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Abstract
In distributed online optimization over a com-
puting network with heterogeneous nodes, slow
nodes can adversely affect the progress of fast
nodes, leading to drastic slowdown of the over-
all convergence process. To address this issue,
we consider a new algorithm termed Distributed
Any-Batch Mirror Descent (DABMD), which is
based on distributed Mirror Descent but uses a
fixed per-round computing time to limit the wait-
ing by fast nodes to receive information updates
from slow nodes. DABMD is characterized by
varying minibatch sizes across nodes. It is appli-
cable to a broader range of problems compared
with existing distributed online optimization meth-
ods such as those based on dual averaging, and
it accommodates time-varying network topology.
We study two versions of DABMD, depending
on whether the computing nodes average their
primal variables via single or multiple consensus
iterations. We show that both versions provide
strong theoretical performance guarantee, by de-
riving upperbounds on their expected dynamic
regret, which capture the variability in minibatch
sizes. Our experimental results show substantial
reduction in cost and acceleration in convergence
compared with the known best alternative.

1. Introduction
In many practical applications, system parameters and cost
functions vary over time. For example, in online machine
learning, data samples arrive dynamically, so that the learn-
ing model is progressively updated. Therefore, online op-
timization has recently attracted significant attention as an
important tool for modeling various classes of problems
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with uncertainty, including cloud computing (Lin et al.,
2013), networking (Shi et al., 2018), and machine learning
(Shalev-Shwartz, 2012).

Furthermore, emerging computing and machine learning
applications often demand huge amounts of data and com-
putation, which exacerbates the need for distributed compu-
tation, to avoid overburdening a single computing node and
to provide robustness to failures. Yet, a central challenge
to distributed computation is how to handle the uncertainty
involved in the processing time of heterogeneous computing
nodes. In a large distributed computing network, the fin-
ishing times of different computing nodes can vary greatly
across the network and time, and they can be highly random
due to the variation in available computing resource and
dynamics of the workload. In the design of these networks,
it is difficult to capture such uncertainty in an offline setting,
while online optimization techniques naturally accommo-
date unpredictable variations in the cost functions.

In this paper, we study the problem of online optimization
over a distributed computing network with time-varying
topology. The network consists of heterogeneous comput-
ing nodes, and the processing speed varies among the nodes
and over time. At each time instant, there is a global cost
function in the network, which is generally defined and is
time-varying. An example of such a global cost is the pre-
diction loss. Individual nodes communicate locally to col-
laboratively supplement their incomplete knowledge about
the time-varying global cost. Our aim is to minimize the
total accumulated cost over a finite time interval.

The above computing model can be viewed as an abstraction
for several important practical cases. For instance, consider
a parallel processing system with unknown processing times.
The computing nodes may be parallel processors or virtual
machine instances in a public cloud or mobile edge servers.
A number of factors contribute to not knowing the process-
ing time on these processors. For example, an edge server
may be shared among offloaded user tasks and network ser-
vice tasks, so that only a fraction of the processing resource
may be available to serve the user tasks. Another exam-
ple is networked sensors and mobile devices in a machine
learning application, where the goal is to fit a model to a
large dataset. Different sensors and devices have differing
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computing speed, and thus, slow nodes can cause significant
delay that adversely affects the overall performance. Closely
related to this case is the straggler problem in distributed
learning networks (Tandon et al., 2017). A careful design is
required to handle slow learners and stragglers.

Prior studies on distributed online optimization utilize a vari-
ety of solution methods, including gradient descent (Mateos-
Nunez & Cortés, 2014), and mirror descent (Shahrampour
& Jadbabaie, 2017). Mirror descent uses Bregman diver-
gence, which generalizes the Euclidean norm used in the
projection step of gradient descent, thus acquiring expanded
applicability to a broader range of problems. In addition,
Bregman divergence is mildly dependent on the dimension
of decision variables (Beck & Teboulle, 2003). Thus, mir-
ror descent is optimal among first-order methods when the
decision variables’ dimension is high (Duchi et al., 2010).
In this work we focus on the mirror descent approach.

Most prior studies assume homogeneous computing nodes,
so that the amount of data processed in each round is
fixed (Hosseini et al., 2013; Mateos-Nunez & Cortés, 2014;
Nedich et al., 2015; Shahrampour & Jadbabaie, 2017;
Tsianos & Rabbat, 2016; Xiao, 2010). However, as ex-
plained above, heterogeneity is often unavoidable in modern
computing networks. Therefore, in this work we instead
consider an any-batch approach, fixing the per-round pro-
cessing time and allowing each computing node to complete
as much work as it can in each round. This forces all nodes
to report their accomplished work when the fixed time in-
terval expires, thus preventing slow computing nodes from
holding up the progress of faster ones. However, fixing
the processing time results in varying workload among the
heterogeneous nodes, which complicates system design and
performance analysis. As far as we are aware, this work is
the first to consider this approach for mirror descent, with a
theoretical analysis on its regret bound.

Contributions. In this paper, we consider the problem of
distributed online optimization over a computing network,
taking into account heterogeneity among computing nodes
in terms of processing speed. We present an online opti-
mization approach termed Distributed Any-Batch Mirror
Descent (DABMD), which uses fixed per-round processing
time to limit the waiting time by fast nodes to receive infor-
mation update from slow nodes. The term any-batch is due
to the fact that our approach allows varying batch sizes of
data processed by computing nodes within each round. We
study two versions of DABMD, depending on whether the
computing nodes average their primal variables via single
or multiple consensus iterations. Our main contribution is
in analyzing the performance of DABMD in terms of regret,
which measures the difference between the accumulated
cost of the online algorithm and that of an optimal offline
counterpart. In contrast to prior studies that focus on the

static regret (Ferdinand et al., 2019; Hosseini et al., 2013;
Mateos-Nunez & Cortés, 2014; Nedich et al., 2015; Tsianos
& Rabbat, 2016; Xiao, 2010), where the offline comparison
target is static and hence highly suboptimal, we establish up-
per bounds on the dynamic regret, which provides a stronger
performance guarantee. Furthermore, in contrast to earlier
studies (Ferdinand et al., 2019; Hosseini et al., 2013; Nedich
et al., 2015; Shahrampour & Jadbabaie, 2017; Tsianos &
Rabbat, 2016; Xiao, 2010) where a fixed network topology
is considered, we allow a time-varying network topology.
Experimental results show a substantially accelerated con-
vergence speed compared with the known best alternative
from (Shahrampour & Jadbabaie, 2017)

2. Related Works
The present paper lies at the intersection between two im-
portant bodies of works, distributed computation and online
optimization. Here we review the most relevant studies in
these two areas.

2.1. Distributed Computation

The problem of distributed computation over a network has
been extensively studied since the seminal work of (Tsit-
siklis et al., 1986). Distributed optimization techniques can
be categorized based on their computing network topology,
either master-worker (Boyd et al., 2011) or fully distributed,
which are characterized by the lack of centralized access to
information. Our main focus is on methods in the second
category. These methods are particularly attractive since
they are robust to communication and node failures and are
simple to implement.

Of particular interest is distributed gradient-based methods.
In (Nedic & Ozdaglar, 2009), the distributed subgradient
method is presented and its convergence rate is analyzed for
a time-varying network. In (Duchi et al., 2011), the dual
averaging method for distributed optimization is proposed
and the effect of network parameters on the convergence
behavior is investigated. Distributed dual averaging under
various scenarios of delayed subgradient information and
quantized communication error is studied in (Tsianos &
Rabbat, 2012; Wang et al., 2014; Yuan et al., 2012). All the
aforementioned methods are first-order algorithms requiring
only the calculation of subgradients and projections. This is
especially important in some applications such as large-scale
learning where first-order methods are preferable to higher
order approaches (Bottou & Bousquet, 2008). However,
despite the benefit of simplicity of first-order methods, it
is challenging to generate projections for some common
objective functions. An example of such objective functions
is the entropy-based loss with the constraint set of unit
simplex (Beck & Teboulle, 2003).

The mirror descent algorithm (Beck & Teboulle, 2003; Ne-
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mirovsky & Yudin, 1983) generalizes the projection step
by using Bregman divergence, consequently gaining appli-
cability to a wide range of problems. Distributed versions
of mirror descent under various settings are presented in
(Li et al., 2016; Rabbat, 2015; Raginsky & Bouvrie, 2012;
Shahrampour & Jadbabaie, 2017; Wang et al., 2018; Xi
et al., 2014; Yuan et al., 2018). However, all of these works,
except (Shahrampour & Jadbabaie, 2017), consider only
time-invariant cost functions in an offline setting.

2.2. Onilne Optimization

Online optimization techniques take into account the dynam-
ics in a system and allow the cost function to be time-varying
(Shalev-Shwartz, 2012; Zinkevich, 2003). In (Mateos-
Nunez & Cortés, 2014), distributed online optimization
over a time-varying network topology is studied using the
subgradients of local functions. The subgradient approach
uses Euclidean norms in the projection step. In contrast, our
work based on mirror descent considers a Bregman diver-
gence function, and thus is applicable to a broader range of
problems.
For distributed online optimization, the dual averaging ap-
proach is studied in (Hosseini et al., 2013; Xiao, 2010).
Extensions include approximate dual averaging (Tsianos &
Rabbat, 2016), and a primal-dual approach (Nedich et al.,
2015). However, these works assume homogeneous com-
puting nodes. The authors in (Ferdinand et al., 2019), con-
sider the straggler issue in learning networks, and propose
any-batch dual averaging approach. However, the network
topology is fixed over time, which limits its applicability
to modern computing systems. Finally, all of these works
analyze only the static regret, while we provide a bound
on the dynamic regret, which takes into account the time
variant nature of the minimizer.
The work most closely related to ours is (Shahrampour &
Jadbabaie, 2017), which studies distributed mirror descent
for online optimization over a network with static topology
and homogeneous nodes in terms of processing capability.
Our work may be viewed as a generalization of (Shahram-
pour & Jadbabaie, 2017) in two directions. First, we account
for the heterogeneity among the computing nodes, which
motivates an any-batch design that is robust to slow com-
puting nodes, to prevent long waiting time by fast nodes
until slow nodes finish their work. Second, we allow a
time-varying network topology. Thus, our approach is more
suited to practical computing networks, e.g., mobile cloud
systems and networked sensors, where heterogeneity and
time-varying topology are unavoidable.

3. Network Model and Problem Formulation
3.1. Heterogeneous Time-Varying Computing Network

We consider a distributed computing network with heteroge-
neous nodes in a time-slotted setting. The communication

topology is assumed to be time-varying, and it is modeled by
an undirected graph Gt = (V, Et), where V = {1, . . . , n}
and Et ⊂ V ×V denote the set of nodes and edges at time t,
respectively. Each node i ∈ V can generally represent a
computing unit, e.g., data center, or mobile device.

Computing nodes exchange information according to the
topology graph Gt at time t. Each computing node i assigns
a non-negative weight P tij to the received information from
node j. To ensure individual nodes sufficiently communi-
cate with each other, we impose several standard assump-
tions on topology graph Gt and the weighting rule (Nedic &
Ozdaglar, 2009):

(a) (Weight Rule) There exists a scalar η with 0 < η < 1
such that for all i, j ∈ V , and all t ≥ 0, P tij ≥ η, if (i, j) ∈
Et, and P tij = 0, otherwise.

(b) (Doubly Stochastic) The weight matrix P t is doubly
stochastic, i.e.,

n∑
j=1

P tij =

n∑
i=1

P tij = 1, ∀t ≥ 0. (1)

(c) (Connectivity) The graph (V,
⋃
t≥k Et) is connected for

all k. Furthermore, there exists an integer B ≥ 1 such that
∀(i, j) ∈ V × V , we have

(i, j) ∈ Et ∪ Et+1 ∪ · · · ∪ Et+B−1, ∀t ≥ 0. (2)

This guarantees that every node i receives the share of infor-
mation processed by any other node j at least once every B
consecutive time-slots.

3.2. Distributed Online Optimization

We consider the case where data samples arrive at the system
over time. Each data sample i is represented by (ωi, zi),
where ωi ∈ Ω ⊆ Rd and zi ∈ R. There is a cost function
f(x, (ω, z)) associated with every data sample, where x ∈
X denotes a decision variable taken from a compact and
convex set X . The cost function is generally defined and
may represent e.g., a measure of prediction accuracy to
fit a learning model. For example, logistic regression is
obtained by setting f(x, (ω, z)) = log(1 + exp(−zxTω)).
For brevity, we use f(x, ω) instead of f(x, (ω, z)) in the
rest of the paper. The cost function f(x, ω) is convex in x,
for all ω ∈ Rd. In addition, we assume f(x, ω) is Lipschitz
continuous on X with constant L, i.e.,

|f(x1, ω)− f(x2, ω)| ≤ L ‖ x1 − x2 ‖,∀x1, x2 ∈ X .
(3)

This implies that f(x, ω) has bounded gradients, i.e.,
‖∇f(x, ω)‖∗ ≤ L for all ω ∈ Ω and x ∈ X , where ‖ · ‖∗ is
the dual norm of ‖ · ‖.

In distributed online optimization, the computing nodes indi-
vidually process the data samples to minimize some global
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cost function in a round-by-round manner. Each round t
corresponds to time slot t and consists of computation and
communication phases. Let bi,t be the local minibatch size,
i.e., the number of samples that node i ∈ V is able to pro-
cess in round t. The value of bi,t depends on the processing
speed of node i within the computation time.

The local cost function is defined as the sum of the costs
incurred for the locally computed samples. We denote the
local cost function of node i at round t by fi,t : X → R, i.e.,

fi,t(x) =

bi,t∑
s=1

f(x, ωsi,t), (4)

where the data samples ωsi,t, s = 1, . . . , bi,t are computed
locally, and collectively form the local minibatch of node i
at round t.

At each round t, after each node i submits a local de-
cision xi,t, a minibatch of bi,t samples are processed,
and the node suffers a corresponding cost of fi,t(xi,t) =∑bi,t
s=1 f(xi,t, ω

s
i,t). Thus, these cost functions are time vary-

ing. The random samples are assumed to be independent
and identically distributed with an unknown and fixed prob-
ability distribution.

We are interested in an optimization problem with a global
cost function, represented by ft : X → R at round t. It
is based on the local functions that are distributed over the
entire network, i.e.,

ft(x) =

n∑
i=1

fi,t(x). (5)

For distributed minimization of the global cost, every com-
puting node i maintains a local estimate of the global mini-
mizer yi,t as well as a local decision vector xi,t. Individual
nodes perform local averaging of the current decision col-
lected from their neighbors, using the weight matrix P t.
Local estimates yi,t are updated accordingly, which are then
used together with the next minibatch bi,t+1 to compute the
local decision xi,t+1 in the next round.

The goal of an online algorithm is to minimize the total
accrued cost over a finite number of rounds T . The quality
of decisions is measured in terms of a popular metric, called
regret, which is the difference between the total cost in-
curred by the online algorithm and that of an optimal offline
solution, where all cost functions are known in advance. A
successful online algorithm closes the gap between the on-
line decisions and the offline counterpart, when normalized
by T . In other words, a successful online algorithm sustains
a regret sublinear in T .

Studies on online learning often focus on the static re-
gret, where offline solution is fixed over time, i.e., x∗ =
argminx∈X

∑T
t=1 ft(x). Unfortunately, this offline com-

parison target is often highly suboptimal in most practical

streaming settings, e.g., x∗t may correspond to video frames
in a dynamic environment which by nature are highly vari-
able over time (Hall & Willett, 2015). Furthermore, in this
paper we study a fully dynamic scenario, where both the
cost functions and the network topology are time-varying.
Therefore, to capture the full potential of dynamics in the
network, we focus on the notion of dynamic regret (Zinke-
vich, 2003), which is defined by

RegdT =
1

n

n∑
i=1

T∑
t=1

ft(xi,t)−
T∑
t=1

ft(x
∗
t ). (6)

where x∗t = argminx∈X ft(x) is a minimizer of the global
cost at round t.

It is well known that the in a dynamic setting, the problem
may be intractable due to arbitrary fluctuation in the func-
tions (Zhang et al., 2017). However, it is possible to upper
bound the dynamic regret in terms of certain regularity of
the sequence of minimizers. A popular quantity to represent
such regularity is

AT =

T∑
t=1

‖ x∗t+1 − x∗t ‖, (7)

which represents the path length of the sequence. Thus, AT
serves as a complexity measure which assesses the hardness
of an online problem. For instance, it is shown in (Shahram-
pour & Jadbabaie, 2017) that the dynamic regret of dis-
tributed online mirror descent for a convex function in a ho-
mogeneous network can be bounded by O(

√
T (AT + 1)).

For the analysis of dynamic regret of DABMD, we face
multiple challenges that need to be carefully considered. In
particular, heterogeneity adds substantial challenge to the
algorithm design. Since the computation time is fixed for all
nodes, the minibatch size bi,t is a random variable. This is
in contrast to the traditional methods, where the minibatch
size is fixed among the computing nodes and over time.

Before delving into the details of DABMD, we proceed by
stating several standard definitions. Further discussion on
some preliminary information is given in App. A.

Definition 1: A subdifferentiable function r : Rd → R is
σ-strongly convex with respect to a norm ‖ . ‖, if there
exists a positive constant σ such that

r(x) ≥ r(y) + 〈∇r(y), x− y〉+
σ

2
‖ x− y ‖2,∀x, y,

(8)

where∇r(.) stands for the subgradient of function r(.).

Definition 2: Bregman divergence with respect to the func-
tion r(.) is defined as

Dr(x, y) = r(x)− r(y)− 〈∇r(y), x− y〉. (9)

Bregman divergences are a general class of distance-
measuring functions, which contains Euclidean norms and
Kullback-Leibler divergence as two special cases.
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4. Distributed Any-Batch Mirror Descent
Now we present DABMD, a distributed online optimization
approach for an evolving dynamic networks with hetero-
geneous computing nodes. We bound the performance of
the proposed DABMD algorithm in terms of its expected
dynamic regret.

4.1. Algorithm Description

DABMD uses mirror descent in its core as an optimization
engine, powered by averaging consensus, enabling nodes
to collaboratively approximate a globally optimal solution
through local interactions. In contrast to traditional dis-
tributed methods, where a classical but impractical require-
ment is that each computing node processes an equal amount
of workload in a given time, DABMD is designed to accom-
modate heterogeneity in a computing system. The comput-
ing time for all nodes is fixed, and thus, faster nodes would
no longer need to wait for slower ones to report their accom-
plished work. As a result, the performance of DABMD is
no longer limited by the variability in the batch sizes. This
is particularly important in a large network consisting of
many nodes with differing processing capabilities, where
slow nodes hold up the network, often at a great cost to the
overall system performance. Next, we describe DABMD
in detail and establish a bound on its performance through
regret analysis. Every round of DABMD is comprised of
three major steps:

Any-Batch Computation: The computation time in each
round is set to a fixed value for all nodes. Individual nodes
compute the gradient of as many samples as they can within
the fixed computation time. In particular, every computing
node i computes bi,t gradients of f(x, ω), evaluated at the
local estimate of the global minimizer x = yi,t. Resulting
from heterogeneity, the computing nodes process varying
workload within each round. This implies that the batch size
bi,t is a random variable, which is in contrast to classical
approaches based on a fixed minibatch size over time and
across the network. By the end of each round, each node
computes the local minibatch gradient, i.e.,

gi,t =
1

bi,t

bi,t∑
s=1

∇yf(yi,t, ω
s
i,t). (10)

Local Decision Update: After computing the local mini-
batch gradient, each computing node i performs the follow-
ing update on the local decision:

xi,t+1 = argmin
x∈X

{
〈x, gi,t〉+

1

αt
Dr(x, yi,t)

}
, (11)

where {αt} is a sequence of positive and non-increasing step
sizes, and Dr(., .) is the Bregman divergence corresponding

to the regularization function. Recall that xi,t and yi,t are
respectively the local decision and the local estimate of the
global minimizer at round t. Thus, (11) suggests that every
node i aims to stay close to the locally approximated global
minimizer yi,t as measured by Bregman divergence, while
taking a step in a direction close to gi,t to reduce the local
cost at the current round.

Consensus Averaging: Consensus averaging is a mecha-
nism to coordinate and synchronize the decision variables at
different computing nodes. After each node has processed
its share of local information, and updated its local decision,
it sends a message to the neighboring nodes. At round t,
after receiving the messages from all neighbors, computing
node i updates its estimate of the global minimizer by

yi,t =

n∑
j=1

P tijxj,t. (12)

The objective of this step is to provide an opportunity for
each node to obtain some information about the global cost.
It allows nodes to cooperatively approximate the global
cost function. In particular, as opposed to the approaches
built on distributed dual averaging, where the subgradient
information are exchanged, here, each node updates its local
primal variable according to the local mini-batch gradients,
and then it shares the primal information within its local
neighborhood.

4.2. Theoretical Results

We begin analyzing the performance of DABMD with a
convergence result on the local decision variables.

We define Φ(k, s) = P sP s+1 . . . P k as the transition ma-
trix that records the weights history from round s to k. The
convergence properties of this matrix is extensively ana-
lyzed in (Nedic & Ozdaglar, 2009). In this work, we use the
following result

|Φ(k, s)ij −
1

n
| ≤ γΓk−s, (13)

where γ = 2(1+η−B0 )
1−ηB0

and Γ = (1 − ηB0)1/B0 , and
B0 = (n − 1)B is a positive integer. We refer the reader
to Proposition 1 in (Nedic & Ozdaglar, 2009) for further
discussion and proof.

Now, we are ready to present an upperbound on the devi-
ation of the local decisions from the exact average in the
following lemma.

Lemma 1 Let xi,t be the sequence of local decisions gen-
erated by DABMD, with all initial local decisions set to
zero vectors. Suppose every node uses a σ-strongly convex
regularizer r(.) and a non-increasing step size sequence
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{αt}. Then, the following bound holds on xi,t+1:

‖xi,t+1 − x̄t+1‖ ≤
α0L

σ

(
2 +

nγ

1− Γ

)
,

where x̄t+1 = 1
n

∑n
i=1 xi,t+1.

Lemma 1 is proved in App. C of the supplementary material.

We observe that the error bound above relates to the network
graph through parameters γ and Γ. Smaller values of Γ and
γ result in local decisions moving closer to their average.
In other words, a shorter communication interval B and a
larger minimum link weight η would help individual nodes
to collect the information of all other computing nodes
across the network at a faster pace. Thus, each computing
node can approximate x̄t+1 with a higher accuracy.

Remark 1. Similar to Lemma 1, the convergence of local
decisions are investigated in Lemma 1 of (Shahrampour &
Jadbabaie, 2017). However, that analysis is based on the
assumption that an oracle provides a common knowledge
matrix to all computing nodes and requires the weight matrix
to be fixed. Hence, their work cannot be extended to the
case of a time-varying network, such as in mobile cloud
computing. In contrast, our analysis obviates the common
knowledge requirement and is applicable to a general time-
varying network, where in addition to the weight matrix,
even the connections can be time-varying.

The succeeding theorem provides an upper bound on the
expected dynamic regret and it is followed by a corollary
characterizing the regret bound for the optimized, fixed step
size.

Theorem 2 Let xi,t be the sequence of local decisions gen-
erated by DABMD. Let bavg = E[bi,t], bmin = mini,t{bi,t}
and bmax = maxi,t{bi,t} be the mean value, minimum, and
maximum of the minibatch sizes across the nodes and over
time. The expected dynamic regret satisfies

E
[
RegdT

]
=

1

n

n∑
i=1

T∑
t=1

E
[
ft(xi,t)− ft(x∗t )

]
≤

T∑
t=1

2nbavgL
2α0

σ

(
2 +

nγ

1− Γ

)
+

T∑
t=1

VbL
2n

2σbmin
αt

+

T∑
t=1

MnbmaxE[‖ x∗t+1 − x∗t ‖]
αT+1

+
2nbmaxR

2

αT+1
, (14)

where R2 = supx,y∈XDr(x, y), and Vb = E
[
b2i,t
]
.

The proof of Theorem 2 is given in App. D.

Remark 2. The regret bound obtained above depends on the
heterogeneity in processing speed only through parameter
statistics bmax, bmin, bavg, and Vb. In other words, these

parameters capture and summarize the effect of varying
processing speed among the computing nodes. Moreover,
the impact of time-varying network graph with an imperfect
averaging protocol is summarized in the first component.
More specifically, it is through this term that the network
connectivity interval B, minimum link weight η, and the
precision of local estimates of the global minimizer appear
in the result. Furthermore, the impact of the dynamic offline
comparator variable x∗t is reflected in the third term.

Corollary 3 Under the same condition stated in Theorem 2,
with fixed step size

α ∈ O

(√
bmax(ĀT + 1)/

[
T

(
2nγbavg

1− Γ
+

Vb
bmin

)])
,

we have

E
[
RegdT

]
≤ O

(√
T (ĀT + 1)bmax

(
2nγbavg

1− Γ
+

Vb
bmin

))
,

(15)

where ĀT =
∑T
t=1 E[‖ x∗t+1 − x∗t ‖] denotes the expected

value of the total variation of the dynamic minimizer.

This corollary directly follows from substituting the fixed
step size α into the bound in (14).

Remark 3. We remark that our result recovers the regret rates
previously derived for two special cases. When computing
nodes are homogeneous, bi,t is no longer a random variable.
Instead, the minibatch size is fixed across the network and
over time. In this case, the terms involving the distribution
characteristics disappear. Thus, we have a regret bound of
O(
√
T (AT + 1)), which recovers the result of (Shahram-

pour & Jadbabaie, 2017), in which distributed online mirror
descent was studied. In addition, if the offline minimizers
are fixed, the problem is reduced to minimizing the static
regret. In this case, the path length AT is equal to zero and
we obtain a regret bound of O(

√
T ), which recovers the

result of (Tsianos & Rabbat, 2016) on distributed online
dual averaging.

Remark 4. The regret bound scales with the expected path
length ĀT , which collects the mismatch errors between suc-
cessive offline minimizers. When the minimizer sequence
drifts slowly, the overall error is small and ĀT can be of a
constant order. On the other hand, severe fluctuation in the
objective function or network topology can result in large
mismatch errors, which can cause ĀT to become linear in
time. Such behavior is natural since even for centralized
online optimization, the problem is generally intractable
under worst-case system fluctuation (Zhang et al., 2017).
Nevertheless, our goal is to consider ĀT as a complexity
measure of the problem environment and derive the regret
bound in term of this quantity. We observe that if ĀT is
sublinear then the dynamic regret is also sublinear.
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5. Multiple Consensus Iterations
In this section, we study a more general version of DABMD,
which uses multiple consensus averaging iterations. Here
we remark that the analysis of regret bound for this general
case requires new techniques different from those used in the
previous section. As a result, the obtained regret bound for k
consensus averaging iterations is different from our previous
result even for k = 1, therefore necessitating presentation
in a separate section.

Similar to the previous case, this version also contains three
steps. However, in the previous case, computing nodes per-
form only a single consensus iteration. Thus, in estimating
the global minimizer each node only receives the message
of the immediate neighbors that are one hop away, and is
oblivious about the decision of the nodes that are farther
away. This issue can be resolved via multiple consensus
averaging iterations. In particular, with k iterations of con-
sensus averaging, computing nodes receive the message
of nodes that are k hops away. Therefore, they can more
precisely approximate the global minimizer.

Let y(0)
i,t = xi,t denote the initial message vector before

beginning the consensus averaging step. Let y(l)
i,t denote

the vector output at computing node i and round t, after
l consensus iterations using matrix P t. At each iteration
l, after receiving messages from all its neighbors, node i
updates its estimate of the global minimizer by

y
(l)
i,t =

n∑
j=1

P tijy
(l−1)
j,t =

n∑
j=1

[P t]lijy
(0)
j,t . (16)

As long as graph Gt, corresponding to the weight matrix
P t, is connected and the second-largest eigen value of P t

is strictly less than unity, the consensus iterations are guar-
anteed to converge to the exact average. However, for a
finite number of iterations each node will have an error in
its estimation. The following lemma bounds the consensus
errors after k iterations.

Lemma 4 Let y(k)
i,t represent the output of the consensus

averaging after k iterations with updates (16). Under the
same condition stated in Lemma 1, the following bound
holds:∥∥∥y(k)

i,t − x̄t
∥∥∥ ≤ 2

√
n

exp [kn−3]

α0L

σ

(
2 +

nγ(k)

1− Γ(k)

)
,

where x̄t = 1
n

∑
i xi,t, γ

(k) = 2(1 + η−B0

k )/(1 − ηB0

k ),
Γ(k) = (1− ηB0

k )1/B0 , and ηk = mini,j [P
t]ki,j .

Lemma 4 is proved in App. E of the supplementary material.

The following theorem establishes an upper bound on the
expected dynamic regret, followed by a corollary character-
izing the regret rate for a fixed step size.

Theorem 5 Let xi,t be the sequence of local decisions gen-
erated by DABMD with k consensus averaging iterations.
The expected dynamic regret satisfies

E[RegdT ] ≤
T∑
t=1

bavgL
2α0n

σ

(
2 +

nγ(k)

1− Γ(k)

)(
1 +

2
√
n

exp[kn−3]

)

+

T∑
t=1

VbL
2nαt

2σbmin
+

T∑
t=1

MnbmaxE[‖ x∗t+1 − x∗t ‖]
αt

+
2nR2bmax

αT+1
. (17)

The proof of Theorem 5 is given in App. F.

Corollary 6 Under the same condition stated in Theorem 5,
with fixed step size

α ∈ O

√√√√ bmax(ĀT + 1)

T
(

2n
√
nγ(k)bavg

(1−Γ(k)) exp[kn−3]
+ Vb

bmin

)
 ,

we have

E
[
RegdT

]
≤ (18)

O

(√
T (ĀT + 1)bmax

(
2n
√
nγ(k)bavg

(1− Γ(k)) exp[kn−3]
+

Vb
bmin

))
.

This corollary directly follows from substituting the fixed
step size α into the bound in (17).

Remark 5. We remark that the regret bound of DABMD with
multiple consensus iterations in (18) is of the same order of
that of DABMD with a single consensus iteration in (15).
The effect of multiple consensus iterations are mainly sum-
marized in γ(k), Γ(k), and exp [kn−3], where both γ(k) and
Γ(k) are functions of the transition matrix, and exp [kn−3]
is resulted from bounding the second largest eigen value of
a doubly stochastic matrix (Landau & Odlyzko, 1981).

6. Experiments
We investigate the performance of DABMD via numerical
experiments on two different machine learning tasks using
real-world datasets. We compare DABMD with the method
proposed in (Shahrampour & Jadbabaie, 2017), which was
termed Distributed Online Mirror Descent (DOMD). Due
to page limitation, here we focus on the case of single con-
sensus iteration. Additional experiments are presented in
App. G.

6.1. Logistic Regression

In the first experiment, we consider multi-class classification
with logistic regression. In this task, learner nodes observe
a sequence of labeled examples (ω, z), where ω ∈ Rd, and
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(a) Accumulated logistic cost of
MNIST dataset.
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(b) Logistic cost of MNIST
dataset.
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(c) Accumulated ridge cost of
YouTube transcoding dataset.
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(d) Ridge cost of YouTube
transcoding dataset.

Figure 1. Performance comparison between DOMD and DABMD on MNIST and YouTube transcoding datasets.

the label z, denoting the class of the data example, is drawn
from a discrete space Z = {1, 2, . . . , c}. We use the well-
known MNIST digits dataset, where every data sample ω
is an image of size 28 × 28 pixel that can be represented
by a 784-dimensional vector, i.e., d = 784. Each sample
corresponds to one of the digits in {0, 1, . . . , 9}, and hence,
there are c = 10 classes.

We consider a network consisting of n = 10 distributed
nodes. The underlying network topology switches sequen-
tially in a round robin manner among some doubly stochas-
tic generated graphs. In addition, to model the processing
speed of distributed nodes, similar to studies on stragglers
in (Dutta et al., 2018) and (Lee et al., 2017), we adopt a
shifted exponential distribution. This captures a minimum
computing time, denoted by ε, to process a sample, while
the remaining computing time is memoryless. More specif-
ically, the computing time of each sample is modeled as
a random variable, which follows the probability density
function of the form P (r) = λ exp(−λ(r − ε)). We set
λ = 0.5 and ε = 1. For fair comparison, we extend DOMD
to have a fixed minibatch size close to the value of bavg,
which is empirically found.

For logistic regression, the cost function associated with
each data point is given by

f(x, (ωi, zi)) = log(1 + exp(−zixTωi)).

The goal of the computing nodes is to classify streaming im-
ages online by tracking the unknown optimal parameter x∗t .

In Fig. 1, we compare the performance of DABMD with
DOMD, for different minibatch sizes b. From Fig. 1(a)
and Fig. 1(b), we see that DABMD can save up to 10%
in accumulated cost after 1000 rounds, and it reduces the
convergence time up to 30% compared with DOMD.

6.2. Ridge Regression

In our next experiment, we consider the ridge regression
problem. The cost function for each data sample is given by

f(x, (ωi, zi)) = (xTωi − zi)2.

We use YouTube transcoding measurements from a publicly
available dataset (Deneke et al., 2014). It contains 6× 104

data samples, representing the input and output character-
istics of a video transcoding application. The input data
space has a dimension of d = 20, corresponding to video
transcoding attributes such as resolution, bit rate, and re-
quired memory. Using this dataset, the goal is to predict the
transcoding time based on the video features.
Similar to (Champati & Liang, 2017), we consider a Pareto
distribution to model the processing time required to finish a
transcoding task. By adjusting the Pareto tail index, we can
control how unevenly the processing times are distributed,
and thus, can capture the heterogeneity of the network in
terms of processing speed. We set the Pareto tail index and
scale parameter to 1.6 and 1.0, respectively. The network
topology is time-varyig and is generated in the same way as
the previous experiment.
From Figs. 1(c) and 1(d), we observe that the performance
advantage of DABMD is more pronounced when the com-
puting time has a heavy tail distribution. This is because
with a heavy tail distribution, it is more likely to observe
some relatively long computing time in DOMD, which
causes a significant delay and leads to inefficiency. DOMD
performs particularly poorly when b is large. In compari-
son, DABMD saves up to 30% in accumulated cost after 30
rounds, and reduces the convergence time up to 20%.

7. Conclusion
We have studied the problem of distributed online optimiza-
tion over a heterogeneous time-varying network. The pro-
posed DABMD algorithm imposes a fixed per-round pro-
cessing time interval for all computing nodes. Thus, a key
feature of DABMD is that the optimization progress does
not solely depend on the slowest computing node. We dis-
cussed two versions of DABMD, depending on whether the
computing nodes average their primal variables via single
or multiple consensus iterations. We guarantee the per-
formance of DABMD and provide upper bounds on the
expected dynamic regret. Experimental results on MNIST
and YouTube transcoding datasets show substantial improve-
ment on both the accumulated cost and convergence speed
compared with existing alternatives. We observe that the
performance advantage of using a fixed round time is more
significant when the sample processing time is taken from a
heavy tail distribution.
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A. Additional Preliminary Definitions
Combining the definitions of strong convexity in (8) and
Bergman divergence in (9) results in an important property
of the Bregman divergence associated with a σ-strongly
convex function, i.e.,

Dr(x, y) ≥ σ

2
‖ x− y ‖2 . (19)

We assume that the Bregman divergence satisfies the follow-
ing conditions (Bauschke & Borwein, 2001).

(a) (Separate Convexity) Let x and yk, k = 1, . . . ,K, be ar-
bitrary vectors in Rd. Then, the following inequality holds:

Dr

(
x,

K∑
k=1

µkyk

)
≤

K∑
k=1

µkDr(x, yk), (20)

where µk are non-negative constants with
∑
k µk = 1.

(b) (Lipschitz Continuity) The Bregman divergence is Lips-
chitz continuous of the following form:

|Dr(x, z)−Dr(y, z)| ≤M ‖ x− y ‖,∀x, y, z ∈ X ,
(21)

where M is a positive constant.

Many commonly used functions satisfy (20), e.g., Eu-
clidean distance and Kullback-Leibler divergence (refer to
(Bauschke & Borwein, 2001) for further discussion and
proof). Moreover, the condition in (21) is directly satisfied
with a proper choice of Lipschitz continuous function r(.)
on the compact set X .

B. Pseudocode of DABMD Algorithm
The psuedocode of DABMD operating over a heterogeneous
network is given in Algorithm 1. Lines 3 − 9 correspond
to the any-batch computation step, in which every node i
computes bi,t gradients during the fixed computation time
interval, denoted by Tr. Line 10 corresponds to the update
step, where nodes update their decisions using the mirror
descent method. Line 11 represents the consensus averag-
ing step, in which each node shares the local decision with
its neighbors. Upon receiving the messages of neighbor-
ing nodes, every node i updates its estimate of the global
minimizer yi,t+1.

C. Proof of Lemma 1
In the proof of Lemma 1, we make use of another technical
lemma. The following lemma presents an upper bound on
the deviation of the local decisions from their approximate
average.

Algorithm 1 DABMD algorithm
Input: initial points: {xi,0, yi,0}; step size αt; time hori-
zon T .
Output: sequence of decisions {xi,t, yi,t : 1 ≤ t ≤ T}.
1: for t = 1, 2, . . . , T do
2: Initialize bi,t = 0, gi,t = 0
3: T0 = current_time
4: while current_time− T0 ≤ Tr do
5: Receive input ωsi,t sampled i.i.d from Ω
6: Compute gradient: gi,t ← gi,t +∇f(yi,t, ω

s
i,t)

7: bi,t ← bi,t + 1
8: end while
9: Normalize gradients: gi,t ← 1

bi,t
gi,t

10: Update local decisions:
xi,t+1 = argmin

x∈X

{
〈x, gi,t〉+ 1

αt
Dr(x, yi,t)

}
11: Average decisions by consensus iteration

single consensus iteration:
yi,t+1 ←

∑n
j=1 P

t+1
ij xj,t+1

multiple consensus iteration:
yi,t+1 ←

∑n
j=1 [P t+1]

k
ijxj,t+1

12: end for

Lemma 7 If every node uses a σ-strongly convex regular-
ization function r(.), we have

‖ xi,t+1 − yi,t ‖≤
Lαt
σ
,∀i ∈ V,∀t ≥ 0.

Proof. By applying the first-order optimality condition to
the update (11), we get

〈x− xi,t+1, αtgi,t +∇r(xi,t+1)−∇r(yi,t)〉 ≥ 0,∀x ∈ X .
(22)

Then, setting x = yi,t in (22) yields

〈yi,t − xi,t+1, αtgi,t〉 (23)
≥ 〈xi,t+1 − yi,t,∇r(xi,t+1)−∇r(yi,t)〉.

Next, we exploit the strong convexity of regularizer r(.),
i.e.,

r(xi,t+1)− r(yi,t)−∇r(yi,t)T (xi,t+1 − yi,t)

≥ σ

2
‖ xi,t+1 − yi,t ‖2 .

Taking gradient with respect to xi,t+1 yields

∇r(xi,t+1)−∇r(yi,t) ≥ σ ‖ xi,t+1 − yi,t ‖ .

Combining the above with (23), and using the Lipschitzness
property, we obtain

αtL ‖ xi,t+1 − yi,t ‖≥ σ ‖ xi,t+1 − yi,t ‖2 . (24)
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Dividing (24) by σ ‖ xi,t+1− yi,t ‖ completes the proof. �

Now, we are ready to present an upperbound on the devia-
tion of the local decisions from the exact average. So, we
present the proof of Lemma 1.

Let ei,t = xi,t+1 − yi,t denote the error between the local
decision and local estimate between two consecutive time
slots. Then, the update (12) can be recursively written as

xi,t+1 = yi,t + ei,t =

n∑
j=1

P tijx
t
j + ei,t

=

n∑
j=1

Φ(t, 0)ijxj,0 +

t∑
s=1

n∑
j=1

Φ(t, s)ijej,s−1 + ei,t.

(25)

Averaging the above over the entire network yields

x̄t+1 =
1

n

n∑
i=1

xi,t+1 =
1

n

n∑
j=1

n∑
i=1

Φ(t, 0)ijxj,0

+
1

n

t∑
s=1

n∑
j=1

n∑
i=1

Φ(t, s)ijej,s−1 +
1

n

n∑
i=1

ei,t

=
1

n

n∑
j=1

xj,0 +
1

n

t+1∑
s=1

n∑
j=1

ej,s−1, (26)

where in the last line, we have used the fact that Φ(t, 0)
and Φ(t, s) are doubly stochastic matrices, and thus∑
i Φ(t, 0) =

∑
i Φ(t, s)ij = 1. By combining (25) and

(26), we obtain

‖ xi,t+1 − x̄t+1 ‖ ≤
n∑
j=1

‖ Φ(t, 0)ij −
1

n
‖‖ xj,0 ‖

+

t∑
s=1

n∑
j=1

‖ Φ(t, s)ij −
1

n
‖‖ ej,s−1 ‖

+
1

n

n∑
j=1

‖ ej,t ‖ + ‖ ei,t ‖ .

We next use the result of Lemma 7 and (13) to bound the
error and transition matrix errors, respectively. Noting that
all initial local decisions are zero vectors, we have

‖ xi,t+1−x̄t+1 ‖

≤
t∑

s=1

n∑
j=1

γΓt−s
Lαs−1

σ
+

1

n

n∑
j=1

αtL

σ
+
αtL

σ

≤
t∑

s=1

α0Ln

σ
γΓt−s +

2αtL

σ

≤ α0L

σ

(
2 +

nγ

1− Γ

)
. (27)

where α0 denotes the initial step size. To obtain the
right-hand side above we used the fact that {αt} is a non-
increasing sequence. �

D. Proof of Theorem 2
D.1. Key Lemmas

The following two lemmas pave the way for our regret
analysis provided in Theorem 2. Lemma 8 shows the impact
of the dynamic minimizers on the regret bound.

Lemma 8 For any non-increasing step size sequence {αt}
it holds that

n∑
i=1

T∑
t=1

(
1

αt
Dr(x

∗
t , yi,t)−

1

αt
Dr(x

∗
t , xi,t+1)

)

≤ 2nR2

αT+1
+

T∑
t=1

Mn ‖ x∗t+1 − x∗t ‖
αt+1

,

(28)

where R2 = supx,y∈XDr(x, y).

Proof. We begin by adding and subtracting several terms as
follows:

1

αt
Dr(x

∗
t , yi,t)−

1

αt
Dr(x

∗
t , xi,t+1) =

+
1

αt
Dr(x

∗
t , yi,t)−

1

αt+1
Dr(x

∗
t+1, yi,t+1)

+
1

αt+1
Dr(x

∗
t+1, yi,t+1)− 1

αt+1
Dr(x

∗
t , yi,t+1)

+
1

αt+1
Dr(x

∗
t , yi,t+1)− 1

αt+1
Dr(x

∗
t , xi,t+1)

+
1

αt+1
Dr(x

∗
t , xi,t+1)− 1

αt
Dr(x

∗
t , xi,t+1).

(29)

We proceed by bounding every pair of terms on the right-
hand side of (29). The first pair telescopes when summed
over time t. For the second pair, by the Lipschitz condition
on the Bregman divergence (21), we have

1

αt+1
Dr(x

∗
t+1, yi,t+1)− 1

αt+1
Dr(x

∗
t , yi,t+1) (30)

≤
M ‖ x∗t+1 − x∗t ‖

αt+1
.

Furthermore, using the separate convexity of the Bregman
divergence given in (20), the third pair is bounded as fol-
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lows:

n∑
i=1

(
Dr(x

∗
t , yi,t+1)−Dr(x

∗
t , xi,t+1)

)
=

n∑
i=1

(
Dr(x

∗
t ,

n∑
j=1

P tijxj,t+1)−Dr(x
∗
t , xi,t+1)

)

≤
n∑
j=1

( n∑
i=1

P tij

)
Dr(x

∗
t , xj,t+1)

−
n∑
i=1

Dr(x
∗
t , xi,t+1) = 0, (31)

where the separate convexity of Bregman divergence and
the doubly stochastic property of P t are used in the last line.
Summing (29) over time and nodes, we obtain

n∑
i=1

T∑
t=1

(
1

αt
Dr(x

∗
t , yi,t)−

1

αt
Dr(x

∗
t , xi,t+1)

)

≤ nR2

α1
+

T∑
t=1

Mn ‖ x∗t+1 − x∗t ‖
αt+1

+ nR2
T∑
t=1

(
1

αt+1
− 1

αt

)

≤ 2nR2

αT+1
+

T∑
t=1

Mn ‖ x∗t+1 − x∗t ‖
αt+1

, (32)

where the fact that {αt} is a positive and non-increasing
sequence is used in the last line. �

Lemma 9 Let bmin = mini,t{bi,t} and bmax =
maxi,t{bi,t} be the minimum and maximum of the mini-
batch sizes across nodes and over time. The sequence yi,t
generated by (12) satisfies

n∑
i=1

T∑
t=1

E
[
fi,t(yi,t)− fi,t(x∗t )

]
≤

T∑
t=1

VbL
2n

2σbmin
αt +

T∑
t=1

MnbmaxE
[
‖ x∗t+1 − x∗t ‖

]
αT+1

+
2nbmaxR

2

αT+1
,

where Vb = E
[
b2i,t
]

and the expectation is taken with re-
spect to the variability in the minibatch sizes.

Proof. We start by adding and subtracting fi,t(yi,t) as fol-

lows:

fi,t(yi,t)− fi,t(x∗t ) =

bi,t∑
s=1

(
f(yi,t, ω

s
i,t)− f(x∗t , ω

s
i,t)
)

≤ bi,t〈gi,t, yi,t − x∗t 〉
= bi,t〈gi,t, yi,t − xi,t+1 + xi,t+1 − x∗t 〉
≤ bi,tL ‖ yi,t − xi,t+1 ‖ +bi,t〈gi,t, xi,t+1 − x∗t 〉, (33)

where we have used the convexity and Lipschitz continuity
of fi,t(.) in the last line of (33). Next, we bound the last
term of (33) as follows:

bi,t〈gi,t, xi,t+1 − x∗t 〉

≤ bi,t
αt

[
Dr(x

∗
t , yi,t)−Dr(x

∗
t , xi,t)−Dr(xi,t+1, yi,t)

]
≤ bi,t

αt

[
Dr(x

∗
t , yi,t)−Dr(x

∗
t , xi,t)

]
− σbmin

2αt
‖ yi,t − xi,t+1 ‖2, (34)

where we have used a simple algebra of Bregman diver-
gences (see (Beck & Teboulle, 2003)) to derive the first
inequality in (34). Also, the last line of (34) is obtained by
the strong convexity of r(.), as presented in (19).

Finally, by substituting (34) into (33), we get

fi,t(yi,t)− fi,t(x∗t )

≤ bi,tL ‖ yi,t − xi,t+1 ‖ −
σbmin

2αt
‖ yi,t − xi,t+1 ‖2

+
bi,t
αt

[
Dr(x

∗
t , yi,t)−Dr(x

∗
t , xi,t)

]
≤
b2i,tL

2αt

2σbmin
+
bmax

αt

[
Dr(x

∗
t , yi,t)−Dr(x

∗
t , xi,t)

]
,

(35)

where in the last line above we have used the fact that
cu − q u

2

2 ≤
c2

2q , with c = bi,tL and q = σbmin/αt. We
sum (35) across computing nodes and over time and take
expectation, and apply Lemma 8 to the last term to achieve
the result. �

D.2. Proof of the Theorem

Now, we are ready to present the proof of Theorem 2.

To bound the dynamic regret, we begin by adding and sub-
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tracting ft(x̄t) as follows:

ft(xi,t)− ft(x∗t )
= ft(xi,t)− ft(x̄t) + ft(x̄t)− ft(x∗t )

=

n∑
j=1

(
fj,t(xi,t)− fj,t(x̄t)

)
+

n∑
i=1

(
fi,t(x̄t)− fi,t(yi,t) + fi,t(yi,t)− fi,t(x∗t )

)
≤ L

n∑
j=1

bj,t ‖ xi,t − x̄t ‖ +L

n∑
i=1

bi,t ‖ yi,t − x̄t ‖

+

n∑
i=1

(
fi,t(yi,t)− fi,t(x∗t )

)
, (36)

where we have used the Lipschitz continuity of fi,t(.) to
derive the last inequality in (36). We next need to bound
the three terms in the last line of (36). The first term can be
bounded using the result of Lemma 1. The second term is
bounded as follows:

L

n∑
i=1

bi,t ‖ yi,t − x̄t ‖= L

n∑
i=1

bi,t ‖
n∑
j=1

P tijxj,t − x̄t ‖

≤ L
n∑
i=1

bi,t

n∑
j=1

P tij ‖ xj,t − x̄t ‖

≤ L2

σ
α0

(
2 +

nγ

1− Γ

) n∑
i=1

bi,t, (37)

where we have used the result of Lemma 1 and doubly
stochastic property of matrix P t to obtain the last line. Sub-
stituting (37) into (36), taking expectation and summing
over time, and combining that with the previous result in
Lemma 9 completes the proof. �

E. Proof of Lemma 4
We use the following result on consensus averaging, which
is presented in Lemma 1 of (Tsianos & Rabbat, 2016).

Let δ > 0 be a given scalar and λ2(P t) denote the second-
largest eigen value of the doubly stochastic matrix P t. If
the number of consensus iterations satisfies

k ≥
log( 1

δ 2
√
nmaxj ‖ y(0)

j,t − ȳt ‖)
1− λ2(P t)

, (38)

the following bound holds on the output after k consensus
iterations:

‖ y(k)
i,t − ȳt ‖≤ δ. (39)

Recall that the initial message y(0)
i,t is set to xi,t, and thus

the average ȳt = 1
n

∑n
i=1 y

(0)
i,t is equal to x̄t. Therefore, we

can replace ‖ y(0)
j,t − ȳt ‖ by ‖ xi,t − x̄t ‖, and rewrite (38)

as follows:

δ ≥
2
√
nmaxj ‖ y(0)

j,t − ȳt ‖

exp

[
k

(
1− λ2(P t)

)] . (40)

Similar to Lemma 1, using the updates (16), the following
bound can be established on the consensus error

‖ xi,t − x̄t ‖≤
α0L

σ

(
2 +

nγ(k)

1− Γ(k)

)
. (41)

where γ(k) and Γ(k) are corresponding parameters of weight
matrix [P t]k.

In addition, if D is an n× n doubly stochastic matrix, the
second-largest eigen value is upper bounded by λ2(D) ≤
1− n−3 (Landau & Odlyzko, 1981). Therefore, for every
weight matrix P t, we can conclude that

1− λ2(P t) ≤ n−3. (42)

Finally, combining (40), (41), and (42), we can set δ =
2
√
nα0L

exp[kn−3]σ (2 + nγ(k)

1−Γ(k) ). This value of δ satisfies (38), and
hence, we get

‖ y(k)
i,t − x̄t ‖≤

2
√
nα0L

exp[kn−3]σ

(
2 +

nγ(k)

1− Γ(k)

)
. (43)

�

F. Proof of Theorem 5
To bound the dynamic regret, we begin by adding and sub-
tracting ft(x̄t) as follows:

ft(xi,t)− ft(x∗t )
= ft(xi,t)− ft(x̄t) + ft(x̄t)− ft(x∗t )

=

n∑
j=1

(
fj,t(xi,t)− fj,t(x̄t)

)
+

n∑
i=1

(
fi,t(x̄t)− fi,t(yi,t) + fi,t(yi,t)− fi,t(x∗t )

)
≤ L

n∑
j=1

bj,t ‖ xi,t − x̄t ‖ +L

n∑
i=1

bi,t ‖ yi,t − x̄t ‖

+

n∑
i=1

(
fi,t(yi,t)− fi,t(x∗t )

)
, (44)

where we have used the Lipschitz continuity of fi,t(.). The
first term on the right-hand side of (44) can be bounded by
(41). The second term can be bounded using the result of
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Figure 2. Performance comparison between DOMD and DABMD on MNIST dataset.
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Figure 3. Performance comparison between DOMD and DABMD on YouTube transcoding dataset.

Lemma 4. By substituting (41) into (44), taking expecta-
tion and summing over time, and combining that with the
previous result in Lemma 9, we obtain

E[RegdT ] ≤
T∑
t=1

bavgL
2α0n

σ

(
2 +

nγ(k)

1− Γ(k)

)(
1 +

2
√
n

exp[kn−3]

)

+

T∑
t=1

VbL
2αt

2σbmin
+

T∑
t=1

MnbavgE[‖ x∗t+1 − x∗t ‖]
αt

+
2nR2bavg

αT+1
. (45)

�

G. Additional Experiments
In this section, we present additional experiments regarding
the performance of DABMD. Here we investigate the perfor-
mance of DABMD with multiple consensus iterations using
MNIST and YouTube transcoding datasets (Deneke et al.,
2014). All system and experiment parameter settings are
the same as those presented in Section 6, unless otherwise
specified. In particular, we consider a time-varying network,
similar to the one used in Yuan et. al. in ICLR’20, shown
in Fig. 4. Note that the union graph of any two consecutive
rounds is strongly connected.

G.1. Logistic Regression

We consider the MNIST logistic regression problem, where
the computing nodes perform k iterations of consensus av-
eraging.
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Figure 4. The network switches sequentially in a round robin manner among (a), (b), (c), and (d).

Fig. 2 illustrates the performance of DABMD versus DOMD
on the MNIST logistic regression problem. We compare
the results for k = 1 and k = 5 consensus averaging iter-
ations. We observe that DABMD with k = 5 consensus
averaging iterations incures up to 5% lower accumulated
cost compared to the single consensus case. In addition, in
both cases DABMD outperforms DOMD.

G.2. Ridge Regression

W also study the ridge regression problem on YouTube
transcoding dataset under multiple consensus averaging set-
tings.

We compare the performance of DABMD with DOMD for
varying number of consensus iterations k in Fig. 3. We
observe that the performance of DABMD improves with
multiple consensus iterations, since computing nodes can
more accurately approximate the global minimizer.


