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Abstract—We consider wireless network virtualization (WNV)
in an uplink multiple-input multiple-output system, where multi-
ple service providers (SPs) operate in virtually isolated networks
managed by an infrastructure provider (InP) that owns the
communication equipment. Service isolation is achieved at the
physical layer by exploiting a large number of antennas at
the base stations. We formulate this WNV as a non-convex
optimization problem for the InP, jointly considering the uplink
receive beamforming at the BS and the transmit power of the
SPs’ subscribing user devices. We decompose the problem into
two subproblems and derive closed-form solutions to both. We
then adopt an alternating optimization approach to combine the
closed-form solutions to solve the original problem. Our simulation
results show that the proposed method provides strong service
isolation among the SPs while retaining efficiency similar to or
better than centralized beamforming without virtualization, and
it substantially outperforms traditional WNV with strict resource
separation.

I. INTRODUCTION

Implementation of new telecom infrastructure by communi-
cation service providers (SPs) continues to present significant
barriers to market entry due to high initial capital expenses
and deployment costs. To address this issue, wireless network
virtualization (WNV) has been proposed as a framework for
sharing the physical resources in a network among multiple
SPs. A typical WNV system consists of the SPs and a separate
entity that is called the infrastructure provider (InP). The InP
manages the network’s physical resources and splits them into
virtual slices. These virtual slices are leased upon request
to the SPs that, in turn, utilize them to provide services to
their subscribing users. An SP demands services from the
InP without needing knowledge of the existence of any other
SPs. Although multiple SPs share the same infrastructure, none
of them is expected to consider inter-SP interference in their
design for the demands. Thus, it is the job of the InP to provide
service isolation, i.e., to satisfy the demand of each SP without
affecting the other SPs.

Although virtualization has been well studied for wired
networks [1], WNV is more complicated, with the need to
share both the hardware and the radio spectrum, and with
new challenges arising in guaranteeing service isolation under
wireless interference [2]. To achieve service isolation among
the SPs in a wireless network, most existing works propose
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strict separation of the physical resources, an approach rooted
in the traditional solution for wired network virtualization. This
strict separation could be in the form of dividing the time,
frequency spectrum, resource blocks, or the number of antennas
among different SPs [3]–[8]. However, this strict separation
limits the design space of virtualization since it does not explore
the spatial dimension. It has been shown that strict separation
can lead to inefficient resource utilization and severe loss of
system throughput [9], [10].

The authors in [9] were the first to separate the SPs using
multiple-input multiple-output (MIMO) signal processing tech-
niques while they share all physical resources of a base station
(BS). They minimized the InP’s transmission power while pro-
viding a prescribed level of service isolation. The work in [10]
also used beamforming to provide service isolation among the
users of different SPs, while aiming to minimize the expected
deviation between the InP’s supply and the SPs’ demands.
Building on the idea in [10], the authors in [11] formulated
an online WNV problem that minimizes the time-averaged
expected deviation under long-term and short-term transmit
power constraints at the BS. All these papers considered the
virtualization of the wireless downlink. However, the problem
of uplink WNV is equally important. The beamforming solution
techniques developed for downlink WNV cannot be applied
to the uplink. In particular, in uplink WNV, we need to
additionally manage the transmit powers of the users of all
SPs, to effectively reduce their interference with each other.

In this paper, we focus our attention on uplink WNV. We
provide the required virtualization and service isolation by
exploiting the spatial structure in MIMO communications. We
jointly design the uplink receive beamforming vectors at the BS
and the transmit power of user devices, for the InP to supply
the signals demanded by the SPs while suppressing the inter-
SP interference. The contributions of this paper are summarized
below:

• We formulate the above uplink MIMO WNV as a joint
beamforming and power control optimization problem,
to minimize the deviation between the SPs’ demanded
received signals and the actual received signals supplied by
the InP. Our formulation allows all SPs to simultaneously
enjoy the full physical resources available at the InP while
providing them with the required service isolation.

• Observing that the formulated joint optimization problem



is biconvex, we solve it by first decomposing it into two
subproblems. We derive closed-form solutions to both
subproblems. Then, a solution to the joint optimization
problem is obtained via alternating optimization, which
guarantees convergence to a partial optimum. The pro-
posed approach applies to both single-cell and multi-cell
WNV.

• Our simulation results indicate that the proposed virtual-
ization solution is no less efficient than centralized beam-
forming without virtualization, while providing strong
service isolation among the SPs. It also substantially
outperforms the traditional virtualization scheme of strictly
separating the frequency bands among the SPs.

The rest of this paper is organized as follows. In Section II,
the WNV system model is presented, and the joint beamform-
ing and power control optimization problem is formulated. We
then detail our solution in Sections III and IV, for single-cell
and multi-cell systems, respectively. The proposed solution is
evaluated via simulation and compared with other methods in
Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We study uplink communication in WNV with M SPs. For
clarity of exposition, initially we consider the scenario where
they share a single BS with N antennas. In Section IV we
will extend our solution to the multi-cell scenario. The BS
is governed by an InP that performs the virtualization of the
system, i.e., slicing the system into M virtual networks, each
for an SP. We assume that all other parts of the network,
including the core network and computational resources, are
already virtualized and can be utilized by the InP and the SPs.

Without loss of generality, we focus on any one multiple-
access channel that is shared by all SPs. Suppose that SP m
serves Km users in this shared channel. Let K =

∑M
m=1 Km be

the total number of users. Each SP assembles certain demands
to be fulfilled by the InP, so that its subscribing users achieve
some desired performance, e.g., maximum sum-rate or fairness.
The SPs design their demands in ignorance of each other, and
thus, it is the responsibility of the InP to supply the requested
demands of all SPs while managing the wireless interference
among them, i.e., providing service isolation.

More precisely, each SP m requests that the InP uses a set
of beamforming vectors wm,i ∈ CN×1, ∀i ∈ {1, · · · ,Km} to
decode the messages of its users, and that its users transmit
their signals with powers pm = [pm,1, pm,2, · · · , pm,Km

]
T ∈

RKm . Let xm = [xm,1, xm,2, · · · , xm,Km
]
T ∈ CKm be the

transmitted symbol vector of the users of SP m. Without loss
of generality, we set E

{
xm

}
= 0 and E

{
xH
mxm

}
= IKm

.
The received signal at the BS, from SP m’s perspective, is

ŷdesired
m = Hmdiag(qm)xm + n, (1)

where Hm = [hm,1,hm,2, · · · ,hm,Km ] ∈ CN×Km is the
channel matrix from the users of SP m to the different antenna
elements at the BS, qm =

[√
pm,1, · · · ,

√
pm,Km

]T ∈ RKm is
the amplitude of the transmitted signals by all of those users,

and n ∼ CN (0, σ2
nIN ) is the additive white Gaussian noise at

the antenna’s side. Then, by the design of SP m, the decoded
received signal vector of all users subscribed to SP m is given
by

x̂desired
m = Wmŷdesired

m = Wm(Hmdiag(qm)xm + n), (2)

where Wm = [wm,1,wm,2, · · · ,wm,Km ]
T ∈ CKm×N is the

beamforming matrix applied at the BS to decode the messages
of the users of SP m. The desired decoded received signals for
all users in all SPs in the cell can thus be written as

x̂desired =
[
x̂desiredT
1 , x̂desiredT

2 , · · · , x̂desiredT
M

]T
= Ddiag(q)x+Wn, (3)

where x = [xT
1 ,x

T
2 , · · · ,xT

M ]T ∈ CK is the transmitted
symbol vector of all users, q = [qT

1 ,q
T
2 , · · · ,qT

M ]T ∈ RK

denotes their transmitted signal amplitudes, D is a block
diagonal matrix representing the virtualization demand and is
given by D = blkdiag {W1H1,W2H2, · · · ,WMHM}, and
W =

[
WT

1 ,W
T
2 , · · · ,WT

M

]T
is a stacking of the beamform-

ing matrices designed by all SPs.
The desired signal in (3), designed by the SPs, is non-realistic

and cannot be directly achieved since it does not account for the
interference between SPs. This inter-SP interference occurs due
to the fact that all SPs use the same time-frequency resources,
while they are being oblivious to one another. It is, however,
the InP that makes the actual beamforming design and chooses
the user transmit powers to achieve its goal of satisfying the
demands while providing service isolation among different SPs.

The actual decoded received signal vector of all users in the
cell is given by

x̂actual = VHdiag(q̄)x+Vn, (4)

where V ∈ CK×N is the beamforming matrix, designed
and implemented by the InP, to all users and all SPs, H =
[H1,H2, · · · ,HM ] ∈ CN×K is the overall channel matrix
from all users to the BS, and q̄ is the signal amplitude vector
set by the InP for all users. Note that q̄ in (4) could be the
same as q in (3) but it generally is not, which provides the InP
with more degrees of freedom in its design to achieve its goal.

As an inherent characteristic of WNV, the InP aims to supply
the demands requested by the different SPs, which may be
based on some prior agreements between the InP and the SPs.
The demands, as described in (3), are fully characterized by
the receive beamforming matrices and user transmit powers,
i.e., Wm and qm ∀m. Noting that the form in (3) represents
perfect isolation between SPs, it is a logical choice for the InP
to aim at making x̂actual as close to x̂desired as possible. In this
work we consider the expected l2-norm deviation between the
virtual and actual received signals, which is given by

f(V,q̄) = E
{∥∥x̂actual − x̂desired

∥∥2
2

}
, (5)

where the expectation is taken over x and n.



Thus, it is the job of the InP to solve the following optimiza-
tion problem:

min
V,q̄

E
{∥∥x̂actual − x̂desired

∥∥2
2

}
(6a)

s.t. 0 ≼ q̄ ≼ qmax. (6b)

As seen above, the InP jointly optimizes the beamforming
matrix and the transmit powers to minimize the expected devia-
tion. The power constraint in (6b) gives the InP the permission
to use any power value below the users’ maximum available
power qmax. We remark that another practically meaningful
variation of this constraint is to prevent the InP from assigning
powers that are greater than the requested powers, which can
be reflected by replacing constraint (6b) with 0 ≼ q̄ ≼ q.
The solution in Sections III and IV can be easily modified to
facilitate this case as well.

III. PROPOSED SOLUTION FOR SINGLE-CELL WNV

The first step into tackling problem (6) is to simplify the
deviation expression in the objective. We have

f(V, q̄) = E
{∥∥x̂actual − x̂desired

∥∥2
2

}
= E

{∥∥∥(VHdiag(q̄)−Ddiag(q))x+ (V −W)n
∥∥∥2
2

}
= ∥VHdiag(q̄)−Ddiag(q)∥2F + σ2

n ∥V −W∥2F , (7)

where the last line is obtained using the properties ∥x∥22 =

xHx = tr
(
xHx

)
, ∥A∥2F = tr

(
AAH

)
, and E{tr (·)} =

tr (E{·}). With this, problem (6) can be written as

min
V,q̄
∥VHdiag(q̄)−Ddiag(q)∥2F + σ2

n ∥V −W∥2F (8a)

s.t. 0 ≼ q̄ ≼ qmax. (8b)

This is a non-convex optimization problem in two sets of
decision variables, so it cannot be solved via regular convex
optimization techniques. However, a careful look into the
problem suggests that this problem is biconvex [12], i.e., it
is convex in V and q̄ but not jointly in both.

Our approach to solving problem (8) is by decomposing it
into a beamforming subproblem to optimize V and a power
control subproblem to optimize q̄. In the following subsections,
we provide a closed-form solution to each of them. Then,
we use an alternating optimization approach to find a partial
optimum of the original joint optimization problem.

1) Beamforming subproblem: Here, we treat q̄ in problem
(8) as a constant and solve the beamforming subproblem by
optimizing V. We use Q̄ = diag(q̄) and Q = diag(q) to
simplify the notation. We find the optimal beamforming matrix
V⋆ by solving the beamforming subproblem given by

min
V

∥∥VHQ̄−DQ
∥∥2
F
+ σ2

n ∥V −W∥2F . (9)

This is an unconstrained convex program with a single mini-
mum that can be located by finding the matrix V that makes
the gradient of the objective function vanish.

We start by writing the Frobenius norms in the objective as
traces to make the objective easier to differentiate:

f(V, q̄) = tr
(
VHQ̄Q̄HHHVH

)
− tr

(
DQQ̄HHHVH

)
− tr

(
VHQ̄QHDH

)
+ tr

(
DQQHDH

)
+ σ2

n tr
(
VVH

)
− σ2

n tr
(
WVH

)
− σ2

n tr
(
VWH

)
+ σ2

n tr
(
WWH

)
.

Let V† be the complex conjugate of V. Differentiating f(V, q̄)
with respect to V† gives

∂f(V, q̄)

∂V† = VHQ̄Q̄HHH −DQQ̄HHH + σ2
nV − σ2

nW

where we have used trace differentiation rules [13]. Since
the matrix

(
HQ̄Q̄HHH + σ2

nI
)

is positive definite, we solve
∂f(V,q̄)

∂V† = 0 and obtain the following closed-form expression
for V⋆:

V⋆ =
(
DQQ̄HHH + σ2

nW
) (

HQ̄Q̄HHH + σ2
nI
)−1

. (10)

2) Power control subproblem: In this part, we treat V
in problem (8) as a constant and solve the power control
subproblem to find the optimal q̄⋆. This subproblem is given
by

min̄
q
∥VHdiag(q̄)−Ddiag(q)∥2F + σ2

n ∥V −W∥2F (11a)

s.t. 0 ≼ q̄ ≼ qmax. (11b)

This is a constrained convex optimization problem. Strong
duality holds in this problem since Slater’s condition is trivially
satisfied.

We solve this problem by studying the KKT conditions [14].
To do so, we start by letting A = VH. Now, the objective
can be written as f(V, q̄) = ∥Adiag(q̄)−Ddiag(q)∥2F +

σ2
n ∥V −W∥2F . The Lagrangian of this problem is

L(q̄,λ,µ) = ∥Adiag(q̄)−Ddiag(q)∥2F + σ2
n ∥V −W∥2F

+ λT (q̄− qmax)− µT q̄

=

K∑
j=1

q̄2ja
H
j aj −

K∑
j=1

qj q̄jd
H
j aj −

K∑
j=1

qj q̄ja
H
j dj

+ C + λT (q̄− qmax)− µT q̄, (12)

where aj and dj are respectively the jth columns of A and
D, C =

∑K
j=1 q

2
jd

H
j dj + σ2

n ∥V −W∥2F is the sum of
the terms that are independent of q̄, and λ and µ are the
Lagrange multipliers associated with the constraints in (11b).
Differentiating L(q̄,λ,µ) with respect to every q̄j and setting
it to zero gives the following stationarity condition:

2q̄⋆j ∥aj∥
2
2 = 2ℜ

(
qjd

H
j aj

)
− (λ⋆

j − µ⋆
j ) ∀j. (13)



The other KKT conditions for (q̄⋆,λ⋆,µ⋆) to form a globally
optimal solution of problem (11) are

q̄⋆ ≼ qmax, (14)
q̄⋆ ≽ 0, (15)
λ⋆ ≽ 0, (16)
µ⋆ ≽ 0, (17)

λ⋆
j (q̄

⋆
j − qjmax) = 0, ∀j, (18)

µ⋆
j q̄

⋆
j = 0, ∀j, (19)

where equations (14)-(15) and (16)-(17) are, respectively, the
conditions for primal and dual feasibility, and (18)-(19) are the
complementary slackness conditions.

To solve for q̄, we look into the different possibilities of qj ,
λj , and µj that satisfy the KKT conditions.
1) λ⋆

j > 0: From (18), q̄⋆j = qjmax, and from (19), µ⋆
j = 0.

By (13) this implies that ℜ
(
qjd

H
j aj

)
> qjmax ∥aj∥

2
2.

2) λ⋆
j = 0: We have two cases for µ⋆

j :
i) µ⋆

j = 0: By (13), q̄⋆j is given by

q̄⋆j =
1

∥aj∥22
ℜ
(
qjd

H
j aj

)
and from (14) and (15) we have 0 ≤ ℜ

(
qjd

H
j aj

)
≤

qjmax ∥aj∥
2
2.

ii) µ⋆
j > 0: From (19), q̄⋆j = 0. Then (13) implies that
ℜ
(
qjd

H
j aj

)
< 0.

By combining these different cases, we have the following
closed-form expression for the optimal q̄⋆j :

q̄⋆j =

{
min

{
1

∥aj∥2
2

ℜ
(
qjd

H
j aj

)
, qjmax

}
, ℜ

(
qjd

H
j aj

)
≥ 0,

0, ℜ
(
qjd

H
j aj

)
< 0.

(20)

3) Solution to the joint optimization problem: Now that
we have optimally solved problem (9) and problem (11), we
make use of their closed-form solutions in (10) and (20),
respectively. We employ an alternating optimization approach
to find a solution to problem (8). The detailed steps are
provided in Algorithm 1. Since our problem is biconvex, and
we have found optimal solutions to the subproblems, each
iteration of the algorithm results in a lower value of the
objective function. Therefore, convergence is guaranteed by the
monotone convergence theorem. Furthermore, at convergence,
since f(V⋆, q̄⋆) ≤ f(V, q̄⋆) and f(V⋆, q̄⋆) ≤ f(V⋆, q̄) for
all feasible V and q̄, (V⋆, q̄⋆) is a partial optimum [12].

IV. EXTENSION TO MULTI-CELL WNV

The proposed solution can be easily extended to multiple
cells. Again we focus only on any one multiple-access channel
that is shared by all SPs. We consider C cells where this
channel is in use. Each cell has one BS, and the InP has control
over all BSs. We further assume that BS c has Nc antennas
and there are K =

∑C
c=1 Kc =

∑C
c=1

∑M
m=1 Kc,m users in

the system, where Kc is the number of users in cell c, and
Kc,m of them are subscribing to SP m. We further assume

Algorithm 1 Proposed solution to (6)
Output: V⋆, q̄⋆

Initialize: q̄(0), i← 0
1: Compute V⋆(0) from q̄(0) using (10)
2: Compute f (0) = f(V⋆(0), q̄(0)) using (7)
3: repeat
4: i← i+ 1
5: Compute q̄⋆(i) from V⋆(i−1) using (20)
6: Compute V⋆(i) from q̄⋆(i) using (10)
7: Compute f (i) = f(V⋆(i), q̄⋆(i)) using (7)
8: until convergence of f (i)

9: Set V⋆ ← V⋆(i), q̄⋆ ← q̄⋆(i)

that the SPs design their demands in a distributed fashion,
i.e., each SP designs its demands in cell c without considering
interference coming from its own users in other cells. This inter-
cell interference is left for the InP to handle. Furthermore, from
the prospective of the InP, we assume that the BSs operate in
a fully cooperative manner.

The desired decoded received signal by SP m in cell c is

x̂desired
c,m = Wc,mHcc,mdiag(qc,m)xc,m +Wc,mnc,

where Wc,m is the desired beamforming matrix designed by
SP m to be used at BS c, qc,m is the signal amplitude vector
set by SP m for its users in cell c, xc,m is the unit-power
transmitted symbol vector of the users of SP m in cell c, nc

is the additive noise at the antennas of BS c, and Hcc,m is the
channel matrix between users of SP m that are located in cell c
to the BS in cell c. The desired decoded received signal vector
from all SPs in cell c is given by

x̂desired
c = Dcdiag(qc)xc +Wcnc,

where Dc = blkdiag {Wc,1Hcc,1, · · · ,Wc,MHcc,M}, qc =
[qT

c,1, · · · ,qT
c,M ]T , xc = [xT

c,1, · · · ,xT
c,M ]T , and Wc =

[WT
c,1, · · · ,WT

c,M ]T . By stacking them up, we can write the
desired decoded received signal from all users in the system as

x̂desired = Ddiag(q)x+Wn,

where D = blkdiag {D1, · · · ,DC}, q = [qT
1 ,q

T
2 , · · · ,qT

C ]
T ,

x = [xT
1 , · · · ,xT

C ]
T , W = blkdiag {W1,W2, · · · ,WC}, and

n = [nT
1 , · · · ,nT

C ]
T .

The actual decoded received signal vector of all users in the
system is given by

x̂actual = VHdiag(q̄)x+Vn,

where H = [HT
1 ,H

T
2 , · · · ,HT

C ]
T ∈ C

∑
c Nc×K is the

overall channel matrix from all users to all BSs, Hc =
[H1c,H2c, · · · ,HCc] ∈ CNc×K , and Hlc is the channel matrix
between the users in cell l and the BS in cell c.

The InP achieves virtualization by minimizing the expected
deviation, given by

E
{∥∥x̂actual − x̂desired

∥∥2
2

}
= ∥VHdiag(q̄)−Ddiag(q)∥2F + σ2

n ∥V −W∥2F .



This is identical in structure to the objective in problem (8) and
thus can be solved using the same approach.

V. SIMULATION RESULTS

We conduct simulation in Matlab to study the performance
of the proposed WNV method. For the single-cell scenario, we
consider a circular coverage area of radius 500 m with a BS at
its center, and for the multi-cell scenario, we consider a square
area of 2 km in width, covered by 4 identical square cells each
with a BS at the center. Unless otherwise specified, we set the
number of SPs to M = 4 as default. Each SP m has Km = K

M
users, and in the multi-cell scenario they are evenly split among
all cells, i.e., Kc,m = K

4M . The users in each cell are uniformly
distributed in space. We model the channel from user k to
each BS as a Rayleigh fading channel given by hk = β

1/2
k gk.

Here, βk is the large-scale fading coefficient that captures both
pathloss and shadowing and is given as 10 log10 βk = −31.54−
33 log10 (dk) + Zk, where dk is the Euclidean distance from
user k to the BS, and Zk ∼ CN (0, σ2

z) is the shadowing at that
user with σz = 8 dB; and gk ∼ CN (0, I) denotes the small-
scale fading. The users utilize a bandwidth of B = 1 MHz
for transmission with a power budget of pmax = q2max = 27
dBm for each user. We set the noise power spectral density to
N0 = −174 dBm/Hz, and the noise figure to NF = 2 dB.

As an example of the virtualization requirements, we as-
sume that the SPs set their demands with zero-forcing (ZF)
beamforming and full power transmission. In single-cell WNV,
SP m’s demand is given by the beamforming matrix Wm =
(HH

mHm)−1HH
m and the signal amplitude vector qm = qmax.

This choice of power is known to maximize the sum-rate when
ZF beamforming is used [15]. In multi-cell WNV, the SPs’
demands are determined in the same way within each cell.
With this demand, a main performance metric is the average
per-user rate normalized by the system bandwidth, which is
given by R = 1

B
1
K

∑K
k=1 Bk log2 (1 + SINRk), where Bk is

the bandwidth for user k, and SINRk is the SINR of user k

given by SINRk =
|vkhk|2q2k∑

j∈Bk

|vkhj |2q2j+σ2
n∥vk∥2

2

, where vk is the

receive beamforming vector for user k, and Bk is the set of
users that share bandwidth with user k other than k itself. We
initialize the power values in Algorithm 1 with full power, i.e.,
q̄(0) = qmax.

We compare the performance of our WNV approach with
two other methods. 1) A fully centralized non-virtualized
approach, referred to as “Non-virtualized”, where the InP uses
full channel bandwidth to simultaneously serve all users with
ZF beamforming and full power. 2) An alternative WNV
method, referred to as “FD-WNV”, where service isolation is
performed by allocating different frequency bands to different
SPs and dividing the bandwidth B equally among them. In
FD-WNV, each SP uses ZF beamforming and maximum user
transmit power, with fully cooperative BSs in the multi-cell
case. In the following results, our WNV method is referred to
as “Proposed”.

Fig. 1 presents the normalized deviation between the InP’s
supply and the SPs’ demands in the proposed method, defined
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Fig. 1. Normalized deviation for various numbers of users and antennas.
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Fig. 2. Average per-user rate vs. K and N in single-cell case.

as E{
∥∥x̂actual − x̂desired

∥∥2
2
}
/
E{

∥∥x̂desired
∥∥2
2
}. This figure gives

an indication on how well the proposed approach fulfills its
main goal, i.e., service isolation. We observe that with a
practical number of antennas, the proposed method can keep
the deviation small. Recall that the SPs’ demands correspond to
an idealized setting where there is no inter-SP interference, as if
each SP owned a separate copy of the network infrastructure.
This suggests that, through proper beamforming design and
user power control, there is an opportunity to substantially
increase system efficiency by limiting the deviation from the
SPs’ demands. This observation is further confirmed in terms
of the average per-user rate in the results below.

Fig. 2 shows the average per-user rate of all three approaches
in the single-cell case versus the number of users K for various
numbers of antennas N . As expected, we see a monotonically
decreasing per-user rate in all systems. This figure shows a clear
gap between the performance of FD-WNV and our proposed
approach. Although the bandwidth separation in FD-WNV
guarantees no inter-SP interference, the smaller bandwidth
allocated to each SP causes a huge drop in the users’ rates.
Furthermore, the proposed method substantially outperforms
even the non-virtualized method over a wide range of K values.
This is clear in Fig. 2 when N = 64 and K ∈ [40, 64]. Note
that, unlike the non-virtualized method, our method performs
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Fig. 3. Average per-user rate vs. Kc and Nc in multi-cell case.
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Fig. 4. Average per-user rate vs. M and N in single-cell case.

virtualization. It achieves average rates that are at least as high
as those achieved by the non-virtualized method, even when
K ≪ N . Notice that the non-virtualized method is not defined
when K > N because of rank-deficient matrix inversion in the
formula for ZF. The proposed method, however, does not have
such limitation.

Fig. 3 shows the average per-user rate for the multi-cell case.
Similar to Fig. 2, it is again observed that the proposed method
substantially outperforms FD-WNV. Furthermore, for Kc ≪
Nc, the proposed method achieves approximately 90% of the
average rate of the non-virtualized method, while again it can
substantially outperform the non-virtualized as Kc increases to
near or above Nc.

In Fig. 4, we show the average per-user rate in the single-cell
case as the number of SPs M varies from 1 to 7, while the total
number of users remains at K = 60. This figure illustrates that
the performance of the proposed approach does not deteriorate
as more SPs subscribe to the InP’s services. In contrast, we
observe a drastic drop in the performance of FD-WNV. This is
due to its strict separation of frequency bands between different
SPs, which is a highly inefficient means to achieve service
isolation. Similar observations are made in the multi-cell case,
which are omitted due to the page limitation.

VI. CONCLUSIONS

This paper provides a new look into uplink wireless network
virtualization that is not inherited from wired network virtual-
ization. We propose to exploit the MIMO structure and provide
service isolation by spatially separating SPs using beamform-
ing. We have formulated a joint receive beamforming and
power control optimization problem to minimize the expected
deviation between the virtual demand and the actual supply.
Closed-form solutions are derived for each set of optimization
variables, and a solution to the joint optimization problem is
obtained using alternating optimization. In our examples with
4 SPs and typical numbers of antennas and users, simulation
results confirm that the proposed virtualization method provides
3 to 4 times the user data rate compared with traditional virtu-
alization approaches that depend on strict resource separation
among the SPs, and even higher performance gains for larger
numbers of SPs. Furthermore, the proposed method can achieve
data rates similar to or higher than centralized beamforming
that does not provide virtualization.
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