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Abstract—This paper presents a new method of wireless
network virtualization to share the downlink of a massive-
MIMO base station among multiple Service Providers (SPs).
The SPs are allowed to simultaneously utilize all antennas and
channel resource of the Infrastructure Provider (InP). This can
improve resource utilization but also requires the InP to control
the interference between SPs that are oblivious of each other.
We develop novel precoding schemes to minimize the InP’s
transmission power while satisfying certain prescribed maximum
deviation between each SP’s intended signal to its users and what
the InP delivers. This problem is studied for both perfect and
imperfect channel state information (CSI). Under perfect CSI,
the proposed precoding is optimal and substantially outperforms
a time-sharing alternative. Under imperfect CSI, we use a
numerical lower bound to show that the proposed precoding
is nearly optimal.

I. INTRODUCTION

The capital and operational expenses of wide-area wireless
networks discourage service providers from deploying modern
technologies and also hinder new companies from entering the
industry. In response, the concept of virtualization has been
proposed to reduce the expenses of network deployment and
operation by abstracting and sharing physical resources, and to
make it easier to migrate to newer products and technologies
by decoupling distinct parts of the network. Virtualization
creates a set of logical entities from a given set of physical
entities in a manner that is transparent to users [1]. By enabling
abstraction and sharing of the physical resources, it maximizes
utilization of the resources while providing the required quality
of service to users and enforcing the isolation and security that
users need.

A virtualized network is generally composed of Infrastruc-
ture Providers (InPs) that create and manage the infrastructure,
and Service Providers (SPs) that utilize the resources to pro-
vide services to their subscribing users. An InP virtualizes the
resources that it owns and splits them into slices. These slices
consist of (virtualized) core networks and (virtualized) access
networks corresponding to the wired slice and the wireless
slice, respectively. The SPs lease these virtual resources, and
operate them to provide end-to-end services to end-users
without needing to know the underlying physical architecture
of the InP.

Wireless network virtualization has been studied mainly un-
der two categories in the literature. The first category focuses
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on resource allocation, spectrum partitioning, and enforcing
fairness among users, e.g. [2], [3], while the second category
studies how virtualization can be applied to different wireless
network technologies e.g., [4], [5], [6], and [7]. Although these
studies show the importance and potential of wireless network
virtualization, there is scarce publication that relates wireless
network virtualization to massive MIMO. The authors of [8]
and [9] studied resource provisioning in the virtualization
of massive MIMO networks. In [8], different SPs employ
disjoint subsets of a base station’s antennas, which can lead to
substantial loss in data rate compared with complete sharing
of all antennas. Furthermore, their system model does not
concern the design details of virtualization such as precoding
or scheduling. In [9], the InP uses a hierarchical auction to
allocate separate sub-channels to different SPs. However, as
we will show later, restricting the SPs to orthogonal channels
can also lead to inefficient resource utilization.

In this work, we allow antenna and channel sharing among
multiple SPs in a novel wireless network virtualization archi-
tecture. We show that, through proper precoding, the InP can
enforce the requirements of isolation by leveraging massive
MIMO beamforming, while improving the overall efficacy of
the network. Although precoding has been well studied in
wireless communication, new challenges arise when it comes
to wireless network virtualization. Since each SP does not have
access to the channel information of the users of the other SPs,
handling the interference between the users of different SPs
is challenging. For instance, if the SPs use typical schemes
of precoding and have the InP use their precoding matrices
without considering the other SPs, the system will likely incur
a large amount of interference. Our goal is to design methods
for the InPs to manage this interference, such that the users
of each SP receive nearly the same signal that their own SP
has designed for them. This problem has not been treated in
traditional precoding.

The main contributions of this paper are summarized below:
• We first formulate the precoding problem in wireless

network virtualization when perfect CSI is available, to
minimize the InP’s transmission power while satisfying
certain prescribed maximum deviation between each SP’s
intended signal to its users and what the InP delivers. We
observe that the problem is convex and derive a closed-
form expression for its dual problem and the sub-gradient
of the dual function.

• We then consider the precoding problem under imperfect



CSI using chance constraints, which is a non-convex
optimization problem. Despite the general intractability
of such a problem, we demonstrate that, under massive
MIMO, there is a simple and effective solution. We
further derive a lower bound to the optimal objective for
performance benchmarking.

• We conduct simulation study on the performance of the
proposed solutions. Under perfect CSI, we observe that
the obtained optimal precoding substantially outperforms
a time-sharing alternative. Under imperfect CSI, we as-
sume a practical MMSE channel estimation scheme and
show numerically that the proposed solution gives nearly
optimal performance.

The rest of this paper is organized as follows. In Section II,
we state the system model and problem formulation for the
perfect and imperfect CSI cases. In Section III, we present
an optimal solution for perfect CSI, and in Section IV we
present the proposed solution for imperfect CSI. Performance
evaluation and discussion are given in Section V. Finally,
Section VI concludes the paper along with a possible extension
to multi-cell networks.

Notation: We use ‖ ∙ ‖ to denote either the two-norm of
a vector or the Frobenius norm of a matrix. We use (∙)T

and (∙)H to denote matrix transpose and Hermitian transpose,
respectively.

II. SYSTEM MODEL

For convenience and without loss of generality, we assume
that all the components in a virtualized wireless network are
encompassed into two entities: InP and SPs. The SPs are
responsible for serving the subscribers and programming their
services, and the InP owns the infrastructure and is responsible
for executing virtualization. We assume that the other parts of
the network, including the core network and computational
resources, are already virtualized and can be utilized by the
InP and the SPs.

A. Precoding Design by InP and SPs

We consider the downlink in each cell of a cellular network,
comprised of an InP that owns a base station with N antennas,
and M SPs with their own schedulers and precoders. The SPs
share the same wireless spectrum provided by the InP. The
SPs are able to design their desirable precoding matrix for
their own users. Denote by Km the number of users of SP
m, Hm ∈ CKm×N the flat fading channel of the users of
SP m from the base station, and Wm the desirable precoding
matrix designed by SP m. For example, in Section V, for the
purpose of illustration, we will assume that the Regularized
Zero Forcing (RZF) scheme is used by SP m to compute Wm

for m ∈ {1, 2, . . . ,M}.
The InP is responsible for virtualizing the base station in a

manner transparent to the users. For our purpose, this means
that it designs a new precoding matrix, V, based on the inputs
from the SPs, such that the users of SP m receive signals
with a defined quality of service that reflects the SP’s choice
of Wm, despite SP m is ignorant of the interfering SPs. It

is worth noting that the InP cannot simply transmit using a
simple aggregation of the precoding matrices designed by the
SPs, since that would lead to severe inter-SP interference.

In the basic scenario, each SP may utilize all N antennas at
the InP’s base station. However, in this work, we also allow a
more general scenario where each SP m only has information
about the channels from its users to a subset of antennas, which
is of size Nm ≤ N . For example, one reason for this may
be to reduce the amount of channel information exchange. In
such a case, we assume that Nm and the subset of antennas
are predetermined, and denote by Gm the part of Hm that
corresponds to only the subset of antennas.

An overview of the overall operation of the virtualized
network is as follows. In the time domain, transmissions
are divided into defined periods, which can be permanent or
dynamic on a frame or subframe basis. In each transmission
period, firstly, to each SP m, the InP communicates the
corresponding channel information Gm. Then, the SPs design
the precoding matrices Wm for their users and communicate
them to the InP. Finally, the InP collects all Wm and designs
precoding matrix V to transmit all users’ messages.

In addition to executing virtualization, and satisfying con-
straints that come from its requirement, the InP is concerned
with additional internal constraints such as total transmit
power. In this work, we aim to minimize the InP’s transmission
power, which can be represented by ‖V‖2.

B. Constraint Formulation for the Perfect CSI Case

In this idealized case, the channel Hm is exactly known
by the InP, and Gm is precisely communicated to SP m for
all m over the transmission period under consideration. Let
xm ∈ CKm represent the messages for the users of SP m,
and define x as

x = [xT
1 , . . . ,xT

M ]T . (1)

Without loss of generality, assume that the messages are zero-
mean, uncorrelated, and normalized to 1, i.e.,

Exm = 0. (2)

ExH
mxn =

{
0 if m 6= n,
1 if m = n.

Let V = [V1, . . . ,VM ] be the precoding matrix designed
by the InP, where Vm corresponds to the users of SP m. Then,
the users of SP m receive

ym = HmVmxm +
∑

i 6=m

HmVixi. (3)

Note that the second part of the above sum represents the
interference to the users of SP m, from the signals intended
for the users of the other SPs. The precoding matrix V should
be designed in a way that the received signal in (3) does not
deviate significantly from the signal that SP m expects its
users to receive, i.e.,

y′
m = GmWmxm. (4)



Formally, for each SP m, the InP should satisfy the following
inequality:

Ex‖ym − y′
m‖2 ≤ I2

m. (5)

where Im is a predefined threshold, which is assumed to be
known a priori as a part of the contractual agreement between
the SP and the InP. By substituting (3) and (4), this can be
re-written as

Ex‖HmVx − GmWmxm‖2 ≤ I2
m. (6)

Furthermore, by taking the expected value, we have

‖HmVm − GmWm‖2 +
∑

i 6=m

‖HmVi‖
2 ≤ I2

m. (7)

C. Constraint Formulation for the Imperfect CSI Case

The assumption that the channel is perfectly known may be
far from reality due to factors such as channel estimation error
and pilot contamination. In order to take into account channel
uncertainty, we adopt the model

Hm = Ĥm + Em (8)

where Hm is the unknown true channel of users of SP
m, Ĥm is the estimated channel, and Em is the channel
estimation error such that vec(Em) = CN (0,Ce), where Ce

is a covariance matrix. We assume that Ĥm is independent of
Em, which for example is the case under the common MMSE
channel estimation scheme as presented in Section V-B.

In this case, we redefine Gm according to Ĥm and assume
that it is precisely communicated to SP m. Thus, the left-hand
side of (7) becomes a random variable. We thus re-express this
constraint in probabilistic terms as follows:

P{‖HmVm − GmWm‖2

+
∑

i 6=m

‖HmVi‖
2 ≤ I2

m} ≥ 1 − ε. (9)

where ε is a small positive number that determines the uncer-
tainty of meeting the deviation threshold Im.

III. POWER MINIMIZATION FOR PERFECT CSI

As explained in Section II-A, we focus on power minimiza-
tion as the objective of the InP subject to the constraints given
in (7), i.e., the InP needs to solve the optimization problem
given by

min
V

‖V‖2 (10)

s.t. ‖HmVm − GmWm‖2 +
∑

i 6=m

‖HmVi‖
2 ≤ I2

m ∀m.

(11)

The following lemma provides a sufficient condition for the
feasibility of the problem and also describes a property of the
optimal solution. We omitted its proof due to space limitation.

Lemma 1. If
∑

m Km ≤ N , the problem (10)-(11) is always
feasible, and all constraints are active at optimum.

When perfect channel information is available, the optimiza-
tion problem given in (10)-(11) is a convex program. Instead
of directly using an existing numerical solver on this problem,
in the following, we derive closed-form expressions for the
dual function and its sub-gradient, to be used in a Lagrangian
solution approach.

For any Lagrange multipliers λ, The Lagrange function of
the problem is

L(V, λ) = ‖V‖2+
∑

m

λm(‖HmVm − GmWm‖2 +
∑

i 6=m

‖HmVi‖
2 − I2

m).

(12)

By taking derivative with respect to V∗
m and setting it to zero

we have

∂L

∂V∗
m

= Vm +
∑

i

λiH
H
i HiVm − HH

mGmWm = 0. (13)

Therefore,

V∗
m = (I +

∑

i

λiH
H
i Hi)

−1HH
mGmWm. (14)

Defining V∗(λ) = [V∗
1, . . . ,V

∗
M ], the dual function is

g(λ) = L(λ,V∗(λ)). (15)

Then the subgradient method to maximize g(λ) requires
the following result, whose proof is omitted tue to space
limitation.

Lemma 2. The following choice of d is a sub-gradient for
the dual function g(λ):

d = (d1, . . . , dM )T (16)

di = (‖HmV∗
m − GmWm‖2 +

∑

i 6=m

‖HmV∗
i ‖

2) − I2
m (17)

The rest of the iterative updating method to solve (10)-(11)
is standard and hence is omitted.

IV. POWER MINIMIZATION FOR IMPERFECT CSI

Under imperfect channel information, the precoding prob-
lem is formulated by

min
V

‖V‖2 (18)

s.t. P
{
‖HmVm − GmWm‖2

+
∑

i 6=m

‖HmVi‖
2 ≤ I2

m

}
≥ 1 − ε ∀m. (19)

Optimization problems with chance constraints are generally
hard to solve. However, in the following we present a solution
to this problem that is computationally efficient, and as will
be shown in Section V, has nearly optimal performance.

We first present a lemma which provides a formula to derive
the probability in (19):



Lemma 3. Given a Hermitian matrix A and complex vector
b, for circular complex Gaussian random vector e distributed
as CN (0,Ce), the CDF of ‖Ae + b‖2 is given by

P(‖Ae + b‖2 ≤ τ) =
∫ ∞

−∞

eτ(β+jω)

(β + jω)
e−c0(ω)+c(ω)

∏
i(1 + (β + jω)D2

i )
dω

(20)

for any β > 0, where

c0(ω) = (β + jω)bHb, (21)

c(ω) = (β + jω)2
∑

i

|ai|2D2
i

1 + (β + jω)D2
i

, (22)

a = UHb, (23)

UDQ = svd(ACe). (24)

The proof of this lemma is inspired by [10], in which the
authors provided a closed-form expression for the CDF of
‖e − b‖2

Q for a Hermitian matrix Q. We follow a slightly
different approach to obtain the CDF of ‖Ae+b‖2. We omit
the detailed proof due to space limitation.

To invoke Lemma 3 for our purpose, we transform the left-
hand side of (7) to vector form as follows:

‖HmVm − GmWm‖2 +
∑

i 6=m

‖HmVi‖
2 (25)

=‖HmV − Gm[0, . . . ,Wm, . . . , 0]‖2 (26)

=‖(Ĥm + Em)V − Gm[0, . . . ,Wm, . . . , 0]‖2 (27)

=‖EmV + ĤmV − Gm[0, . . . ,Wm, . . . , 0]‖2 (28)

=‖Ae + b‖2, (29)

where

A = VT ⊗ IKm
(30)

em = vec(Em) (31)

bm = vec(ĤmV − Gm[0, . . . ,Wm, . . . , 0]). (32)

Furthermore, we have the following lemma, whose proof is
given in Appendix A.

Lemma 4. The quantity expressed in (29) can be written as
the sum of KN independent random variables, where K =∑

m Km.

Hence, assuming that Lyapunov’s Central Limit Theorem
conditions are satisfied, since KN is a large number in the
massive MIMO setting, (29) is approximately Gaussian.

Then, it is easy to show that, for ε ≤ 0.5, the condition

P{‖HmVm − GmWm‖2 +
∑

i 6=m

‖HmVi‖
2 ≤ I2

m} ≥ 1 − ε

(33)

implies that

E{‖HmVm − GmWm‖2 +
∑

i 6=m

‖HmVi‖
2} ≤ I2

m. (34)

Fig. 1. The feasible sets of the the original and bounding problems.

Therefore, the following convex optimization problem pro-
vides a lower bound to problem (18)-(19):

min
V

‖V‖ (35)

s.t. E
{
‖HmVm − GmWm‖2

+
∑

i 6=m

‖HmVi‖
2
}
≤ I2

m ∀m (36)

We may further simplify this problem by noting that the
expected value in (36) can be re-written as

‖DV‖2 + ‖ĤmV − Gm[0, . . . ,Wm, . . . , 0]‖2, (37)

where D is a diagonal matrix, diag(D1, . . . , DN ), with

Di =

√∑

i

σ2
i,j (38)

and σ2
i,j =

∑
j E|eij |2. The derivation of of the above result

is omitted due to page limitation.
The proposed solution is based on problem (35)-(36). We

describe the rationale of our solution by Figure 1. Let shaded
area S be the feasibility set of problem (18)-(19), and let us
define the following optimization problem for some positive
θ:

Pθ : min
V

‖V‖ (39)

s.t. E
{
‖HmVm − GmWm‖2

+
∑

i 6=m

‖HmVi‖
2
}
≤ (θIm)2 ∀m. (40)

Let areas Sθ be the feasibility set of problem Pθ. From the
lower bound provided earlier, we have S ⊂ S1. At each
iteration, we shrink the feasibility set of Pθ by decreasing
θ, and solve Pθ. The solution to Pθ is then checked by the
formula given in (20) to verify whether the solution belongs
to S. If so, then the algorithm ends; otherwise we shrink Sθ

further to find another solution. This procedure continues until
either a solution is found or Pθ becomes infeasible. It should
be noted that Pθ is a convex programming problem and hence
can be solved in polynomial time.

V. PERFORMANCE EVALUATION

We consider a hexagon cell with radius Rc = 500m where
the users of the SPs are uniformly distributed across the cell.



Our network consists of 4 SPs, each with 15 users, and an
InP with a base station with N = 100 antennas placed at the
center of the cell. We assume that all antennas are used by
each SP, i.e., Nm = 100 for all m.

The baseband fading channel that links the base station to
the kth user is modeled by [11]

hk = β
1/2
k gk ∀k (41)

βk[dB] = −31.54 − 37.1 log10(dk) − 8ψk ∀k (42)

where gk, distributed as CN (0, IN ), models small-scale fad-
ing, βk captures path loss and shadowing effects, dk is the
distance of user k from the BS, and ψk is a standard Gaussian
random variable that accounts for large-scale shadowing.

As an example for illustration, we assume that RZF precod-
ing is used by the SPs. This precoding is obtained by

Wm = αGH
m(GmGH

m +
Km

σ2
n

I)−1 (43)

where σn is the noise power, and α is the normalizing factor
and is set such that ‖Wm‖ = P√

M
, where P is the maximum

amount of total power that the InP can dedicate to all the SPs.
We define deviation factors, ρm, and use them to set values

of Im by

Im = ρm‖HmWm‖. (44)

The deviation factors can be interpreted as a received-signal
proportional measure on how much the InP’s precoding is
allowed to deviate from the SP’s intended precoding. To reduce
the number of system variables in simulation, we assume
ρm = ρ for all m. Other default system parameters are P=8
dBm, and σ2

n=-174 dBm/Hz, and we set the channel bandwidth
to 10 KHz.

A. Performance under Perfect CSI

Figure 2 displays the norm of V, which corresponds to the
square root of transmission power, with respect to deviation
factors ρ and N . It shows that InP can satisfy any value of ρ
but at the expense of more transmission power. For the sake of
comparison, we also plot the transmission power required for a
time-sharing scheme where the InP serves the SPs one-by-one
in equal time slots. We see that in most regions it is preferable
to deploy the proposed scheme rather than simple sharing in
time. This implies similar advantage of the proposed scheme
over other orthogonal channel sharing schemes such as [9].

B. Performance under Imperfect CSI

For the purpose of illustration, we assume that the CSI is
obtained through reverse channel estimation in TDD such that
the users transmit L pilots with some given power Ppilot one by
one, and the base station estimates the channel. The minimum
mean square error (MMSE) channel estimate, ĥk, of user k’s
channel, hk, is obtained by

ĥk = CT
hk

TT (TCT
hk

TT + σ2
nI)−1[y1

k; . . . ;yT
k ] (45)

where Chk
= EhkhH

k and T =
√

Ppilot[I, . . . , I]T . The error
of this estimation can be modeled as hk = ĥk + ek where ek
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is independent of the estimated channel and is Gaussian with
covariance given by

Ce = Chk
− Chk

TT (TChk
T + σ2

nI)−1TChk
. (46)

We use the following default values: Ppilot=20dBm, ε=0.1, and
L=5.

Figures 3 and 4 display the norm of V with respect to
N and ρ, respectively. We also plot the lower bound as
defined in Section IV for comparison. The most important
observation is that the proposed solution is close to the lower
bound, which suggests that the proposed solution is nearly
optimal. These figures further suggests that using a large
number of antennas can drastically reduce the InP’s power
consumption in the proposed virtualization scheme despite
channel estimation error. Finally, we observe that as the value
of ρ decreases, the norm of V increases until a point where the
problem becomes infeasible. Indeed, having a larger number
of antennas benefits the InP by giving a feasible solution for
smaller values of ρ.

Figure 5 demonstrates the maximum channel error for which
the problem is feasible for different values of ρ. Furthermore,
it depicts an upper bound for the feasible solutions, obtained
from the lower bound given in Section IV. This figure illus-
trates that our proposed algorithm almost always provides a
solution when a feasible solution exists.

VI. CONCLUSION AND DISCUSSION

We have investigated virtualization in wireless networks
with massive MIMO. To the best of our knowledge, this is
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the first work to provide a formal formulation for virtualization
of massive MIMO that considers the impact of precoding on
interference control among SPs. We formulate the precod-
ing problem under perfect and imperfect CSI scenarios, and
propose simple but effective solutions for each. Simulation
results demonstrate that the deviation of user received signal,
between what is separately planned by each SP and what the
InP delivers, can be small, while allowing the InP to reduce
its energy consumption, especially when the InP possesses a
large number of antennas.

Finally, we remark on how the proposed methods can be
extended to a multi-cell network where each BS maintains its
interference to the neighbouring cells under a certain threshold.
Let H0 be the channel between the BS and the users of
neighbouring cells. The interference to these users should be
below a certain value, or formally,

‖H0V‖F ≤ I0. (47)

This constraint has the same form as the constraints for
SP m but with Wm = 0. Therefore, adding constraints to
suppress the interference in the neighbouring cells leads to
an optimization problem with the same form as (10)-(11) or
(18)-(19), except for a larger number of constraints [12].

APPENDIX

A. Proof of Lemma 4

For each m, we can re-write the deviation into a vector as
expressed in (29), where random vector em is distributed as

CN (0,Ce). For notational simplicity, for the rest of this proof,
we rescale both A as

A = (VT ⊗ I)C1/2
e (48)

and em ∼ CN (0, IKN ).
Let [U,D,Q] = svd(A) be the singular value decomposi-

tion of A. Then from (29) we have

‖Aem + b‖2 =‖UDQem + b‖2 (49)

=‖DQem + UHb‖2 (50)

=‖De′m + a‖2 (51)

where

e′m = Qem (52)

a = UHb. (53)

We note that

‖De′m + a‖2 =
KN∑

i=1

|Die
′i
m + ai|

2 (54)

where Di is the ith element on the diagonal of D and
e′im and ai are the ith elements of vectors e′m and am,
respectively. Furthermore, since Q is a unitary matrix, we
have e′m ∼ CN (0, IKN ), i.e., e′im are independent over i.
Furthermore, Di and ai are independent of the estimation
error Em, since Ĥm is independent of Em. Therefore, the
summands in (54) are independent.
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