: multimedia, interactive,
games, and ftp-control; k = 2: attack, www, and p2p;
k = 3: database, ftp-data, and services; k = 4: mail and
ftp-pasv. The distribution of the flows with different QoS
levels is unbalanced. Thus we use the Synthetic Minority

0.67

0.68
max
75th quantile

median

25th quantile

min

Non-Robust-M
Stackelberg-M

Non-Robust-U
Stackelberg-U

0.12

0.14

0.16

Solutions

Er
ro

r R
at

e

Fig. 2: Performance of the Stackelberg classifier and the
baselines.

Oversampling Technique (SMOTE) [35] for balance, which
generates new instances from existing minority classes but
does not change the number of majority classes. We divide
the datasets into 4:1 training and testing subsets uniformly
randomly.

2) Performance Metrics and Baselines: We take the
testing error rate as our performance metric. For com-
parison, we consider a non-robust classifier obtained by
minimizing the total cost

∑
i∈N Cc(A,yi,xi) defined over

the unmanipulated features xi for all i ∈ N . We compare
the error rate of the proposed Stackelberg classifier (denoted
by Stackelberg-M) with the following three baselines of
error rates, corresponding to specific trained models and
testing data (flows with unmanipulated or manipulated
features):
• Non-Robust-M: non-robust classifier tested by manip-

ulated features.
• Non-Robust-U: non-robust classifier tested by unma-

nipulated features.
• Stackelberg-U: Stackelberg classifier tested by unma-

nipulated features.
3) Experiment Setting: We adopt the Categorical Cross-

Entropy Loss as the classifier’s loss function, which is
commonly used in practice and defined as Lc(ŷi,yi) =

− log eŷ
T
i yi∑

k eŷ
(k)
i

[29]. The optimizer used in our experiments

is SLSQP [32]. We set a to an all-ones vector. We evaluate
the performance of the Stackelberg classifier in different
settings by varying the values of key parameters around the
default setting of (γc, γg,b) = (1, 100, [8, 4, 2, 1]). In each
experiment, either Stackelberg or the non-robust classifier
is trained for 30 times, each with a newly splitted training
and testing subsets. All experiments are run on a machine
with two Intel(R) Xeon(R) CPU E5-2650 v4 2.20GHz with
32GB memory and 1.8TB hard drive.

B. Performance of Stackelberg Classifier

Fig. 2 illustrates the performance of the Stackelberg
classifier and the baselines. We make the following ob-



0.4

0.6

0.8

0.025 0.1 0.4 1.6

0.1

0.2

0.3

Weight of Regularizer

Er
ro

r R
at

e

Non-Robust-M
Stackelberg-M

Non-Robust-U
Stackelberg-U

Fig. 3: Impact of weight of regularizer γc.

0.4

0.6

0.8

0.2 0.4 0.8 1.6
0.10

0.15

Weight of Manipulation Cost

Er
ro

r R
at
e

Non-Robust-M
Stackelberg-M

Non-Robust-U
Stackelberg-U

Fig. 4: Impact of weight of manipulation cost γg .

0.65

0.70

0.75

1 2 3 4
0.12

0.14

0.16

0.18

Weight Vector of Flow Loss

Er
ro
r R

at
e

Non-Robust-M
Stackelberg-M

Non-Robust-U
Stackelberg-U

Fig. 5: Impact of weight vector of flow loss b
set to [8, 4, 2, 1] (1), [16, 8, 4, 1] (2), [32, 16, 8, 1] (3),
[128, 64, 32, 1] (4), [256, 128, 64, 1] (5).

servations: 1) When the testing data are manipulated in
response to the classification model, the Stackelberg classi-
fier can decrease the error rate by up to (0.675-0.122=)
0.553, compared with the non-robust classifier. 2) The
error rate achieved by the Stackelberg classifier when
facing manipulated flow features (0.122) are less than the
error rate achieved by the non-robust classifier tested by
unmanipulated features (0.13). 3) Further, when the features
of testing traffic flows are unmanipulated, the gap of the
performance in classification accuracy between Stackelberg
classifier and non-robust classifier is (only) (0.161-0.13=)
0.031.

Our results reveal that one can replace the non-robust
classifier with the Stackelberg classifier to classify flows
generated by either malicious or normal flow generators.

C. Impact of Parameters on Error Rate

We evaluate the impact of learning and systems param-
eters on the Stackelberg classifier’s performance in terms
of the error rate. In each experiment, based on the default
parameter setting, we vary the parameter concerned.

1) Weight of Regularizer γc: We evaluate the impact of
the weight of regularizer γc as it is varied among 0.025,
0.1, 0.4, and 1.6. Fig. 3 shows the results. When the testing
data are manipulated in response to the classification model,
the Stackelberg classifiers maintain superior performance in
classification accuracy. When the features of testing traffic
flows are unmanipulated, the gap of the performance in
classification accuracy between Stackelberg and non-robust
classifiers is at most 0.03 (corresponding to γc = 0.1).
Note that the regularizer plays an important role to lessen
the chance of overfitting when training a classification
model. We observe that γc = 0.025 gives our Stackelberg
classifier (and the non-robust classifier when the features
are unmanipulated) the best performance. Our result sheds
light on tuning the parameters in the classification model
in practice.

2) Weight of Manipulation Cost γg: Recall that γg ≥ 0
controls the trade-off of the manipulation cost against the
loss. In this experiment, we evaluate the impact of γg on the
performance of the proposed Stackelberg classifier and the
baselines. Note that the baseline Non-Robust-U is trained
and tested using the unmanipulated original features. Thus,
it is not affected by γg . We can observe in Fig. 4 that
the Stackelberg classifiers maintain superior and stable
performance in classification accuracy (=0.875) when the
flow features are manipulated. Further, we can find that the
error rates that Non-Robust-M achieves decrease with the
increase of γg . The reason is that higher manipulation cost
leads to lower likelihood for the (malicious) flow generators
to manipulate their features.

3) Weight Vector of Flow Loss b: In this experiment, we
evaluate the impact of weight vector of the loss function b
on the performance of the algorithms. b is set to [8, 4, 2, 1]
(1), [16, 8, 4, 1] (2), [32, 16, 8, 1] (3), [128, 64, 32, 1] (4),
[256, 128, 64, 1] (5). Note that the baseline Non-Robust-U
is not affected by b as it is trained and tested using the
unmanipulated original features. In Fig. 5, we can observe



that, Stackelberg-M and Stackelberg-U have stable perfor-
mances in the error rate respectively while Non-Robust-M
does not. With the increase of the variance in the weights to
different labels (i.e., QoS levels), the chance for a malicious
flow generator to manipulate its flow features increases.
Thus, the results show that the Stackelberg classifier is
robust to the manipulation behaviors of the malicious flow
generators.

VI. CONCLUSION

We have studied the problem of robust flow classifica-
tion under malicious feature manipulation. We consider a
detailed system model and propose a solution framework
based on Stackelberg games. Extensive experiments on real-
world flow traces show that the proposed Stackelberg clas-
sifier trained by our proposed solution framework signifi-
cantly outperforms the non-robust classifier that is oblivious
to malicious flow feature manipulation. When classifying
flows with the original unmanipulated features, the gap
of the performance between the Stackelberg classifier and
the non-robust classifier is small. Therefore, one can apply
the Stackelberg classifier to classify flows generated by
either malicious or normal flow generators. We have also
evaluated the impact of key parameters, e.g., the weight
of regularizer, the weight of manipulation cost, and the
weight vector of flow loss, on the classification accuracy.
Our experimental evaluation sheds light on how to tune
the parameters in the classification model in practice as
well. For example, the weight of regularizer γc = 0.025
gives the Stackelberg classifier the best performance. In
practice, feature manipulation can be performed adaptively
in response to the latest classification model committed
by the classifier. It is interesting to study robust online
flow classification against such adaptive malicious feature
manipulation.

REFERENCES

[1] T. T. Nguyen and G. J. Armitage, “A survey of techniques for internet
traffic classification using machine learning.” IEEE Communications
Surveys and Tutorials, vol. 10, no. 1-4, pp. 56–76, 2008.

[2] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classifica-
tion: An overview,” IEEE Communications Magazine, vol. 57, no. 5,
pp. 76–81, 2019.

[3] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust net-
work traffic classification,” IEEE/ACM Transactions on Networking
(TON), vol. 23, no. 4, pp. 1257–1270, 2015.

[4] T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and
continuous machine-learning-based classification for interactive ip
traffic,” IEEE/ACM Transactions on Networking, vol. 20, no. 6, pp.
1880–1894, 2012.

[5] B. Anderson and D. McGrew, “Machine learning for encrypted
malware traffic classification: accounting for noisy labels and non-
stationarity,” in Proc. ACM SIGKDD, 2017.

[6] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and A. V. Vasilakos, “An
effective network traffic classification method with unknown flow
detection,” IEEE Transactions on Network and Service Management,
vol. 10, no. 2, pp. 133–147, 2013.

[7] A. Este, F. Gringoli, and L. Salgarelli, “Support vector machines for
tcp traffic classification,” Computer Networks, vol. 53, no. 14, pp.
2476–2490, 2009.

[8] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salama-
tian, “Traffic classification on the fly,” ACM SIGCOMM Computer
Communication Review, vol. 36, no. 2, pp. 23–26, 2006.

[9] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using
clustering algorithms,” in Proc. ACM SIGCOMM MineNet, 2006.

[10] S. Rezaei and X. Liu, “How to achieve high classification accuracy
with just a few labels: A semi-supervised approach using sampled
packets,” arXiv preprint arXiv:1812.09761, 2018.

[11] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Tunnel hunter:
Detecting application-layer tunnels with statistical fingerprinting,”
Computer Networks, vol. 53, no. 1, pp. 81–97, 2009.

[12] S. Pontarelli, M. Bonola, and G. Bianchi, “Smashing SDN ‘built-in’
actions: rogrammable data plane packet manipulation in hardware,”
in Proc. IEEE NetSoft, 2017.

[13] M. Meitinger, R. Ohlendorf, T. Wild, and A. Herkersdorf, “A
programmable stream processing engine for packet manipulation in
network processors,” in Proc. IEEE ISVLSI, 2007.

[14] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z.-L. Zhang, “A
modular machine learning system for flow-level traffic classification
in large networks,” ACM Transactions on Knowledge Discovery from
Data, vol. 6, no. 1, p. 4, 2012.

[15] “Nprobe: Scalable Network Monitoring Architecture,” https://www.
cl.cam.ac.uk/research/srg/netos/projects/archive/nprobe/, 2019.

[16] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan,
“Network traffic classification using correlation information,” IEEE
Transactions on Parallel and Distributed systems, vol. 24, no. 1, pp.
104–117, 2012.

[17] M. Lopez-Martin, B. Carro, J. Lloret, S. Egea, and A. Sanchez-
Esguevillas, “Deep learning model for multimedia quality of expe-
rience prediction based on network flow packets,” IEEE Communi-
cations Magazine, vol. 56, no. 9, pp. 110–117, 2018.

[18] A. W. Moore and D. Zuev, “Internet traffic classification using
bayesian analysis techniques,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 33, no. 1, 2005, pp. 50–60.

[19] Y. Wang, Y. Xiang, J. Zhang, W. Zhou, G. Wei, and L. T. Yang,
“Internet traffic classification using constrained clustering,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 11,
pp. 2932–2943, 2013.

[20] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Of-
fline/realtime traffic classification using semi-supervised learning,”
Performance Evaluation, vol. 64, no. 9-12, pp. 1194–1213, 2007.

[21] X. Li, F. Qi, D. Xu, and X. Qiu, “An internet traffic classification
method based on semi-supervised support vector machine,” in Proc.
IEEE ICC, 2011.

[22] Y. Wang, Y. Xiang, and S.-Z. Yu, “An automatic application sig-
nature construction system for unknown traffic,” Concurrency and
Computation: Practice and Experience, vol. 22, no. 13, pp. 1927–
1944, 2010.

[23] B. Wang, J. Zhang, Z. Zhang, W. Luo, and D. Xia, “Robust traffic
classification with mislabelled training samples,” in Proc. IEEE
ICPADS, 2015.

[24] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar,
“Adversarial machine learning,” in Proc. ACM AISEC, 2011.

[25] J. Dong, A. Roth, Z. Schutzman, B. Waggoner, and Z. S. Wu,
“Strategic classification from revealed preferences,” in Proc. ACM
EC, 2018.

[26] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games
for adversarial learning problems,” Journal of Machine Learning
Research, vol. 13, no. Sep, pp. 2617–2654, 2012.

[27] M. Hardt, N. Megiddo, C. Papadimitriou, and M. Wootters, “Strate-
gic classification,” in Proc. ACM ITCS, 2016.

[28] R. L. Gomes and E. R. M. Madeira, “A traffic classification agent
for virtual networks based on QoS classes,” IEEE Latin America
Transactions, vol. 10, no. 3, pp. 1734–1741, 2012.

[29] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[30] H. Von Stackelberg, Market structure and equilibrium. Springer
Science & Business Media, 2010.

[31] M. J. Osborne et al., An introduction to game theory. Oxford
university press New York, 2004, vol. 3, no. 3.

[32] J. Nocedal and S. Wright, Numerical Optimization. Springer
Science & Business Media, 2006.

[33] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma, “Finding
approximate local minima faster than gradient descent,” in Proc.
ACM STOC, 2017.

[34] A. Moore, D. Zuev, and M. Crogan, “Discriminators for use
in flow-based classification,” https://www.cl.cam.ac.uk/∼awm22/
publication/moore2005discriminators.pdf, Tech. Rep. RR-05-13,
2013.

[35] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.


