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Abstract—This work is motivated by the need for real-time
partitioning of a deep neural network inference job and offload-
ing part of it from a resource-constrained device to a resource-
rich server. Since both the processing delay of different job
stages and the communication delay of offloading usually are
unknown ahead of time, this problem is naturally modelled
as online offloading of sequentially dependent computational
tasks from a local processor to a remote processor. We aim to
minimize the total delay of all tasks by utilizing local and remote
computational resources, while considering the impact of the
offloading delay. We propose Delay-optimal Online Partitioning
(DOPart), a lightweight online algorithm that uses an adaptive
thresholding strategy to solve the offloading problem. We derive
the competitive ratio for DOPart and show that it is optimal in
the sense that no other deterministic online algorithm can achieve
a lower competitive ratio. Furthermore, it provides bounded per-
formance guarantees even under imprecise parameter estimation.
Through experimenting with AlexNet, VGG-19, and ResNet-34,
we demonstrate that DOPart substantially outperforms state-of-
the-art online solutions.

I. INTRODUCTION

Computation offloading refers to uploading and executing
computationally intensive parts of a computing job on a more
powerful remote server. It is a common strategy to overcome
the restrictions of resource-constrained mobile devices. For
example, mobile cloud/edge computing facilitates computation
offloading by providing access to the vast amount of resources
hosted by cloud/edge servers. In order to fully exploit the
advantages of computational offloading, we need to make
intelligent offloading decisions and efficiently utilize the com-
putational resources available in the network.

In this work, we are motivated by a recently emergent
class of computation offloading problems concerning the par-
titioning of inference jobs with deep neural networks (DNNs)
between a local mobile device and a remote server. The ap-
proximately layer-by-layer structure of an DNN (e.g., ResNet-
34 shown in Fig. 1) provides an opportunity to partition an
inference job between layers, process the earlier layers at the
local device, and offload the later layers to the remote server.
Clearly, the total delay in completing the job is reduced if and
only if the speed-up due to faster processing at the remote
server is greater than the communication delay incurred during
offloading.

Since the computation resources on the local device is
shared among multiple applications, the local processing delay

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada.

is time varying and unknown in advance. Additionally, the
offloading delay depends on the state of the communication
channel, which also is time varying and unknown in advance
especially in the wireless environment. This calls for an online
algorithm that can dynamically adapt to the uncertainties in
the computation and communication environment, in order to
minimize the total job completion delay.

There is an extensive body of works in the literature on
online partitioning and offloading of computing jobs com-
prising independent tasks (e.g., [1]-[3]). These works exploit
the parallel processing of tasks to minimize the total delay.
However, in DNNs and other similar applications, the jobs
comprise a dependent sequence of tasks, or stages, where the
execution of each stage requires the completion of the previous
stage.

For online offloading of dependent tasks, as detailed further
in Section II, most existing works assume the local processing
delay and the offloading delay are revealed, possibly estimated
by some profiler (e.g., [4] and [5]), when a task arrives.
However, in many real-world systems, the available computing
resource can vary during the processing of a task, so the
processing delay may not be known until after the local
execution of a task. Furthermore, reinforcement learning based
online solutions (e.g., [6] and [7]) require system specific
parameter tuning and generally do not provide performance
guarantee. Instead, in this work we propose a lightweight
online solution that does not require offline profiling, while
still providing provable performance guarantees.

The main contributions of this work are as follows:
• We propose DOPart, an adaptive online algorithm for the

partitioning and offloading of a computing job compris-
ing sequentially dependent tasks. It does not require a
priori knowledge of communication or local processing
latencies. It uses only simple decision rules with low
computational complexity, and yet it is highly effective.

• We show that DOPart is optimal in the sense that it
achieves the best possible competitive ratio among all
deterministic algorithms. In particular, let αmin and αmax
be the minimum and maximum ratios between local and
remote processing latencies, and consider the non-trivial
scenario where αmax > 1. If αminαmax ≥ 1, DOPart is
αmax-competitive, and if αminαmax < 1, it is

√
αmax/γ

-competitive where γ is as defined in (15). We prove
that these competitive ratios are tight and optimal because
they meet the corresponding lower bounds. We also show
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Fig. 1. Architecture of ResNet-34, with sequentially dependent stages indicated by blue dashed lines.

that DOPart offers bounded performance guarantees even
when αmin and αmax are not precisely known.

• We experiment with online offloading of DNN inference
jobs using AlexNet, VGG-19, and ResNet-34 on the
ImageNet dataset over a simulated wireless channel to
demonstrate the performance of DOPart and compare
it against Neurosurgeon [4], Autodidactic Neurosurgeon
[8], and other alternatives. Our numerical results indicate
up to 17% reduction in inference time over these state-
of-the-art methods.

II. RELATED WORK

A. DNN Partitioning

In the seminar work on DNN partitioning [4], an algorithm
named Neurosurgeon was proposed based on system level
analysis of the partition points that minimizes the total delay.
Subsequently, [9]-[11] considered resource constraints and
minimized the total delay in an offline setting. In [5] and [12],
offline communication and computation profilers are used to
obtain the partitioning points for DNN inference. To reduce
the overhead of profiling and parameter storage, [8] proposed
a variant of LinUCB for DNN partitioning through online
learning.

All of these works utilize some offline profiling or prediction
to calculate the optimal partitioning point. The predicted
model can become outdated quickly in a dynamic environment
where the computation and communication resources fluctuate
over time. In our work, we seek an online solution that can
automatically adapt to the system dynamics, and we provide
performance guarantee even when the future processing and
communication latencies are unknown and time varying.

Furthermore, there are also interest studies on dynamic mod-
ification of the DNN architecture to minimize the inference
delay [13]-[16]. All of these studies substantially differ from
our work, since we assume no control over the DNN model’s
architecture or the job’s structure in general, and we cannot
compromise on the inference accuracy or the job’s intended
computational goal.

B. Online Dependent Task Offloading

There is rich literature on the online offloading of dependent
tasks to reduce latency. Offloading in single-user single-server
systems were considered in [17]-[19], all with general directed
acyclic graphs for task dependency. However, all of these
works still require profiling and prediction, which as explained

before, do not apply to our problem where the computation
and communication latencies can fluctuate unpredictably over
time.

Deep reinforcement learning (DRL) techniques have also
been proposed for single-user dependent task offloading
(e.g., [6] and [7]). DRL techniques require specific hyper
parameter tuning tailored to each system setting, and they
generally do not provide performance guarantees. Instead,
in our work we propose a light-weight solution that is also
competitive-ratio optimal.

There are further studies on task offloading in multi-user or
multi-server systems, such as [20]-[22]. They mainly address
resource contention among devices or applications. Therefore,
their solutions are beyond the scope of our problem. Similar
to the strategy in [20], our single-user solution may be used
as a sub-module in the extension to more complex systems.

III. ONLINE OFFLOADING PROBLEM FORMULATION

A. Sequentially Dependent Stages and Offloading

We consider a job with L sequential stages, with L =
{1, 2, . . . , L} denoting the indices of the stages. A local
machine and a remote machine collaborate to process this job.
The job is initiated at the local machine and may be offloaded
to the remote machine at any stage. As explained above, DNN
inference offloading with L dependent layers may be viewed
as a prime example of this model.

Let P l
i and P r

i be the processing delays of stage i on the
local and remote machines, respectively. The remote machine
usually corresponds to a dedicated processor or virtual ma-
chine in the cloud with known speed. Additionally, when the
jobs are of DNN inference type, the amount of computation
required for each DNN layer solely depends on the number
of neurons and weights. Therefore, it is reasonable to assume
that the sequence {P r

i }Li=1 is known.
However, due to fluctuation in the available computing

power and shared applications at the local machine, {P l
i }Li=1

is random. The only knowledge about P l
i is its range defined

with respect to P r
i :

αminP
r
i ≤ P l

i ≤ αmaxP
r
i , (1)

where 0 < αmin ≤ αmax. The bounds αmin and αmax can
estimated by computation profiling [4], [10], and in Section
V and Section VI we will study the impact of their estimation
errors on the competitive ratio and average performance of our
solution.



When the job is offloaded at stage i, this means that stages
1 to i−1 have been processed locally, and stages i to L will be
processed remotely. For mathematical convenience, we further
define offloading at stage L + 1 as not offloading at all. We
assume that the remote machine has all programming for the
job, so that offloading at stage i involves only transmitting the
input data for stage i from the local machine to the remote
machine. Note that the input data for stage i is available only
after the processing of stage i−1 is completed, and the remote
machine can start processing stage i only after the input data
for this stage is received.

Let di be the input data size for stage i. Let D =
{d1, d2, . . . , dL, dL+1}. Here, d1 is the size of the input data
(e.g., image for classification), and dL+1 is the size of the
final output (e.g., inferred image label), which in practice is
negligibly small and can be returned to the local machine
instantly. The communication delay for offloading stage i is
Ci =

di

Bi
, where Bi is the data rate at the time of offloading.

We do not assume any advance knowledge of {Bi}Li=1, so that
Bi and thus Ci become known only at stage i.

B. Online Delay Minimization Problem

We define an online delay minimization problem instance I
as {P l

i , P
r
i , di, Bi}Li=1. Given a problem instance, we consider

the total delay, which is the time to finish all job stages L.
If the job is offloaded at stage i, then the total delay, denoted
by Ti, includes the processing delay of the first i − 1 stages
on the local machine, the communication delay for offloading,
and the processing delay of the last L − i + 1 stages on the
remote machine. Thus, we have

Ti =

i−1∑
k=1

P l
k + Ci +

L∑
k=i

P r
k . (2)

Note that this formula applies also to the case i = L + 1,
which represents no offloading, by defining CL+1 = 0.

Our optimization objective is to find an optimal offloading
point to minimize the total delay. In the offline setting where
one has future information of the entire problem instance I ,
this problem can be easily solved by searching over all possible
offloading stages. For problem instance I , the offline optimizer
is given by

pOPT(I) = arg min
i∈L

⋃
{L+1}

Ti . (3)

Let TOPT(I) be the corresponding offline minimum. In prac-
tice, one does not have knowledge of the future processing
delays P l

i or communication delays Ci. Despite such uncer-
tainty, we aim to design an online algorithm that provides
performance guarantee.

Let TALG(I) be the total delay achieved by an online
algorithm for problem instance I . The standard performance
measurement for an online algorithm is the competitive ratio:

ρ ≜ max
I∈I

TALG(I)

TOPT(I)
, (4)

where I is the set of all problem instances. When such ρ exists,
the online algorithm is called ρ-competitive. The competitive

ratio is the worst-case multiplicative guarantee on the output
of the online algorithm when compared with an optimal offline
algorithm.

IV. DELAY-OPTIMAL ONLINE PARTITIONING

A. Algorithm Description

Our algorithm is motivated by an adversarial analysis of
the possible outcomes of any action. On the one hand, if an
online algorithm offloads at any stage i ∈ L, the adversary
will reduce the communication delays of stages j > i and the
local processing delays of stages j ≥ i to the minimum, to
incur a worst possible outcome for the algorithm’s decision.
On the other hand, if the online algorithm does not offload at
stage i, the adversary will increase the communication delays
of the stages j > i and the local processing delays of stages
j ≥ i to the maximum. An effective solution needs to balance
these two extremes.

Suppose an online algorithm is at stage i deciding whether
to offload the remainder of the job starting from this stage. This
means that all stages j ≤ i − 1 have already been processed
on the local machine, incurring known delay

∑i−1
k=1 P

l
k. If the

job is offloaded at stage i, then the total processing delay will
be

T̄i =

i−1∑
k=1

P l
k +

L∑
k=i

P r
k , (5)

which is a known quantity. If instead the job is offloaded
at any later stage j > i, the total processing delay will be∑i−1

k=1 P
l
k+
∑j−1

k=i P
l
k+
∑L

k=j P
r
k . We note that

∑j−1
k=i P

l
k is un-

known at this time, but it is lower bounded by αmin
∑j−1

k=i P
r
k .

Considering all possible i + 1 ≤ j ≤ L + 1, it is easy to see
that, at stage i, the minimum possible total processing delay
is

Tmin
i =

i−1∑
k=1

P l
k + αminP

r
i +min{αmin, 1}

L∑
k=i+1

P r
k . (6)

Similarly, while at stage i, the maximum possible total pro-
cessing delay is

Tmax
i =

i−1∑
k=1

P l
k +max{αmax, 1}

L∑
k=i

P r
k . (7)

We also need to account for the offloading communication
delay. In DOPart, we use the geometric mean of the lower
and upper bounds above as the threshold for our offloading
decision. At stage i, we observe the current communication
data rate Bi to obtain the communication delay Ci. We offload
the job at this stage if and only if

Ci + T̄i ≤
√
Tmin
i Tmax

i . (8)

We remark here that (8) is similar in form to the optimal time-
series search [23]. However, there are two main differences
between our design and the standard time-series search. First,
the lower and upper bounds of the processing time in our
problem varies over time. Second, in addition to the sequence



Algorithm 1: Delay-optimal Online Partitioning
(DOPart)

Input: L, {di}Li=1, {P r
i }Li=1, αmin, αmax

1 F ← ∅
2 for i← 1 to L do
3 Compute Tmin

i , Tmax
i , and T̄i

4 Bi ← Observe current data rate
5 Ci ← di/Bi

6 if Ci + T̄i ≤
√
Tmin
i Tmax

i then
7 Transmit input data for stage i
8 Process stages L\F on the remote machine
9 Exit

10 end
11 Process stage i on the local machine
12 P l

i ← Observe local processing delay of stage i
13 F ← F ∪ i
14 end

of processing times, here we need to take an additional
factor, the communication delay, into consideration. Note that
only the left-hand side of (8) contains the communication
delay, while the right-hand side is based on the processing
delay only. We will show in Section IV-B that this unique
design leads to the best possible competitive ratio for our
optimization problem. The pseudocode for the proposed
DOPart algorithm is given in Algorithm 1.

Complexity: Since DOPart processes the stages sequentially,
the time complexity of DOPart is O(L), i.e., linear in the
number of stages. We note that this is a substantial reduction
from existing methods that use deep reinforcement learning,
which do not provide any performance guarantee.

B. Competitiveness Analysis

We derive the competitive ratio for DOPart under three
different cases: (1) αmax ≤ 1, (2) αmax > 1 and αminαmax < 1,
and (3) αmax > 1 and αminαmax ≥ 1. For all cases, we will
additionally show that DOPart is competitive-ratio optimal,
i.e., there does not exist another deterministic online algorithm
that achieves a lower competitive ratio. This also directly
implies that our derived competitive ratios are tight.

For notational convenience, for i ∈ L
⋃
{L+ 1} we define

T l
−i =

∑i−1
k=1 P

l
k , T l

+i =
∑L

k=i P
l
k , and T l = T l

−i+T l
+i, with

the last being the total local processing delay if all stages are
processed locally. We also define T r

−i, T
r
+i, and T r similarly,

for the remote processing delays.
Before presenting the main results, we require the following

two lemmas, whose proofs are omitted due to the page limit.

Lemma 1. For any αmin ≤ αmax, we have T l
−i + αmaxT

r
+i ≤

T l
−k + αmaxT

r
+k for all i > k.

Lemma 2. For any αmin ≤ αmax, we have T l
−i + αminP

r
i

+min{αmin, 1}T r
+(i+1) ≤ T l

−k +min{αmin, 1}T r
+k for all i <

k.

Furthermore, since αmin ≥ min{αmin, 1}, the corollary
below directly follows from Lemma 2:

Corollary 2.1. For any αmin and αmax, we have T l
−i+αminP

r
i +

min{αmin, 1}T r
+(i+1) ≤ T l

−k+αminP
r
k +min{αmin, 1}T r

+(k+1)

for all i < k.

1) Case (1): αmax ≤ 1: In the simplest case of αmax ≤ 1,
i.e., the processing delay of the local machine is always less
than that on the remote machine, DOPart is 1-competitive. This
means that it performs as well as the optimal offline algorithm,
and clearly no other algorithm can do better.

Theorem 1. If αmax ≤ 1, DOPart is 1-competitive.

Proof. When αmax < 1, since αmin ≤ αmax, we have
αminαmax < 1. Based on (8), DOPart never offloads i.e., it
processes all the stages locally. Meanwhile, the best offline
strategy in hindsight is to never offload because Ci ≥ 0, ∀i ∈
L, and P l

i < P r
i , ∀i ∈ L. Therefore, DOPart behaves the

same as the optimal offline algorithm in this case.

2) Case (2): αmax > 1 and αminαmax < 1: Unlike the
previous trivial case, when αmax > 1, there can be potential
benefit in offloading the job to the remote machine. In this
case, since we also have αmin < 1/αmax < 1, the local machine
can be faster than the remote machine. Therefore, DOPart is
required to be more conservative with the offloading decision.

First, since in this case min{αmin, 1} = αmin, we have a
further corollary from Lemma 2:

Corollary 2.2. When αmin < 1, T l
−i + αminT

r
i ≤ T l

−k +
αminT

r
+k for all i < k.

We also require the following lemma, whose proof is
omitted due to the page limit.

Lemma 3. When αmax > 1 and αminαmax < 1, if DOPart
offloads at stage i then αmin + αmax > 2 and T l

−i ≥ ϕT r
+i,

where

ϕ =

(
1− αminαmax

αmin + αmax − 2

)
. (9)

Theorem 2. If αmax > 1 and αminαmax < 1,

(i) No deterministic online algorithm can do better than
αmax-competitive, and

(ii) DOPart is αmax-competitive.

Proof. First we prove part (i). To show this we take an
adversarial approach. The adversary first sets C1 = 0. If
any deterministic online algorithm ALG offloads at stage 1,
the total delay TALG = T r. The adversary then sets the
local processing latencies P l

k = αminP
r
k ∀ k ∈ {1, . . . , L}.

Since αmin < 1, the total delay of optimal offline algorithm
TOPT = αminT

r. Thus in this case TALG/TOPT ≥ 1/αmin.
If ALG does not offload at stage 1, the adversary sets the
local processing latencies P l

k = αmaxP
r
k , ∀ k ∈ {1, . . . , L},

and Ck = (αmax − 1)T r
+k, ∀ k ∈ {2, . . . , L}. In this

case the total delay TALG = αmaxT
r. Since αmax > 1,



TOPT = C1 + T r = T r. Then in this case TALG/TOPT ≥ αmax.
Because 1/αmin > αmax, we have

ρALG ≥ min

{
αmax,

1

αmin

}
= αmax .

We now prove part (ii). If αmin +αmax ≤ 2, from Lemma 3,
DOPart does not offload at any stage. Then the total delay is
TDOPart = T l. Suppose the optimal offline algorithm OPT that
offloads at layer k. Its total delay is TOPT = T l

−k+Ck+T r
+k ≥

T l
−k+T r

+k, with equality when Ck = 0. The competitive ratio
is then given by

ρDOPart = max
I∈I

{
T l

T l
−k + T r

+k

}
= max

I∈I

{
T l
−k + T l

+k

T l
−k + T r

+k

}
(a)
= max

I∈I

{
T l
−k + αmaxT

r
+k

T l
−k + T r

+k

}
(b)
= αmax. (10)

Here equality (a) is because T l
+k ≤ αmaxT

r
+k, and equality (b)

is because αmax > 1.
The case where αmin+αmax > 2 is more complicated. Define

q = min{s ∈ L
⋃
{L+ 1}|T l

−s ≥ ϕT r
+s}. From Lemma 3 we

know DOPart offloads at stage i such that T l
−i ≥ ϕT r

+i, so we
have i ≥ q. The total delay of DOPart is given by

TDOPart = T l
−i + Ci + T r

+i

(a)

≤ T l
−i +

√
Tmin
i Tmax

i − T̄i + T r
+i

(b)
=
√(

T l
−i + αminT r

+i

) (
T l
−i + αmaxT r

+i

)
. (11)

Here, inequality (a) is due to the offloading threshold in (8).
Equality (b) is because min{αmin, 1} = αmin, so that αminP

r
i +

min{αmin, 1}T r
+(i+1) = αminT

r
+i.

Suppose OPT offloads at stage k ∈ L
⋃
{L+1}. Its latency

is
TOPT = T l

−k + Ck + T r
+k ≥ T l

−k + T r
+k. (12)

Then from (11) and (12) we have

T 2
DOPart

T 2
OPT

≤ max
I∈I

{(
T l
−i + αminT

r
+i

) (
T l
−i + αmaxT

r
+i

)(
T l
−k + T r

+k

)2
}

(13)

If k < q, from (13) we have

T 2
DOPart

T 2
OPT

(a)

≤ max
I∈I

{
T l
−k + T l

−i − T l
−k + αminT

r
+i

T l
−k + T r

+k

T l
−k + T l

−i − T l
−k + αmaxT

r
+i

T l
−k + T r

+k

}
(b)

≤ max
I∈I

{
T l
−k + αmax

(
T r
+k − T r

+i

)
+ αminT

r
+i

T l
−k + T r

+k

T l
−k + αmax

(
T r
+k − T r

+i

)
+ αmaxT

r
+i

T l
−k + T r

+k

}
(c)

≤ max
I∈I


(
T l
−k + αmaxT

r
+k

T l
−k + T r

+k

)2
 (d)

≤ α2
max

Here, equality (a) is because T l
−i can be split into T l

−k and
T l
−i−T l

−k since k ≤ i. Inequality (b) is because T l
−i−T l

−k ≤
αmax(T

r
+k − T r

+i) from Lemma 1. Inequality (c) is because
(αmin − αmax)T

r
+i ≤ 0. Inequality (d) is because αmax > 1.

If q ≤ k < i, we have

TOPT = T l
−k + Ck + T r

+k

(a)

≥ T l
−k +

√
Tmin
k Tmax

k − T̄k + T r
+k

(b)
=
√(

T l
−k + αminT r

+k

) (
T l
−k + αmaxT r

+k

)
. (14)

Here, inequality (a) is because k < i, which means that
DOPart does not offload at k, so from (8) we have Ck ≥√
Tmin
k Tmax

k − T̄k. Equality (b) is because of (5). From (11)
and (14) we have

T 2
DOPart

T 2
OPT

≤ max
I∈I

{ (
T l
−i + αminT

r
+i

) (
T l
−i + αmaxT

r
+i

)(
T l
−k + αminT r

+k

) (
T l
−k + αmaxT r

+k

)}
(a)

≤ max
I∈I

{
T l
−k + αmax

(
T r
+k − T r

+i

)
+ αminT

r
+i

T l
−k + αminT r

+k

T l
−k + αmax

(
T r
+k − T r

+i

)
+ αmaxT

r
+i

T l
−k + αmaxT r

+k

}
(b)

≤ max
I∈I

{
T l
−k + αmaxT

r
+k

T l
−k + αminT r

+k

}
(c)

≤ max
I∈I

{
ϕT r

+k + αmaxT
r
+k

ϕT r
+k + αminT r

+k

}
=

(
αmax − 1

1− αmin

)2
(d)
< α2

max

Here, inequality (a) is because T l
−i can be split into T l

−k and
T l
−i−T l

−k, and T l
−i−T l

−k ≤ αmax(T
r
+k−T r

+i) from Lemma 1.
Inequality (b) is because (αmin − αmax)T

r
+i ≤ 0 since αmin ≤

αmax. Inequality (c) is because of Lemma 3 and αmax > αmin.
Inequality (d) is because αmin < 1/αmax.

If k = i, TDOPart = TOPT. Then we have TDOPart
TOPT

= 1 < αmax.
If k > i, then from (13) we have

T 2
DOPart

T 2
OPT

(a)
< max

I∈I

{(
T l
−i + αminT

r
+i

) (
T l
−i + αmaxT

r
+i

)(
T l
−i + αminT r

+i

)2
}

(b)
=

ϕT r
+i + αmaxT

r
+i

ϕT r
+i + αminT r

+i

=

(
αmax − 1

1− αmin

)2
(c)
< α2

max

Here, inequality (a) is from T l
−k+T r

+k > T l
−k+αminT

r
+k and

Corollary 2.2. Equality (b) is from Lemma 3 and αmax > αmin.
Inequality (c) is because αmin < 1/αmax.

Summarizing the above, we conclude that we also have
ρDOPart = αmax for the case αmin + αmax > 2.

3) Case (3): αmax > 1 and αminαmax ≥ 1: This case
represents an environment where offloading to the remote
machine generally offers a higher speedup in comparison with
case (2). Since there is a higher chance for delay reduction in
offloading, our algorithm is allowed to be more liberal with
the offloading threshold.



Theorem 3. If αmax > 1 and αmaxαmin ≥ 1,
(i) No deterministic online algorithm can do better than√

αmax/γ-competitive where

γ = min{αmin, 1}+ (αmin −min{αmin, 1}) (P r
1 /T

r) , (15)

(ii) DOPart is
√

αmax/γ-competitive, and
(iii) A simplified form follows that DOPart is at least√

αmax/min{αmin, 1}-competitive.

Proof. We proof parts (i) and (ii) similarly to the correspond-
ing parts of Theorem 2, except in this case αmin ≥ 1/αmax and
we also take into account αmin > 1. Part (iii) follows directly
from part (ii) since (αmin −min{αmin, 1})(P r

1 /T
r) ≥ 0.

V. COMPETITIVE RATIO WITH ESTIMATION ERRORS

We extend our competitive analysis to the scenario where
we only have access to estimates of αmin and αmax, defined
as α̂min = αmin(1 + ϵ1) and α̂max = αmax(1 + ϵ2), with errors
ϵ1, ϵ2 ∈ R. Without loss of generality, we assume that the
estimation errors are small enough so that α̂min ≤ α̂max.

The following theorems indicate that even with imprecise
estimation of αmin and αmax, DOPart provides bounded perfor-
mance guarantees. Our competitive ratio analysis in this more
complex scenario uses similar techniques as in Section IV-B,
with additional finesse required to account for the estimation
errors and handle different cases where ϵ1 and ϵ2 are positive
or negative. The proof details are omitted due to the page limit.

Theorem 4. If α̂max ≤ 1, ρDOPart = max{1, αmax}.

Theorem 5. If α̂max > 1 and α̂minα̂max < 1,

ρDOPart(ϵ1, ϵ2) = αmax max{1, 1 + ϵ2, (1 + ϵ1)(1 + ϵ2)}.

Theorem 6. If α̂max > 1 and α̂minα̂max ≥ 1,

ρDOPart(ϵ1, ϵ2) =

√
αmax

min{αmin, 1}
1

1− |ϵ1|
1

1− |ϵ2|
.

The above results give insight into how the performance of
DOPart is impacted by ϵ1 and ϵ2. Comparing Theorems 5 and
6 with their counter parts Theorems 2 and 3, and applying
the Taylor series expansion on the extra factors, we observe
that the competitiveness of DOPart deteriorates approximately
linearly in ϵ1 and ϵ2. Therefore, DOPart is robust against small
to moderate estimation errors.

VI. NUMERICAL EVALUATION

We study the numerical performance of DOPart, with ex-
periments on AlexNet, VGG16, and ResNet34. The stages of
AlexNet and VGG16 directly correspond to their layers of
neurons, while the stages of ResNet34 are more complex as
shown in Fig. 1.

The remote processing latencies P r
k for each stage are

obtained by executing 5000 samples each of AlexNet, VGG19,
and ResNet34 inference jobs on a dedicated Digital Research
Alliance of Canada cluster with Nvidia-T4 GPUs. The local
processing latency for stage k is set to P l

k = 2µP r
k where

µ is drawn from the uniform distribution between log2 αmin
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Fig. 2. Average delay for ResNet34, with 95% confidence intervals.
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Fig. 3. Performance ratio vs. parameter estimation errors, with 95% confi-
dence intervals.

and log2 αmax, to emulate the fluctuation in the local ma-
chine’s processing speed due to random demands from parallel
applications on the same machine. We simulate a random
communication channel for offloading, where the bandwidth
Bi for stage i is drawn from the uniform distribution between
5Mbps and 60Mbps, which emulates the wireless fading
channel of a mobile device.

We compare DOPart against the following benchmarks:
• Neuro: Neurosurgeon [4] predicts the future processing

and communication delays based on a pre-trained model.
We implement the best version of Neurosurgeon by
always using the value that minimizes the prediction error
for the future processing latencies of all the layers. It
uses only the network bandwidth at the beginning of
the execution of the inference job. We remark that the
method in [10] behaves the same way as Neurosurgeon
for sequentially dependent tasks, so this benchmark also
represents [10].

• AutoNeuro: Autodidactic Neurosurgeon [8] uses an on-
line learning approach to solve the sequential dependent
task partitioning problem. To compare with [8] in its



most favourable performance, we implement the oracle
from [8], which is the idealized best prediction that one
can achieve. For each experimental setting we do so by
finding the partition point that minimizes the average
delay over 5000 executions of the inference job.

• Local Only: This is a trivial strategy that execute the
inference job locally for T l total delay.

• Remote Only: This is a trivial strategy that offloads the
complete inference job to the remote device, which incurs
C1 + T r total delay.

In Fig. 2, we present the average delay of DOPart and
all benchmarks over 5000 instances of inference jobs on
ResNet34. We observe that DOPart can substantially outper-
form both Neuro and AutoNeuro. Consider an example of
a typical scenario where αmin = 1 and αmax = 4. DOPart
provides 17% improvement over Neuro and 13% improvement
over AutoNeuro. Furthermore, we observe that the average
delay increases with αmin and αmax. This is because the
expected local processing latencies increase with increasing
αmin and αmax. Similar observation are made with AlexNet
and VGG19. We omit those figures to avoid redundancy.

We are also interested in the impact of the estimation
accuracy of αmin and αmax on the performance of DOPart.
Fig. 3 shows how the average empirical performance ratio
between of DOPart and the optimal offline algorithm responds
to changes in the estimation errors ϵ1 and ϵ2 on αmin and
αmax, respectively. We set αmin = 1 and αmax = 3. Our main
observation is that DOPart still achieves excellent performance
ratios even for up to 20% ∼ 30% estimation error. Further-
more, it is interesting to see that for AlexNet and ResNet34
the performance initially improves, but for VGG19 it degrades,
with underestimation of both αmin and αmax. The results are
reversed for overestimation of αmin and αmax. This suggests
that there is no general trend on whether one should favour
underestimation or overestimation.

VII. CONCLUSION

In this paper, we propose a lightweight online Delay-optimal
Online Partitioning (DOPart) algorithm for the offloading of
computation jobs with sequentially dependent tasks. Through
dynamic adaptation to the unpredictable fluctuation in the
system state, it encourages optimal sharing between local and
remote computational resources while considering the impact
of offloading delay. We obtain the competitive ratio of DOPart
and show that it is optimal, by providing a matching lower
bound for the delay minimization problem. We further observe
that DOPart is robust against estimation errors on αmin and
αmax, in terms of both the competitive ratio and numerical
average performance.
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