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Abstract

Both peer-to-peer and sensor networks have the funda-
mental characteristics of node churn and failures. Peers
in P2P networks are highly dynamic, whereas sensors are
not dependable. As such, maintaining the persistence of
periodically measured data in a scalable fashion has be-
come a critical challenge in such systems, without the use
of centralized servers. To better cope with node dynamics
and failures, we propose priority random linear codes, as
well as their affiliated pre-distribution protocols, to main-
tain measurement data in different priorities, such that crit-
ical data have a higher opportunity to survive node failures
than data of less importance. A salient feature of priority
random linear codes is the ability to partially recover more
important subsets of the original data with higher priorities,
when it is not feasible to recover all of them due to node dy-
namics. We present extensive analytical and experimental
results to show the effectiveness of priority random linear
codes.

1 Introduction

One of the most important challenges in fully au-
tonomous networks, including peer-to-peer (P2P) networks
and wireless sensor networks, has been the dynamic be-
havior of peer nodes and sensors. Peers in P2P architec-
tures tend to participate in and depart from ongoing ses-
sions in a highly dynamic fashion, and sensors are widely
acknowledged to show strikingly similar dynamics, due to
their unreliability and energy-conservation protocols (to pe-
riodically go to energy-conserving hibernation modes).

Nevertheless, in both P2P and sensor networks, period-
ically measured data are generated on an ongoing basis,
which should be preserved for subsequent analysis at a later
time. In P2P networks, it is critical for operators to monitor
the performance and “health” of live peer-to-peer sessions.
For example, in live media streaming applications, it is es-
sential to monitor the achieved streaming rate, the number
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of upstream and downstream peers, the latency to neighbor-
ing peers, and resource usage such as bandwidth and CPU
load. Similarly, in sensor networks, the task of each sensor
is to monitor the environment, with periodic measurements
collected for later retrieval.

How do we collect such periodically measured data,
which may grow to substantial volumes over time? There
are reasons to believe that centralized servers may not be the
appropriate answer. In P2P networks, periodic reporting to
central logging servers does not scale well to a large number
of peers, and may morph into a de facto distributed denial-
of-service attack at the logging server. In sensor networks,
it may be too costly and unrealistic to periodically main-
tain routing structures (e.g., aggregation trees) to central-
ized sinks, again due to frequent sensor failures and energy-
conserving measures.

In this paper, we study the challenges involved when no
centralized servers exist in autonomous networks, and peri-
odically measured data must be stored within the network it-
self in a collaborative fashion. This conforms to the peer-to-
peer mentality, but could be a serious problem when nodes
are inherently dynamic and failure-prone. The objective of
this paper is to propose new coding techniques inside the
network, inspired by traditional random linear codes com-
monly used in network coding, such that data stored in the
network can be efficiently recovered.

Random linear codes, traditionally used in network cod-
ing, achieves an “all or nothing” paradigm of decoding.
When measured data are segmented as original source
blocks, with random linear codes, we need as many coded
blocks as the original source blocks to decode any useful
data. We argue that such a paradigm is not appropriate for
either P2P or sensor networks, since node departures and
failures may easily render the remainder of coded blocks
useless! Having many more coded blocks than source
blocks certainly helps, but we would prefer to progress be-
yond simple over-provisioning of cache storage, especially
when cache spaces on nodes are limited.

In this paper, we propose priority random linear codes
in a generic network model that encompasses both P2P and
sensor networks. A salient feature of priority random lin-
ear codes is the ability to partially recover more important
subsets of the original data with higher priorities, when it
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is not feasible to recover all of them due to node dynamics.
In a nutshell, we achieve this by making sure that coded
blocks for important data are linear combinations of fewer
source blocks, as compared to those for non-critical data.
In essence, we assign lower coding rates for important data,
such that they can be recovered with fewer coded blocks,
and may survive higher percentages of node departures and
failures.

In addition to our extensive theoretical analysis of pri-
ority random linear codes, we also present their affiliated
pre-distribution protocols. Utilizing the fact that each coded
block are encoded from a subset of source blocks, our pre-
distribution mechanism ensures that only source blocks in
such a subset are delivered to their designated receivers for
storage, rather than all source blocks. Furthermore, utiliz-
ing the previously known result that each coded block only
needs to be the linear combination of O(lnN) random cho-
sen source blocks for successful decoding [7] (where N is
the total number of source blocks), our pre-distribution pro-
tocol is very efficient.

The remainder of this paper is organized as follows. In
Sec. 2, we describe the network model. In Sec. 3, we
introduce priority random linear codes and partial decod-
ing algorithms, with extensive analysis of their properties.
In Sec. 4, we describe the pre-distribution protocol. Per-
formance evaluation of priority random linear codes is in
Sec. 5. We compare our approach with related work in
Sec. 6. Finally, Sec. 7 concludes the paper.

2 Network Model

In this paper, we consider a generic network model of
autonomous networks with unreliable nodes, which encom-
passes commonly accepted models of both P2P and sensor
networks. We consider such a general model to show that
priority random linear codes can be applied to a wide range
of autonomous networks, rather than specific to any partic-
ular type.

Our model of an autonomous network consists of a set
of nodes and the communication links among them. Each
node produces measurement data over time. There does
not exist centralized servers at our disposal; instead, all
measured data from a particular node must be distributed
to other nodes in the network for peer-to-peer collabora-
tive storage. We assume that each node only has a limited
amount of storage space, and can only store a small frac-
tion of the data generated in the network. At a later time,
measured data stored at a random subset of existing nodes
will be retrieved for analysis. All nodes in the network may
depart or fail unpredictably.

The measured data (possibly by multiple nodes) are seg-
mented into source blocks. We assume that N source blocks
are produced, which are classified to n different priority lev-

els, in descending levels of importance — source blocks in
priority level i are more important than those in level j, if
i < j. The number of source blocks in priority level i is de-
noted by ai, where 1 ≤ i ≤ n. To facilitate later derivation,
we introduce b1, b2, . . . , bn, where bi =

∑i
j=1 aj , i.e., bi

represents the total number of source blocks from priority
level 1 to i. In this case, the source blocks in priority level i
are indexed as blocks {xj}, where bi−1 + 1 ≤ j ≤ bi.

To disseminate source blocks and perform decentralized
encoding in the network, our protocol uses the characteristic
of geometric networks, where each node is identified with a
point in a geometric space. Such networks include instances
of sensor networks and P2P networks. In particular, the sen-
sors usually know their locations since the collected data are
more useful if their generation locations are known. In P2P
networks, Distributed Hash Tables (DHT), e.g., Chord [20],
are widely used to improve the network scalability, where
each node has a unique ID in a one-dimensional geomet-
ric space. We further assume a geometric routing protocol
can route source blocks to a random point in the geometric
network such as GPSR [11] in sensor networks, and DHT
routing protocols in P2P networks.

In this work, we assume a strict priority model for de-
coding, such that the data at higher priority levels are strictly
more preferable and are decoded before those at lower prior-
ity levels. This model describes a wide range of scenarios in
practical applications, including multi-resolution sensor im-
age dissemination [22], layered data compression [19], and
any other application which requires sequential decoding
based on priority. It is also possible to consider a less strin-
gent priority model, where obtaining a large amount of low
priority data may be preferable to obtaining a small amount
of high priority data. However, such a model requires the
specification of an application-specific utility function over
the priority levels. This is outside the scope of this paper
and remains an open problem for future research.

3 Priority Random Linear Codes

We introduce the design and performance analysis
framework for two distributed priority random linear cod-
ing schemes, termed Stacked Linear Codes (SLC) and Pro-
gressive Linear Codes (PLC).

3.1 Stacked and Progressive Linear Codes

Both SLC and PLC are based on Random Linear
Codes (RLC) [8]. Given N source blocks x1, x2, . . . , xN ,
RLC generates each coded block ci as a linear com-
binations of all N source blocks in the following
form: ci =

∑N
j=1 βi,jxj , where the coding coefficients

βi,1, βi,2, . . . , βi,N are randomly chosen from a Galois
field. Such an encoding process for a coded block essen-
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Figure 1. Example of three coding schemes.

tially constructs a linear equation where the unknown vari-
ables are the source blocks, given the coding coefficients
βi,j and the coded block ci are known. The decoding pro-
cess of RLC on M coded blocks solves the M linear equa-
tions constructed by the encoding process, where M ≥ N
in order to decode N source blocks.

The priority coding schemes deviate from RLC in that
most coded blocks are not linear combinations of all source
blocks, but a subset of source blocks. In SLC, the source
blocks are encoded in different levels separately. Thus,
the kth set of coded blocks are created by encoding all the
source blocks in the kth level, i.e., ci =

∑bk

j=bk−1+1 βi,jxj ,
where βi,j is a nonzero random number uniformly chosen
from a Galois field and ci denotes the coded block. In PLC,
the source blocks are encoded in descending priority. In par-
ticular, the kth level coded blocks are encoded from source
blocks between levels 1 and k, i.e., ci =

∑bk

j=1 βi,jxj .
Fig. 1 illustrates these two coding schemes and RLC by sim-
ple examples, where the matrix forms of the coding coeffi-
cients are shown. Each row in the figure shows the coding
coefficients of a coded block, and the ith column of coding
coefficients is multiplied by the ith source block. The ex-
ample in Fig. 1 represents that three source blocks belong
to two levels, where the first one is in level 1 and the second
and the third source block are in level 2.

Both SLC and PLC allow partial recovery of a subset of
the source blocks, even when the number of accumulated
coded blocks is less than the total number of source blocks.
In the examples of Fig. 1, RLC requires at least three coded
blocks to decode any useful information. However, for both
PLC and SLC, as long as the first coded block is received,
the first source block is decoded.

Furthermore, with SLC, because the source blocks in
each level are coded separately, the decoding results of dif-
ferent levels in SLC are independent. With PLC, to decode
the source blocks in level k, all the source blocks between
levels 1 and k − 1 must be already decoded, or be decoded
at the same time. However, we can show that PLC outper-
forms SLC in terms of the number of required coded blocks
to recover the same set of source blocks, as stated in Theo-
rem 1 in [14], which is omitted here due to space constraint.

3.2 Partial Decoding Algorithms

Next, we describe decoding algorithms that can be used
to partially decode source blocks from a set of coded blocks
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Figure 2. (a) The decoding matrix. (b) The de-
coding matrix with sorted rows. (c) RREF.

accumulated in a data collecting server. For SLC, the partial
decoding algorithm is essentially the decoding algorithm of
RLC for the coded blocks in each level. Once the accu-
mulated coded blocks in a level are sufficient to decode all
the source blocks in this level, they are decoded despite the
source blocks in other levels may not be decoded.

For PLC, we propose to use Gauss-Jordan elimination
rather than usual Gaussian elimination since it is unable to
partially solve a underdetermined linear system. Gauss-
Jordan elimination is a variant of Gaussian elimination.
It transforms a matrix to its reduced row-echelon form
(RREF) [9], in which each row contains only zeros until
the first nonzero element, which must be 1. The benefit
of the RREF is that, given the first k unknown variables
can be solved with the first k rows, once these k rows have
been processed, the first k elements of the resulting vector
on the right-hand-side of the equations constitute the partial
solution. Therefore, with Gauss-Jordan elimination, the de-
coding process can be progressive. The decoding process
starts as soon as the first coded block has arrived. There-
after, the decoding process decodes coded blocks as soon
as they are decodable, when new coded blocks are accumu-
lated. Thus, the data collecting server can stop collecting
coded data once the partial decoded data fulfill the applica-
tion requirement. More precisely, the decoding process pro-
ceeds as follows. As each new coded block is accumulated,
the coding coefficients of the coded block are appended to
the current decoding matrix. A pass of Gauss-Jordan elimi-
nation is performed on the existing decoding matrix — with
identical operations performed on the data blocks as well —
such that the matrix is reduced to RREF.

In the following, we illustrate how Gauss-Jordan elimi-
nation is used in the partial decoding for PLC. To facilitate
the presentation, we first sort the rows of the decoding ma-
trix according to the number of nonzero coefficients in each
row such that the decoding matrix is approximately a lower
triangular matrix, e.g., Fig. 2(b). In Fig. 2(b), the first three
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source blocks can be decoded since the 3 × 3 submatrix at
the top left corner can be inverted and the elements of the
submatrix at the right of it are all zero. This is further con-
firmed by the identity submatrix in the first three rows in
the RREF of the decoding matrix, Fig. 2(c), which is the
result of Gauss-Jordan elimination on five rows. Since the
RREFs of two matrices are identical, if they differ only in
row orders [9], we conclude Gauss-Jordan elimination can
partially decode the first three source blocks after process-
ing five coded blocks, even without row pre-sorting.

3.3 Decoding Performance

We study the decoding performance of SLC and PLC
characterized by m′ decoding constraints, in the form
(Mi, ki), where 1 ≤ i ≤ m′, and the ith tuple refers to
the constraint that given Mi randomly accumulated coded
blocks, on average, the first ki levels of source blocks can
be decoded. Clearly, the smaller Mi is, the more severe
node failures that the data in the first ki levels can survive.

We further define the percentage of the coded blocks of
each level among all coded blocks as priority distribution,
which can be achieved in a decentralized way by the pro-
tocols presented in Sec. 4. By adjusting the priority dis-
tribution, the coding schemes can achieve different decod-
ing constraints. For example, if we increase the percentage
of coded blocks in the first ki levels, the probability to ac-
cumulate such coded blocks is increased. Hence, we can
fulfill more stringent decoding constraint (Mi, ki) with a
smaller Mi. However, the consequence is that the percent-
age of coded blocks from level ki + 1 to n decreases such
that the number of required randomly accumulated coded
blocks to decode the source blocks in these levels will in-
crease. Hence, the priority distribution must be carefully
chosen in order to meet all decoding constraints.

We then derive the numerical relation between the pri-
ority distribution and the decoding constraints for SLC and
PLC. With such numerical analysis, we can formulate dif-
ferent optimization problems to search for the feasible pri-
ority distribution for a particular set of decoding constraints.

3.3.1 Decoding Performance of SLC

We introduce the random variable X to denote the number
of priority levels that can be decoded from M randomly
accumulated coded blocks. The expected value of X is then

E(X) =
n∑

k=1

kPr(X = k). (1)

To compute (1), we derive Pr(X = k). In SLC, each
level corresponds to a RLC and is independent of other lev-
els. That is, ai source blocks in level i can be decoded
with high probability as long as the number of accumulated

coded blocks in level i is larger than ai
1. To decode exactly

k levels of source blocks, we need two sets of conditions.
First, the source blocks of the first k levels can be decoded.
Second, the source blocks in level k +1 cannot be decoded.
These conditions are summarized as the following events:

Ai = {Di ≥ ai} for i = 1, 2, . . . , k

Ak+1 = {Dk+1 ≤ ak+1 − 1}. (2)

where Di is the number of coded blocks in level i. There-
fore, we have Pr(X = k) = Pr(A1 ∩A2 ∩ · · · ∩Ak+1).

Let D denote the vector of [D1, . . . , Dk+1, Dk+2,n],
where Di,j is the number of coded blocks between level
i and level j, i.e.,

∑j
k=i Dk. The sum of the elements in D

should be the total number of the coded blocks M ,

M = D1 + . . . + Dk+1 + Dk+2,n. (3)

Moreover, Dk+1 and Dk+2,n should meet the constraints:

Dk+1 ≥ 0, Dk+2,n ≥ 0. (4)

Since D is a partition of M , the probability that a given vec-
tor D appears is a function of D and the priority distribution
P = [p1, . . . , pk, Pk+2,n]:

f(D,P) =
(

M

D1, . . . , Dk+1, Dk+2,n

)
pD1
1 · · · pDk+1

k+1 P
Dk+2,n

k+2,n .

(5)
Let B denote the set of vectors satisfying the constraints

(2), (3), and (4). The probability to decode k levels is

Pr(X = k) =
∑
D∈B

f(D,P). (6)

Then, we can compute the expected number of decoded lev-
els in (1). We use an efficient algorithm in [13] to compute
(6) with a complexity O(M log M(k + 2) log(k + 2)) by
dynamic programming and FFT, instead of simply enumer-
ating the vectors in B, which has complexity O(Mk+1).

3.3.2 Decoding Performance of PLC

We again use X to denote the number of levels that can
be decoded from M random coded blocks. Hence, the ex-
pected number of decoded levels E(X) can be computed
by (1), by first deriving the probability to decode k levels
of source blocks Pr(X = k), which is the probability that
there is an invertible bk × bk submatrix W at the left of the
decoding matrix and the elements in the submatrix at the
right of W are all zero after row sorting on the decoding
matrix as illustrated in Sec. 3.2. We then have

1We assume a sufficiently large Galois field such as GF(28) is used to
generate coding coefficients.
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Theorem 1 PLC decodes the source blocks in the first k
levels if and only if events A1, . . . , Am all happen, where

Ai = {Di,k ≥ bk − bi−1} for i = 1, . . . , k

Aj = {Dk+1,j ≤ bj − bk − 1} for j = k + 1, . . . ,m (7)

where m is the maximal number of coded blocks that can
be decoded from M coded blocks, i.e., arg maxi{bi ≤ M},
and b0 = 0. The proof of this theorem follows immediately
from the following lemmas, whose proofs are given in [14].

Lemma 2 The source blocks in the first k levels can be de-
coded from the coded blocks between level 1 and level k if
and only if events A1, A2, . . . , Ak all happen.

Lemma 3 Given the source blocks in the first k levels
are decoded, none of the source blocks between level
k + 1 and level m can be decoded if and only if events
Ak+1, Ak+2, . . . , Am all happen.

Thus, the probability that PLC decodes k levels is

Pr(X = k) = Pr(∩m
i=1Ai). (8)

The detailed derivations of (8) is shown in [14], where ap-
proximations are used to reduce computation complexity.

3.4 Designing Priority Distribution

With the analytical result presented above, we formulate
a numerical feasibility problem to design the priority distri-
bution, p1, p2, . . . , pn, under a given set of decoding con-
straints, defined in Sec. 3.3. The obtained feasibility region
can be used to optimize the design of priority coding. Since
the optimization objectives are application dependent, in-
stead of limiting our analysis on any such particular objec-
tive, here we demonstrate the effectiveness of our general
approach by the following feasibility formulation.

Let XMi denote the random variable representing the
number of levels that can be decoded from Mi coded
blocks. The priority distribution must satisfy the constraints

E(XMi) ≥ ki, for i = 1, 2, . . . ,m′ (9)

where E(XMi), derived in (1), is a function of the prior-
ity distribution. In addition, we may impose a special con-
straint to ensure that the number of coded blocks to recover
all source blocks is controlled within a reasonable range:

Pr(XαN = n) ≥ 1− ε, (10)

where N is the total number of source blocks, α is a num-
ber greater than 1, and ε is a small number close to 0. This

constraint guarantees that the number of coded blocks to re-
cover all source blocks is smaller than αN with high prob-
ability. Finally, the priority distribution must satisfy the fol-
lowing constraints according to the definition of probability:

pi ≥ 0,

n∑
j=1

pj = 1, for i = 1, . . . , n (11)

We emphasize that the constraints defined by in (9), (10),
and (11) are fairly general. They can be a building block to
combine with other constraints and optimization objectives
to determine the priority distribution with diverse goals.

4 Distributed Encoding Algorithms

In this section, we describe a protocol to distribute the
source blocks in the network and the distributed encoding
algorithm. There are three requirements for such protocol.
First, the protocol must satisfy the coding requirements im-
posed by SLC and PLC. For example, for SLC, the proto-
col must deliver different source blocks in the same level
to the same random set of caching nodes for encoding and
storage. Second, the dissemination protocol needs to en-
sure the designed priority distribution for the coded blocks
in the network. Third, the dissemination protocol should
be bandwidth efficient. The ideal protocol will disseminate
a source block to a node only if the source block will be
encoded with the coded blocks on that node. Our protocol
achieves all three requirements by utilizing characteristic of
geometric networks, which are described in Sec. 2.

In our protocol, to memorize the same set of caching
nodes without actually storing the addresses of all of them,
all nodes are assigned with a common random seed such
that each node can use this random seed to generate the
same set of M random points in the geometric space. All
source blocks will be disseminated to the nodes that are
closest to a subset of the M random locations in the network
by a geometric routing protocol, depending on they priori-
ties. We enforce each random location stores one coded
block. Therefore, M is a parameter upper-bounded by the
total storage space in the network. If there are W nodes in
the network, and each node can store d coded blocks, M
should be smaller than Wd. Since each node is in charge of
a small area in the geometric space, multiple random loca-
tions may fall on the same node such that each node stores
multiple coded blocks, and the number of coded blocks on
each node is generally not equivalent because of the ran-
domness. We can utilize “the power of two choices” to bal-
ance the load on nodes [4], where the maximal load on all
nodes is Θ(ln ln M/ ln 2).

After all source blocks are disseminated, upon receiving
a new source block x, the node in charge of the random lo-
cation will encode it with the coded block c in that location,
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Figure 3. The destinations of source blocks in
(a) SLC (b) PLC, according to their priorities.

with c = c + βx, where β is a coding coefficient randomly
chosen from a Galois field. Fig. 3 illustrates the destina-
tions of source blocks according to their priorities. Let pi

denote the percentage of coded blocks in level i. For SLC,
the coded blocks in a particular level are encoded from the
source blocks in the same level. Hence, we divide the M
random locations to n parts, where the ith part has Mpi

locations and is used to store the coded blocks for the ith
level. The source blocks in level i are only disseminated to
the ith part of random locations. For PLC, the coded blocks
in level i are encoded from the source blocks from level 1
to level i. Therefore, the source blocks in level i are only
disseminated to the set of M(

∑n
j=i pj) locations from the

ith to the nth part of random locations.
In the above protocols, each source block is disseminated

to all locations in its corresponding subset of the M random
locations. Dimakis el al. [7] have shown that for RLC, with
O(lnN) nonzero coding coefficients on each row, the de-
coding matrix can be inverted with high probability. This
reduces the number of source blocks need to be dissemi-
nated from N locations to O(lnN) locations. Clearly, SLC
enjoys such results since it is essentially composed of n
RLC. It is easy to see PLC also benefits from such result,
which is further confirmed by simulations [14].

5 Performance Evaluation

In this section, we validate our numerical analysis and
study the decoding performance of SLC and PLC. In all ex-
periments and numerical results, we measure the differenti-
ated performance of our priority coding schemes in the de-
coding curves where the expected number of decoded prior-
ity levels are shown against the number of processed coded
blocks. With an example feasibility problem, we demon-
strate the effectiveness of our priority coding schemes.

In all simulations, where GF(28) is used, we randomly
generate a set of coded blocks according to the priority
distribution and the encoding algorithms, and use the par-
tial decoding algorithms to recover the maximal number of
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Figure 4. Analysis vs. simulations for PLC.
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(b) Number of priority levels is 50.

Figure 5. Analysis vs. simulations for SLC.

source blocks from the coded blocks. The number of coded
blocks is varied in each experiment to observe the decoding
curve. To mitigate randomness in simulations, we show, for
each data point in all figures, the average and the 95% con-
fidence intervals from 100 independent experiments.

5.1 Validating Numerical Analysis

For both SLC and PLC, we set the number of source
blocks to 1000 and the priority distribution to uniform.
Two sets of experiments are executed with 5 and 50 lev-
els and 200 and 20 source blocks in each level, respectively.
Fig. 4(a) shows that our analysis for PLC agrees with the
experiments when the number of levels is 5. On the other
hand, Fig. 4(b) shows that our analysis deviates slightly
from experiments when the number of priority is 50. The
reason is that our approximation in Sec. 3.3 for PLC is re-
lated to the number of levels. In particular, the more priority
levels, the less accurate the approximation is. Fig. 5 shows
the analysis agrees with experiments very well for SLC.

5.2 PLC Outperforms SLC

As we have shown in Theorem 1 of [14], PLC outper-
forms SLC under the strict priority model in terms of the
number of coded blocks to recover the same set of source
blocks. In this section, we run experiments to explore the
performance gap between them with the following experi-
mental parameters. The number of source blocks is 1000.
The number of levels are 10 and 50 and each level contains
100 and 20 source blocks, respectively. Fig. 6 show that
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Figure 6. SLC vs. PLC.

when the number of levels is 10, the decoding performance
gap between SLC and PLC is modest. However, when the
number of levels is 50, the performance gap between SLC
and PLC is significant. Furthermore, the number of lev-
els do not have much impact on the decoding performance
of PLC, but do have significant impact on SLC. In partic-
ular, the more priority levels, the less source blocks can be
recovered by SLC with the same number of coded blocks.
This is because if the number of levels is large, the source
blocks in SLC is less mixed. In the extreme case where
each level contains one source block, SLC degrades to the
scheme of no coding. Hence, the “coupon collector” effect
comes into play [18], where recovering all N source blocks
require O(N lnN) coded blocks. On the other hand, even
if each level contains one source block, PLC do still mix
source blocks together and enjoy the coding advantage. In
the following, we only show the results for PLC.

5.3 Differentiated Decoding

We proceed to show examples using the constrained fea-
sibility framework introduced in Sec. 3.4 to find a priority
distribution satisfying a given set of decoding constraints.

Our experimental settings are as follows. 500 source
blocks are divided to three levels with 50, 100, and 350
source blocks in each level. We perform the experiments
for three different sets of decoding constraints, in the form
of (Mi, ki) in (9), and are shown in the first column of Ta-
ble 1. For example, (130, 1) in the first row of Table 1 re-
quires that the expected number of priority levels decoded
from 130 coded blocks is 1. We further enforce the con-
straint (10) with α = 2 and ε = 0.01 and (11) in all three
sets of experiments. We solve the three numerical feasibil-
ity problems with MATLAB, using uniform distribution as
the initial searching point. MATLAB terminates and pro-
duces a feasible solution which is the first solution it finds
such that all constraints are satisfied. The priority distribu-
tions produced by the feasibility problem are shown in the
last three columns in Table 1.

Fig. 7 shows the decoding curve for three priority dis-

Decoding Constraints p1 p2 p3

Case 1 (130, 1) (950, 2) 0.5138 0.0768 0.4094
Case 2 (265, 1) (287, 2) 0 0.6149 0.3851
Case 3 (240, 1) (450, 2) 0.2894 0.3246 0.3860

Table 1. The priority distribution solved from
the optimization problem.
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Figure 7. The decoding curves from the prior-
ity distribution of Table 1.

tributions with the following observations. First, in com-
parison with RLC, which requires at least 500 coded blocks
to decode any source block, PLC can decode the first level
with only 130 coded blocks in “Case 1” and the second level
with only 287 coded blocks in “Case 2”. Second, all decod-
ing curves satisfy their decoding constraints and the decod-
ing of higher priority levels precedes lower priority levels.
Finally, different decoding constraints produce significantly
different decoding curves, which demonstrates the flexibil-
ity of our approach towards a diverse set of differentiated
decoding requirements.

Since we are searching for one of the feasible solutions,
the produced decoding curve may not exactly match the
decoding constraints. For example, the decoding curve of
“Case 3” climbs to level 2 with slightly less than 400 coded
blocks, whereas the decoding constraint is to decode level 2
with 450 coded blocks. Moreover, it is possible that no fea-
sible solutions are found given a set of decoding constraints.
This implies the decoding constraints cannot be fulfilled.

6 Related Work

In sensor networks, extensive research efforts have stud-
ied various distributed source coding schemes to save data
transmissions by exploring the spatial and temporal data
correlations such as in [16]. In contrast, our work along
with recent research work in sensor networks [10, 7, 21, 15]
and distributed storage systems [1, 23, 6] belongs to dis-
tributed channel coding, which provides data redundancy
such that original data can be efficiently recovered when
data loss are common due to node failures. However, most
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existing distributed channel coding schemes either recover
all data or nothing. To cope with such coding disadvantage,
Growth codes [10] have been proposed to maximize par-
tially recovered data on the sink in case not all data can be
recovered in sensor networks. Growth Codes treat all data
equivalently despite data may have different importance in
many applications. Therefore, if it is used, unimportant data
may be recovered at the expense of failing to recover im-
portant data. In contrast to Growth Codes, we encode data
in different priorities such that important data always have
higher opportunity to be recovered.

Wang el al. [22] introduce a distributed source coding
scheme to support partial decoding where partially decoded
data from incomplete coded data are an approximation of
the true data. The more coded data are collected and pro-
cessed by the data collecting server, the closer is the de-
coded data to the true data.

Network coding [2, 12] and its distributed implementa-
tions utilizing random linear codes [8, 5] allow coding op-
erations besides replication and forwarding on the interme-
diate nodes and achieve the maximal multicast capacity of a
network. Chou el al. [5] consider priority encoding in net-
work coding to achieve network multicast capacity, which
is different from our problem. Chunked Codes [17] re-
duce the complexity of random linear codes by partitioning
message to “chunks” and utilizing pre-coding. Although
SLC uses similar partitioning, we focus on partial decoding
whereas they concentrate on reducing complexity. Further-
more, in Chunked Codes, all data have to be pre-encoded in
the source node before dissemination, whereas in our work,
data are encoded in different nodes in a decentralized way.

The research work on priority encoding of data has been
considered for multimedia system, e.g., in [3]. To the best
of our knowledge, there is no known way to implement such
priority encoding schemes in a distributed way.

7 Conclusion

In this paper, we introduce priority encoding under a
distributed setting, where data are generated in different
nodes and encoding operations are executed in a decentral-
ized manner. The proposed priority random linear codes
can be applied to a wide range of autonomous networks, in-
cluding P2P and sensor networks with node churn and fail-
ure, to partially recover data cached on the network nodes.
Our study is based on extensive mathematical analysis and
simulation experiments. We show that with our priority
coding, important data can be recovered with much fewer
coded blocks compared with random linear codes, hence
they are more likely to survive under severe network insta-
bility. Furthermore, the proposed theoretical analysis pro-
vides insights into the fundamental tradeoffs in priority cod-
ing, leading to a flexible framework for optimal coding de-
sign based on application requirements.
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