
Online Non-preemptive Multi-Resource Scheduling for Weighted
Completion Time on Multiple Machines
Donney Fan

University of Toronto
Toronto, ON, Canada

donney.fan@mail.utoronto.ca

Ben Liang
University of Toronto
Toronto, ON, Canada
liang@ece.utoronto.ca

ABSTRACT
Jobs in computing environments have diverse and heterogeneous
resource requirements. This paper presents a study of online, non-
preemptive scheduling algorithms for multiple identical machines
under the average weighted completion time objective. The key
challenge addressed is resource allocation to jobs with non-uniform
demands across multiple resource types, such as CPU, memory, and
storage. We propose an online algorithm, termed Multi-Resource
Interval Scheduling (MRIS) that achieves a competitive ratio of
8𝑅(1 + 𝜖) for the average weighted completion time, where 𝑅 is the
number of resource types. To the best of the authors’ knowledge,
this is the first theoretical competitive analysis under the consid-
ered system. We further show that the well-known priority queue
algorithms can have arbitrarily bad competitive ratios in this setting.
In numerical experiments using production workload traces from
Microsoft Azure, the proposed algorithm is shown to significantly
outperform priority queue algorithms and other state-of-the-art
schedulers.

CCS CONCEPTS
• Theory of computation→ Online algorithms.

KEYWORDS
Online algorithms, multiple resources, weighted completion time,
non-preemtive scheduling
ACM Reference Format:
Donney Fan and Ben Liang. 2024. Online Non-preemptive Multi-Resource
Scheduling for Weighted Completion Time on Multiple Machines. In The

53rd International Conference on Parallel Processing (ICPP ’24), August 12–15,

2024, Gotland, Sweden. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3673038.3673149

1 INTRODUCTION
By enabling access to massive pools of computing resources, cloud
computing with a large number of machines has emerged as a cru-
cial and widely adopted paradigm in both academia and industry.
However, the dynamic nature of cloud workloads, characterized
by changing demands and diverse application requirements, con-
tributes to significant challenges in the design of job schedulers in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPP ’24, August 12–15, 2024, Gotland, Sweden

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1793-2/24/08
https://doi.org/10.1145/3673038.3673149

cloud computing. Long job completion times may severely impact
the user experience, especially in delay-sensitive scenarios.

In addition to the difficulty of job scheduling over multiple ma-
chines, resource use patterns are often complicated by the heteroge-
neous multi-resource requirements of modern computing jobs. For
instance, machine learning training jobs are often GPU-intensive,
integer programming solvers are typically CPU-intensive, and some
jobs may demand multiple resources, such as memory and storage.
Another factor is that multiple jobs can be run concurrently on
the same machine. Without considering multiple resources, sched-
ulers can introduce fragmentation, which can result in poor job
completion time metrics. Hence, a modern job scheduler must ef-
ficiently allocate jobs with varying resource demands to optimize
the machine utilization.

When multiple jobs can be executed simultaneously on each
machine, the offline problem is known to be NP-hard for both the
makespan and total completion time objectives [26]. Furthermore,
the packing of multiple resources is analogous to the APX-hard
problem of vector bin packing, where the objective is to pack multi-
dimensional vectors into the fewest number of bins, where several
heuristics are known [5, 28]. At a high level, our scheduling prob-
lem is to obtain tight packing simultaneously in resources and time
so that jobs can be completed quickly. While many approaches to
these problems assume full knowledge of the input ahead of time,
a computing scheduler should handle the online arrival of jobs.

In online scheduling works that do consider multiple resources,
such as [15], a common theme is assuming that jobs can be pre-
empted and migrated to other machines without penalty or delay.
This allows for a simple paradigm in which the scheduler identifies
the “best” jobs to process by repeatedly solving an optimization
problem at each time instant. However, job preemption can incur
significant costs owing to process interrupts, cache misses, context
switching, and more [20]. In addition, preemption may not be viable
under other system restrictions such as communication delays.

In this paper, we study online, non-preepmtive scheduling al-
gorithms for multi-resource jobs over multiple identical machines,
where a machine can process multiple jobs simultaneously subject
to the machine’s multi-resource capacities. This paper’s main focus
is the average weighted completion time objective. Our work has
the following contributions:

• Our main result is a deterministic online algorithm, termed
Multi-Resource Interval Scheduling (MRIS) that obtains
a 8𝑅(1 + 𝜖) competitive ratio for the average weighted com-
pletion time (AWCT) objective, where 𝑅 is the number of
resource types. To the best of our knowledge, there has not
been a theoretical study on this scheduling environment
despite its wide appearance in practice.

https://doi.org/10.1145/3673038.3673149
https://doi.org/10.1145/3673038.3673149
https://doi.org/10.1145/3673038.3673149

ICPP ’24, August 12–15, 2024, Gotland, Sweden Donney Fan and Ben Liang

• We show that a popular family of priority queue algorithms
in the online environment can have arbitrarily bad competi-
tive ratios. However, we show they can be used as subrou-
tines in MRIS to achieve bounded performance.
• Using production workload traces from Microsoft Azure,

we show that our algorithms also have strong real-world
performance compared with state-of-the-art algorithms.

In Section 3, we formally define the problem, and in Section 4,
we show that classic priority queue algorithms can perform poorly.
Section 5 presents MRIS and the proof of its competitive ratio is
given in Section 6. We then investigate the real-world performance
of the proposed algorithm in Section 7 and conclude in Section 8.

2 RELATEDWORKS
2.1 Single Resource Online Scheduling
Significant effort has been invested in understanding scheduling
problems in the online environment. Schwiegelshohn et al. studied
the makespan minimization problem when jobs required a fixed
set of processors among heterogeneous machines and showed that
an adaptation to List-Scheduling [10] is 5-competitive [25]. Fox
and Korupolu studied the weighted flow-time objective and used a
combination of knapsack and job classification strategies to achieve
a preemptive 𝑂 (1/𝜖2)-competitive algorithm under (1 + 𝜖)-speed
(1 + 𝜖)-capacity augmentation [7]. In a more practical scenario,
when resources have cost functions and deadlines, Zhang et al.
introduced a cost broker to exploit the discounts offered by multiple
cloud service providers [31]. However, the above works considered
only a single resource as a scheduling bottleneck.

2.2 Multi-Resource Online Scheduling
2.2.1 Heuristic Schedulers. There are several cloud computing
schedulers that handle multiple heterogeneous resource types. Dom-
inant Resource Fairness (DRF) satisfies several desirable fairness
properties, such as sharing-incentive and envy-freeness [9]. Al-
though it was later generalized to multiple heterogeneous servers
[27], DRF does not focus on job completion time metrics. The Tetris
scheduler attempts to achieve compact packing of jobs and fast job
response times using a linear combination of a dot product score
of the job’s demands to a machine’s capacity and the remaining
processing time of jobs [11]. BF-EXEC reduces queuing delay by
prioritizing recently released jobs and selecting machines based on
the 𝐿2-norm of the remaining resources [21]. SCheduler with At-
tentive Reinforcement Learning (SCARL) addressed job slowdowns
through an attention mechanism [4]. Although these schedulers
provide empirical studies, they do not provide any performance
guarantees concerning job completion metrics.

2.2.2 Schedulers with Performance Guarantee. Several studies bound
performance in multi-resource scheduling with objectives not di-
rectly related to job completion times.

In [23], the authors studied scheduling virtual machines non-
preemptively using queues and assuming Poisson arrival. They
used Lyapunov analysis and showed that their algorithm achieved
a guaranteed fraction of the maximum throughput on each ma-
chine. The authors also studied a randomized algorithm for the
same problem that has lower complexity using Poisson clocks [24].

Zheng and Shroff investigated multi-resource jobs with deadlines
for a computing cloud [32]. Under a model in which the partial and
preemptive execution of tasks yields partial profit, the authors pro-
vided a 2-competitive algorithm with respect to the profit achieved
by solving a convex optimization problem in each time slot. Yin et
al. leveraged resource augmentation to provide a competitive ratio
in a profit maximization problem for edge-clouds systems where
jobs yield a profit if completed before a deadline [30]. Our work
differs from these works in that it considers job completion times
in our objective, and it further differs from [23, 24] by avoiding the
Poisson arrival assumption, [32] by disallowing preemption, and
[30] by not directly using resource augmentation.

Online algorithms that directly optimize for some form of job
completion time metrics are presented in [6, 15, 16, 29]. Im et al.
studied a general problem in [16] where each machine is assigned
a polytope constraint. Their approach used the proportional fair-
ness algorithm to solve a resource allocation problem at each time
instance and assigned processing rates to jobs, which achieved an
𝑂 (1) competitive ratio for total weighted completion time minimiza-
tion, but required preemption. In the same work, they used resource
augmentation and showed that for a particular problem instance,
for any 𝜖 ∈ (0, 1/2), it was𝑂 (1/𝜖2)-competitive for minimizing the
weighted flow time under (𝑒+𝜖)-speed augmentation. This was also
extended to the case of multiple clusters in [15]. Xu et al. combined
Tetris and cloning of tasks to produce an 𝑂 (1/𝜖)-competitive al-
gorithm for the flow time under (2 + 𝜖)-capacity augmentation
for a single machine [29]. When jobs have unit processing times
and the system contains a single machine, Epstein et al. provided
online algorithms with competitive ratios that are sublinear in the
number of resource types when minimizing the makespan [6]. Al-
though these works show that resource augmentation can be used
to obtain bounded ratios, it is unclear how researchers or algorithm
designers should interpret the degree of augmentation used [3].
Our work differs from [16] by disallowing preemption and from
works [15, 29] by not directly using resource augmentation, and
also from [6, 29] by allowing multiple machines.

3 PROBLEM DEFINITION
We are interested in an environment where 𝑁 independent jobs
arrive over time to be scheduled on 𝑀 identical machines. Each job
𝑗 is associated with a processing time 𝑝 𝑗 , a weight 𝑤 𝑗 , a release
time 𝑟 𝑗 , and a resource demand 𝑑 𝑗𝑙 for the 𝑙-th resource. Jobs ar-
rive over time in an online fashion and their parameters are not
revealed to the scheduler until time 𝑟 𝑗 . Each machine has 𝑅 or-
thogonal resources and capacity 𝑈𝑙 for resource 𝑙 . Machines can
process multiple jobs simultaneously if the jobs being processed
do not exceed the resource capacity. We assume that resources are
infinitely divisible. Without loss of generality, we scale 𝑝 𝑗 by the
minimum processing time and normalize the machine capacity for
each resource to one. Then, we have 𝑝 𝑗 ≥ 1, 𝑑 𝑗𝑙 ≤ 1, and𝑈𝑙 = 1.

As explained in Section 1, we believe it is important to study non-
preemptive scheduling to avoid costs, such as context switching
or migration, so we require that the jobs cannot be stopped once
they start being processed. We allow the scheduler to collect jobs
and defer scheduling decisions at a later time. Each job must be
assigned a machine and a start time 𝑆 𝑗 ≥ 𝑟 𝑗 . Its completion time𝐶 𝑗

Online Non-preemptive Multi-Resource Scheduling for Weighted Completion Time on Multiple Machines ICPP ’24, August 12–15, 2024, Gotland, Sweden

satisfies 𝐶 𝑗 = 𝑆 𝑗 + 𝑝 𝑗 . A schedule (i.e., an assignment of start times
to jobs) satisfies resource constraints when the machine resource
capacity is not exceeded at any point in time. That is, for every
machine,

∑
𝑗 :𝑆 𝑗 ≤𝑡<𝐶 𝑗

𝑑 𝑗𝑙 ≤ 1 for all 𝑙 and all points in time 𝑡 .
In this problem setting, our objective is to minimize 1

𝑁

∑
𝑗 𝑤 𝑗𝐶 𝑗 ,

the average weighted completion time (AWCT). We measure the
performance of an online algorithm using the common competitive

ratio. Let 𝐼 be a problem instance (i.e., a collection of unscheduled
jobs with normalized demands), ALG(𝐼) be the value of the objec-
tive achieved by an algorithm scheduling 𝐼 , and OPT(𝐼) be the value
achieved by an optimal scheduler that has full knowledge of all job
parameters at time zero. An online algorithm to a minimization
problem is said to be 𝜌-competitive, if for all problem instances 𝐼
we have ALG(𝐼) ≤ 𝜌 OPT(𝐼). We also use an asterisk (∗) to indicate
the values chosen by an optimal scheduler.

4 NON-COMPETITIVENESS OF
PRIORITY-QUEUE ALGORITHMS

As illustrated in Section 2, many algorithms have been proposed to
tackle online scheduling, and several of these fall under a class of
priority queue algorithms, such as Smallest-Volume-First (SVF)
[17] and Shortest-Job-First (SJF). Notably, the popular Tetris
scheduler, when not given the power of preemption, also falls under
this class [11].

Such algorithms maintain a queue of jobs that have arrived and
schedule them in the following manner: Let T be the set of time
points containing an “event”, i.e., where a job arrives or completes
on some machine. On every event 𝑡 ∈ T , construct the queue Q𝑡 =
{ 𝑗 | 𝑟 𝑗 ≤ 𝑡, 𝑗 not yet scheduled}, and order the jobs in the queue
according to some heuristic, such as sorting by non-decreasing
order of job processing times in SJF. Starting from the head of the
queue, scan and repeatedly schedule jobs if they are feasible at time
𝑡 . We call this class of algorithms Priority-Queue (PQ).

Although it is possible for these algorithms to have good aver-
age or typical performance, we show that there always exists an
adversarial input instance of jobs, such that the competitive ratio
of this class of algorithms is arbitrarily bad.

Lemma 4.1. The competitive ratio of the Priority-Queue class of

algorithms for minimizing the AWCT is Ω(𝑁).

Proof. Let there be 𝑁 jobs and one machine. The first job is
released at time zero and has demand one for each resource and a
processing time 𝑝 ≥ 1. The remaining 𝑁 − 1 jobs are released at
time 𝜀 > 0 and have demand 1

𝑁−1 for each resource and processing
time 1. We also set𝑤 𝑗 = 1 for all jobs.

At time 𝑡 = 0, since there is an event, PQ schedules the first
job. The other 𝑁 − 1 jobs must wait until the first job is completed
and these jobs can be processed simultaneously. This gives a total
completion time of∑︁

𝑗

𝑤 𝑗𝐶 𝑗 = 𝑝 + (𝑁 − 1) (𝑝 + 1).

On the other hand, the optimal offline scheduler would skip the
first job until the end. Letting𝐶∗

𝑗
be the optimal completion time of

jobs, it yields a total weighted completion completion time of∑︁
𝑗

𝑤 𝑗𝐶
∗
𝑗 = (𝑁 − 1) (1 + 𝜀) + 1 + 𝜀 + 𝑝.

The competitive ratio is then lower bounded by∑
𝑗 𝑤 𝑗𝐶 𝑗∑
𝑗 𝑤 𝑗𝐶

∗
𝑗

=
𝑝 + (𝑁 − 1) (𝑝 + 1)

(𝑁 − 1) (1 + 𝜀) + 1 + 𝜀 + 𝑝 ∈ Ω
(
𝑁𝑝

𝑁 + 𝑝

)
.

Letting 𝑝 = 𝑁 we have the result, and we note the result is inde-
pendent of the number of resources. □

5 MULTI-RESOURCE INTERVAL SCHEDULING
The weakness of the PQ approach is its lack of flexibility and adapt-
ability. By constantly processing a job whenever resources are
available, it operates under the assumption that the current job is
the most appropriate at that moment. However, in dynamic environ-
ments, where priorities may shift, more critical tasks can emerge,
and this rigid approach can lead to highly suboptimal scheduling
decisions. Without the ability to preemptively interrupt ongoing
tasks to accommodate higher-priority jobs, PQ risks committing
prematurely to poor schedules.

Introducing a delay before making scheduling decisions allows
the scheduler to gather more information about the pending tasks
or the system’s state, allowing it to potentially make more informed
decisions and avoid situations in which a better-suited job arrives
shortly after committing to a less favorable one, as exemplified
in Lemma 4.1. By exercising patience and waiting for additional
context, the scheduler can more effectively schedule jobs that reduce
the weighted completion time of jobs. However, incurring a delay
increases the completion time of jobs; therefore, a judicious design
is necessary.

In [13], Hall et al. presented a framework for online scheduling
that executes over multiple iterations, each using a geometrically
increasing time period. In each period, it solves a subproblem that
identifies a maximum-weighted subset of jobs that can be scheduled
within a certain deadline. The scheduler then schedules that subset
of jobs in an offline manner while simultaneously waiting for jobs to
arrive and be considered in the next iteration. This process repeats
until completion.

In this work, we adopt the general framework of [13] to avoid
the rigidity of PQ. However, it remains unclear how to (i) identify
the subset of jobs, (ii) find a guaranteed deadline for scheduling
such subset in each interval, (iii) maintain feasibility, and (iv) do so
in fully polynomial time. Furthermore, [13] suggested scheduling
each subset of jobs in their own disjoint intervals. This can result
in poor resource use, as in a typical case, the collected subset may
not require the use of the entire interval. Instead, we are interested
in scheduling such jobs as early as possible (backfilling).

To solve these challenges, the proposed Multi-Resource Inter-
val Scheduling (MRIS) algorithm uses two subroutines. In each
iteration, we first approximate a variant of the knapsack problem
to identify a maximum-weighted subset of jobs. Then, we use a
makespan algorithm to schedule the subset before a deadline set
by the knapsack capacity. The details of these two subroutines are
presented in Sections 5.1 and 5.2, respectively, followed by the MRIS
algorithm description in Section 5.3.

ICPP ’24, August 12–15, 2024, Gotland, Sweden Donney Fan and Ben Liang

5.1 Knapsack Constraint Approximation
Maximizing the weight of a subset of jobs is akin to solving a knap-
sack problem, where item profits are the weights. To be competitive
with the optimal scheduler, we seek solutions that can exactly iden-
tify the subset of jobs with the maximum weight.

It is well known that the knapsack problem can be optimally
solved via dynamic programming with best-known running time
𝑂 (𝜁𝑛) for knapsack capacity 𝜁 and 𝑛 number of items [22]. Unfor-
tunately, its runtime is pseudo-polynomial. To design a fully poly-
nomial time solution, one can design approximation algorithms,
which are guaranteed to achieve a fraction of the optimal weight.

To design MRIS, we are more interested in knapsack constraint

approximation, first suggested by Lawler [19] and later expanded to
the general resource augmentation model [18]. In these models, the
designed algorithms are given additional capacity compared with
the optimal. Within the context of our algorithm, we use constraint
approximation to obtain a subset of jobs with matching or greater
total weight compared with the optimal knapsack solution, so that
in each iteration, we can match at least the total weight scheduled
by the optimal scheduler.

However, in our design, we must avoid direct use of resource
augmentation, as in practice, it is meaningless for our algorithm
to have “additional knapsack capacity” compared with the optimal
scheduler. Towards this end, we define the volume of a job. Denote
the total demand of a job 𝑗 by 𝑢 𝑗 =

∑𝑅
𝑙=1 𝑑 𝑗𝑙 ≤ 𝑅. We define the

volume of job 𝑗 as 𝑣 𝑗 = 𝑝 𝑗𝑢 𝑗 and the total volume of jobs of an
instance 𝐼 as 𝑉𝐼 =

∑
𝑗∈𝐼 𝑣 𝑗 . Then, we equate the size of each job

with its volume, and the knapsack capacity will be some volume
capacity that is adaptively updated in each iteration. In this way,
the use of resource augmentation would imply using additional
“volume”, which we will later show in Section 6.2 can be used to
bound the makespan of jobs scheduled.

More formally, in each iteration 𝑘 , given a set of jobs J𝑘 and a
knapsack capacity 𝜁𝑘 that is adaptively computed within MRIS, we
find B𝑘 = { 𝑗 | 𝑥 𝑗 = 1} where 𝑥 𝑗 solves the following problem:

P1: max
𝑥 𝑗 ∈{0,1}

∑︁
𝑗∈J𝑘

𝑤 𝑗𝑥 𝑗

subject to
∑︁
𝑗∈J𝑘

𝑣 𝑗𝑥 𝑗 ≤ 𝜁𝑘

We note that we can use any knapsack constraint approximation
algorithm here.

We now present Constraint-Approximate Dynamic Program-
ming (CADP), which modifies Ibarra & Kim’s fully polynomial time
approximation scheme [14]. For some small error parameter 𝜖 > 0,
and knapsack capacity 𝜁 , set 𝐾 = 𝜁𝑛/𝜖 . For each item 𝑗 define a
downscaled and rounded-down size 𝑣 𝑗 = ⌊𝑣 𝑗/𝐾⌋. We run dynamic
programming using {𝑣1, . . . , 𝑣𝑛} as our size inputs with a knapsack
of capacity 𝜁 = ⌊𝜁 /𝐾⌋ and obtain an exact solution. We then output
the unscaled items that correspond to the solution. We will show
in Section 6.1 that CADP incurs 1 + 𝜖 times the knapsack capacity,
which adds only slightly to the AWCT of MRIS.

In Section 6.1, we consider an alternative greedy heuristic that
requires augmentation at twice the capacity. We ultimately select
dynamic programming because it yields a better competitive ratio.

Algorithm 1 MRIS Algorithm
1: 𝑘 ← 0
2: while all jobs are not yet scheduled do
3: J𝑘 = { 𝑗 | 𝑝 𝑗 ≤ 𝛾𝑘 , 𝑟 𝑗 ≤ 𝛾𝑘 , 𝑗 not yet scheduled}
4: 𝜁𝑘 ← 𝑅𝑀𝛾𝑘
5: FindB𝑘 ⊆ J𝑘 by solving P1 with knapsack capacity 𝜁𝑘 using

CADP.
6: Schedule B𝑘 using Priority-Queue starting at time 𝛾𝑘 .
7: 𝑘 ← 𝑘 + 1
8: end while

5.2 Priority-Queue for Makespan
Once we solve P1, we require a makespan algorithm to schedule
the jobs while simultaneously providing an upper bound on the
length of the schedule based on the volume of jobs.

The well-known List-Scheduling algorithm was first proposed
by Graham [10]. In an environment without any resource con-
straints, where each machine processes one job at a time, it is
(2− 1/𝑀)-approximate. List-Scheduling was later extended to an
environment with 𝑅 auxiliary resources, where it was shown to be
(𝑅 + 1)-approximate when 𝑀 ≥ 𝑁 (i.e., the number of machines is
not a constraint so that all jobs can be processed in parallel subject
to the resource constraint) [8]. One can interpret their model of
𝑀 ≥ 𝑁 machines being allowed to process only one job as one
large single machine being associated with 𝑅 resources. We borrow
their scheduling ideas while extending to multiple machines and
incorporating the volume heuristic so it can be used with knapsack.

In fact, the PQ family of algorithms presented in Section 4 encom-
passes an extension of List-Scheduling to our resource constraints
on multiple machines. We use PQ to schedule the jobs found by
the knapsack constraint approximation algorithm, with the only
modification being that the release times of these jobs are zero to
PQ, effectively scheduling those jobs offline. Whenever a machine
has available resource capacity, either at the start of a schedule
or when a job is completed, we scan the list of jobs that can be
scheduled feasibly at that time. If there is such a job, schedule it to
start on that machine, remove it from the list, and recurse until the
list is scanned. PQ used this way has runtime complexity 𝑂 (𝑁 2).

We remark here that despite PQ having poor performance when
used standalone (see Section 4), when we combine it with our mod-
ified knapsack problem in MRIS, with a controlled set of intervals
where we execute these subroutines, we can achieve a bounded
competitive ratio to be shown in Section 6.

5.3 MRIS Algorithm Description
We are now ready to present the proposed MRIS algorithm. It

runs for multiple iterations, indexed by 𝑘 , until completion. Let 𝛾𝑘
be a geometric series that satisfies 𝛾𝑘+1 − 𝛾𝑘 ≥ 𝛾𝑘 and 0 < 𝜖 < 1 be
an error parameter that parameterizes the solution to P1.

For the 𝑘-th iteration, we consider the set of jobs J𝑘 that have
arrived by time 𝛾𝑘 but have yet to be scheduled. Set the knapsack
capacity 𝜁𝑘 to 𝑅𝑀𝛾𝑘 , the maximum volume of jobs we can schedule
with a bounded makespan. We identify a subset of jobs B𝑘 ⊆ J𝑘
with maximum weight subject to the knapsack capacity 𝜁𝑘 and
schedule them using PQ while using backfilling to find the earliest

Online Non-preemptive Multi-Resource Scheduling for Weighted Completion Time on Multiple Machines ICPP ’24, August 12–15, 2024, Gotland, Sweden

possible times a job can be placed in the schedule. As mentioned
earlier, this allows the start times of jobs in the period of one it-
eration to enter periods of previous iterations. The above steps of
MRIS are summarized in Algorithm 1.

Next, we investigate the runtime complexity of MRIS. For each
𝑘 , as will be shown in Lemma 6.1, solving knapsack using a CADP
has runtime complexity 𝑂 (|J𝑘 |2/𝜖), and PQ has runtime 𝑂 (|J𝑘 |2).
MRIS solves𝑂 (𝑁) such problems. Therefore, the total runtime com-
plexity is𝑂 (𝑁 3/𝜖). Furthermore, with some loss in the competitive
ratio, one can use a greedy solution (see Section 6.1) to the knapsack
problem and obtain 𝑂 (𝑁 2 log𝑁) runtime.

6 COMPETITIVE ANALYSIS
Our competitive analysis of MRIS echoes the presentation of its
design in Section 5. We first derive a bound on CADP, then provide
upper bounds on the makespan of PQ, and finally combine these
results with the geometric interval sequence to show that MRIS is
8𝑅(1 + 𝜖)-competitive.

6.1 Knapsack Constraint Approximation
In the original knapsack problem, we are given an instance 𝐼 con-
taining 𝑛 items, each item 𝑗 defined by its size 𝑣 𝑗 and weight 𝑤 𝑗 .
We wish to identify J ⊆ 𝐼 that maximize the total weight of the
knapsack subject to its capacity 𝜁 . As mentioned in Section 5.1, we
seek a fully polynomial time constraint approximation, where we
are allowed knapsack capacity larger than 𝜁 .

Lemma 6.1. CADP obtains the optimal knapsack weight using

knapsack capacity (1 + 𝜖)𝜁 and runs in fully polynomial time.

Proof. Let J be the items found by CADP. Since the weights
has not changed and dynamic programming is exact,

∑
𝑗∈J 𝑤 𝑗 is

optimal. For each item, we scaled down its size by a factor of 𝐾 and
rounded down, so any item satisfies 𝐾𝑣 𝑗 ≤ 𝑣 𝑗 with the difference at
most 𝐾 . Therefore, the total size of items returned by the algorithm
is at most 𝑛𝐾 . Then, we can bound the required capacity:∑︁

𝑗∈J
𝑣 𝑗 ≤ 𝑛𝐾 + 𝐾

∑︁
𝑗∈J

𝑣 𝑗

= 𝑛𝐾 + 𝐾
∑︁
𝑗∈J
⌊𝑣 𝑗/𝐾⌋

≤ 𝑛𝐾 +
∑︁
𝑗∈J

𝑣 𝑗

= 𝜖𝜁 +
∑︁
𝑗∈J

𝑣 𝑗

≤ (1 + 𝜖)𝜁

The runtime is 𝑂 (𝑛⌊𝜁 /𝐾⌋) or 𝑂 (𝑛2/𝜖). □

Remark 1. One might be interested in algorithms that have lower
runtime complexity. We show that the classic 𝑂 (𝑛 log𝑛) greedy
algorithm can reach the optimal knapsack weight by allowing twice
the knapsack capacity. This algorithm sorts the items using the ratio
𝑤 𝑗/𝑣 𝑗 and selects items based on the non-increasing order of this
ratio up to the 𝑘-th item that cannot be added to the knapsack.
The output selects the better of the items {1, . . . , 𝑘 − 1} or {𝑘}. If a
fraction of the 𝑘-th item was permitted, the knapsack output could

match or exceed the optimal knapsack weight. Thus, by allowing
a knapsack with capacity 2𝜁 , we can obtain the optimal weight.
However, since the greedy algorithm requires a larger capacity, it
yields an inferior competitive ratio compared with CADP (see also
Section 7.4). Therefore, we focus instead on CADP.

6.2 Priority-Queue for Makespan Scheduling
As explained in Section 5.2, PQ is used in MRIS to solve an offline
problem on a subset of jobs, where the goal is to minimize the
makespan for each iteration 𝑘 . We first present lower bounds on
the makespan, which can be viewed as a generalized case of lower
bounds of the multiple strip packing problem [2].

Lemma 6.2. Let 𝐶∗max = max𝑗 {𝐶∗𝑗 } be the optimal makespan for

scheduling an offline problem instance 𝐼 . Then 𝐶∗max ≥
𝑉𝐼
𝑅𝑀

.

Proof. Let J𝑖 be the jobs scheduled on machine 𝑖 by an optimal
scheduler. We compute the total volume of jobs:

𝑉𝐼 =
𝑀∑︁
𝑖=1

∑︁
𝑗∈J𝑖

𝑝 𝑗

𝑅∑︁
𝑙=1

𝑑 𝑗𝑙

=

𝑅∑︁
𝑙=1

𝑀∑︁
𝑖=1

∑︁
𝑗∈J𝑖

𝑝 𝑗𝑑 𝑗𝑙

≤
𝑅∑︁
𝑙=1

𝑀∑︁
𝑖=1

1 ·𝐶∗max

= 𝑅𝑀𝐶∗max .

The inequality is given by observing
∑
𝑗∈J𝑖 𝑝 𝑗𝑑 𝑗𝑙 as the contribu-

tion of resource 𝑙 to the total volume of jobs. One can view this
problem as similar to the strip-packing problem, where each job
in J𝑖 is modelled as a rectangle with height 𝑑 𝑗𝑙 and width 𝑝 𝑗 . This
problem aims to find the smallest packing in a rectangle of height
one and unlimited width. The inequality states that each rectan-
gle’s total area (or volume) must be contained within the area of
the optimal strip, which has dimension 1 ·𝐶∗max. □

Lemma 6.3. Let 𝐶max be the makespan achieved by PQ, 𝐶∗max
be the makespan achieved by the optimal scheduler, and 𝑝max =

max𝑗∈𝐼 {𝑝 𝑗 }. Then 𝐶max ≤ max{2𝑝max, 2𝑉𝐼 /𝑀} ≤ 2𝑅𝐶∗max, where
𝑉𝐼 is the volume of jobs in the scheduled instance.

Proof. We study two cases. First assume that 𝐶max ≤ 2𝑝max.
Then, the result holds trivially as 2𝑝max ≤ 2𝐶∗max ≤ 2𝑅𝐶∗max.

In the second case, we assume 𝐶max > 2𝑝max. Let J𝑖𝑡 be the set
of jobs active on a machine 𝑖 at time 𝑡 and Let𝑈𝑖𝑙𝑡 =

∑
𝑗∈J𝑖𝑡 𝑑 𝑗𝑙 be

the total demand of all active jobs at a machine 𝑖 on resource 𝑙 at
time 𝑡 . Let 𝑡 ∈ [0,𝐶max/2] and 𝜏 = 𝑡 +𝐶max/2. By our assumption
𝑝max < 𝐶max/2, so any job in J𝑡 cannot belong to J𝜏 . There exists
some 𝑙 on every machine 𝑖 such that𝑈𝑖𝑙𝑡 +𝑈𝑖𝑙𝜏 > 1. Otherwise, if
𝑈𝑖𝑙𝑡 +𝑈𝑖𝑙𝜏 ≤ 1 for every resource 𝑙 , an active job at time 𝜏 could
have been scheduled at time 𝑡 by PQ, since there would not have
been a violation of the resource constraint. We compute the total
volume of jobs scheduled by PQ:

𝑉𝐼 =

∫ 𝐶max

0

𝑀∑︁
𝑖=1

∑︁
𝑗∈J𝑖𝑡

𝑢 𝑗 𝑑𝑡

ICPP ’24, August 12–15, 2024, Gotland, Sweden Donney Fan and Ben Liang

=

∫ 𝐶max

0

𝑀∑︁
𝑖=1

𝑅∑︁
𝑙=1

𝑈𝑖𝑙𝑡 𝑑𝑡

=

∫ 𝐶max/2

0

𝑀∑︁
𝑖=1

𝑅∑︁
𝑙=1
(𝑈𝑖𝑙𝑡 +𝑈𝑖𝑙𝜏) 𝑑𝑡

>

∫ 𝐶max/2

0

𝑀∑︁
𝑖=1

1𝑑𝑡

=
𝐶max𝑀

2
Therefore by Lemma 6.2 we have 𝐶max < 2𝑉𝐼 /𝑀 ≤ 2𝑅𝐶∗max. □

The following lemma shows that the upper bound on the total
volume of jobs scheduled by PQ cannot be improved.

Lemma 6.4. Let 𝐶max be the makespan achieved by Priority-

Queue and 𝑉𝐼 the volume of jobs of some scheduled instance. There

exists 𝐼 where 𝐶max ≤ max{2𝑝max, 2𝑉𝐼 /𝑀} is tight.

Proof. Let there be a single machine. As a first trivial case, let
𝐼 contain 1 job with resource demand of 1/2 in the first resource
and 0 in the remaining 𝑅 − 1 resources and a processing time of 𝑝 .
The makespan achieved by PQ is 𝑝 and 2𝑉𝐼 /𝑀 = 𝑝 . For a nontrivial
case, let 𝐼 contain 𝑁 jobs with 𝑝 𝑗 = 𝑝 for all jobs, and each job
has demand (1/2 + 𝛿) for some 𝛿 > 0 in the first resource and no
demand for the remaining 𝑅−1 resources. The machine can process
no more than one job at once, so the makespan achieved is 𝑁𝑝 . On
the other hand, the total volume of jobs is 𝑁𝑝 (1/2 + 𝛿), so we have
2𝑉 /1 = 𝑁𝑝 (1 + 2𝛿), which approaches the bound as 𝛿 → 0. □

6.3 Competitive Ratio of MRIS
We derive the competitive ratio of MRIS by showing that, for each
iteration 𝑘 , we can find a subset of jobs of maximal weight that
was completed by the optimal scheduler in one period of time and
schedule that subset using a slightly longer period of time.

Lemma 6.5. Let J𝑘 be the set of arrived jobs found by MRIS on line

3 of Algorithm 1, and suppose there exists a set of jobs B∗
𝑘
⊆ J𝑘 of

total weight𝑊 that can be completed by an optimal scheduler within

𝛾𝑘 time steps. Then, for any constant 0 < 𝜖 < 1, MRIS schedules a set

of jobs B𝑘 ⊆ J𝑘 of weight at least𝑊 within 2𝑅(1 + 𝜖)𝛾𝑘 time steps.

Proof. Let B∗
𝑘

be the set of jobs with weight𝑊 be scheduled
feasibly by time 𝛾𝑘 . To construct our desired schedule, we need to
find a subset of jobs with weight at least𝑊 and makespan bounded
by 𝛾𝑘 , which is the knapsack problem discussed before. Its optimal
solution gives a set of jobs B𝑘 of maximal weight with total volume
𝑉B𝑘 ≤ 𝑅𝑀𝛾𝑘 and by Lemma 6.2 is a lower bound on the optimal
makespan for scheduling these jobs, which is 𝛾𝑘 . That is, by solving
the knapsack, we can identify a set of jobs with at least as much
weight as the optimal would schedule on the machines by time 𝛾𝑘 .

In Lemma 6.1, we show that CADP can achieve at least as much
as the optimal knapsack weight, given (1 + 𝜖) slack on the vol-
ume constraint. Finally, we use PQ, which schedules B𝑘 by time
max{2𝑝max, 2𝑉B𝑘 /𝑀} where 𝑝max = max𝑗∈B𝑘 {𝑝 𝑗 }. Since 𝑝max ≤
𝛾𝑘 and from CADP we have 𝑉B𝑘 /𝑅𝑀 ≤ (1 + 𝜖)𝛾𝑘 , we can feasibly
schedule the jobs by time 2𝑅(1 + 𝜖)𝛾𝑘 . □

The following lemma uses Lemma 6.5 repeatedly to show that
the total weight of jobs that we schedule over time is at least as
large as the optimal at specific time points.

Lemma 6.6. Let B𝑘 be the set of jobs computed at time 𝛾𝑘 under

MRIS and let B∗
𝑘
be the set of jobs in the optimal offline solution which

are completed in the interval [𝛾𝑘−1, 𝛾𝑘). Then for any 𝑖 ≤ 𝑘 , we have
𝑘∑︁
𝑖=1

∑︁
𝑗∈B𝑖

𝑤 𝑗 ≥
𝑘∑︁
𝑖=1

∑︁
𝑗∈B∗

𝑖

𝑤 𝑗 . (1)

Proof. Since 𝑝 𝑗 ≥ 1, no jobs can be completed before time 𝛾0.
We consider each interval [𝛾𝑘−1, 𝛾𝑘). Let J𝑘 be the set of pend-
ing jobs released by time 𝛾𝑘 , but have not been scheduled. MRIS
constructs B𝑘 ⊆ J𝑘 at 𝛾𝑘 .

Let S =
⋃𝑘
𝑖=1 B∗𝑖 \

⋃𝑘−1
𝑖=1 B𝑖 be the set of jobs the optimal sched-

uler has completed by time 𝛾𝑘 , but our algorithm has not scheduled
in the 𝑘-th iteration. By definition, for each job in S, it also be-
longs to J𝑘 and therefore S ⊆ J𝑘 . By Lemma 6.5 CADP constructs
B𝑘 ⊆ J𝑘 with weight at least as large as the total weight of jobs in
S. Lemma 6.5 is applicable because, by definition, S can be com-
pleted by the optimal scheduler within 𝛾𝑘 time steps. Therefore,
the total weight of jobs in

⋃𝑘
𝑖=1 B𝑖 found by MRIS is at least the

total weight of jobs in
⋃𝑘
𝑖=1 B∗𝑖 .

It is possible that some jobs in
⋃𝑘
𝑖=1 𝐵

∗
𝑖

have been scheduled
by our algorithm in previous phases, and by definition, these jobs
would have been released by time 𝛾𝑘 . Ignoring those jobs in the
construction of B𝑘 , as in the definition of J𝑘 , would not increase
the length of the schedule. □

We will also need the following elementary result to help arrive
at our theorem.

Lemma 6.7. Let {𝑥𝑘 }𝐾𝑘=1 and {𝑦𝑘 }𝐾𝑘=1 be finite non-negative se-

quences that satisfy

𝐾∑︁
𝑘=1

𝑥𝑘 =

𝐾∑︁
𝑘=1

𝑦𝑘 , (2)

and for any 𝑗 = 1, . . . , 𝐾 they also satisfy

𝑗∑︁
𝑘=1

𝑥𝑘 ≥
𝑗∑︁

𝑘=1
𝑦𝑘 . (3)

Then for any non-decreasing non-negative sequence {𝑧𝑘 }𝐾𝑘=1 we have

𝐾∑︁
𝑘=1

𝑧𝑘𝑥𝑘 ≤
𝐾∑︁
𝑘=1

𝑧𝑘𝑦𝑘 . (4)

Proof. We show the result by induction.
Base Case 𝐾 = 1: The result trivially holds: 𝑧1𝑥1 ≤ 𝑧1𝑦1.
Inductive Step: Let {𝑥𝑘 } and {𝑦𝑘 } be sequences of length𝐾+1 that
satisfy the assumptions (2) and (3) and {𝑧𝑘 } be a non-decreasing
non-negative sequence of length 𝐾 + 1.

Since
∑𝐾
𝑘=1 𝑥𝑘 ≥

∑𝐾
𝑘=1 𝑦𝑘 and

∑𝐾+1
𝑘=1 𝑥𝑘 =

∑𝐾+1
𝑘=1 𝑦𝑘 we have

𝑥𝐾+1 ≤ 𝑦𝐾+1. Multiply through by 𝑧𝐾+1 to obtain

𝑥𝐾+1𝑧𝐾+1 ≤ 𝑦𝐾+1𝑧𝐾+1 . (5)

Online Non-preemptive Multi-Resource Scheduling for Weighted Completion Time on Multiple Machines ICPP ’24, August 12–15, 2024, Gotland, Sweden

We re-write the sum by adding and subtracting terms:
𝐾+1∑︁
𝑘=1

𝑧𝑘𝑥𝑘 = (𝑧1 − 𝑧2)𝑥1 + (𝑧2 − 𝑧3) (𝑥1 + 𝑥2)

+ (𝑧3 − 𝑧4) (𝑥1 + 𝑥2 + 𝑥3)
+ · · ·
+ (𝑧𝐾 − 𝑧𝐾+1) (𝑥1 + 𝑥2 + · · · + 𝑥𝐾)
+ 𝑧𝐾+1 (𝑥1 + 𝑥2 + · · · + 𝑥𝐾+1)

=

𝐾∑︁
𝑘=1

𝑘∑︁
𝑗=1
(𝑧𝑘 − 𝑧𝑘+1)𝑥 𝑗 + 𝑧𝐾+1

𝐾+1∑︁
𝑗=1

𝑥 𝑗

≤
𝐾∑︁
𝑘=1

𝑘∑︁
𝑗=1
(𝑧𝑘 − 𝑧𝑘+1)𝑦 𝑗 + 𝑧𝐾+1

𝐾+1∑︁
𝑗=1

𝑦 𝑗

=

𝐾+1∑︁
𝑘=1

𝑧𝑘𝑦𝑘

We first observe that if 𝑎 ≥ 𝑏 and 𝑐 ≤ 0, then 𝑎𝑐 ≤ 𝑏𝑐 . From the
non-decreasing property, we know that 𝑧𝑘 − 𝑧𝑘+1 ≥ 0 and from
non-negativity 𝑧𝐾 ≥ 0. Therefore, by applying (3) to the first sum
and (5) with the inductive hypothesis to the second sum, we have
the inequality and thus the result. □

We are now ready to present the main result of this paper.

Theorem 6.8. MRIS is an 8𝑅(1 + 𝜖)-competitive algorithm for the

weighted average completion time objective.

Proof. Let
∑
𝑗 𝑤 𝑗𝐶 𝑗 be the sum of completion times achieved

by MRIS. Let B𝑘 be the set of jobs scheduled by the algorithm at
iteration 𝑘 . MRIS schedules B𝑘 between time 𝛾𝑘 and 𝛾𝑘 +𝑇𝑘 , where
𝑇𝑘 is the time period of the schedule that PQ schedules jobs in the
𝑘-th iteration. As we use backfilling, our use of PQ does not follow
Lemma 6.2. However, as backfilling cannot increase the makespan
of PQ, in the worst case it provides no benefit to MRIS, resulting in
no overlap between jobs scheduled in one iteration to the next. In
this worst case, 𝑇𝑘 = 2𝑅(1 + 𝜖)𝛾𝑘 is achieved exactly. Let 𝑡𝑘 be the
makespan of the total schedule during the 𝑘-th iteration. Since 𝛾𝑘
satisfies 𝛾𝑘+1 − 𝛾𝑘 ≥ 𝛾𝑘 , before scheduling B𝑘 , the makespan is

𝑡𝑘−1 ≤
𝑘−1∑︁
𝜅=0

2𝑅(1 + 𝜖)𝛾𝜅 ≤ 2𝑅(1 + 𝜖)𝛾𝑘 .

Therefore processing B𝑘 finishes before time 𝑡𝑘 ≤ 4𝑅(1 + 𝜖)𝛾𝑘 .
Let 𝛾𝑘 = 𝛼𝑘 and suppose the algorithm makes a total of 𝐾 + 1
iterations (i.e., an optimal scheduler scheduled all jobs by time 𝛾𝐾).
For notational convenience let 𝛾−1 = 0.

We sum over all the iterations:
𝑁∑︁
𝑗=1

𝑤 𝑗𝐶 𝑗 ≤
𝐾∑︁
𝑘=0

4𝑅(1 + 𝜖)𝛾𝑘
∑︁
𝑗∈B𝑘

𝑤 𝑗

≤ 4𝑅(1 + 𝜖)𝛼
𝐾∑︁
𝑘=0

𝛾𝑘−1
∑︁
𝑗∈B𝑘

𝑤 𝑗

≤ 4𝑅(1 + 𝜖)𝛼
𝐾∑︁
𝑘=0

𝛾𝑘−1
∑︁
𝑗∈B∗

𝑘

𝑤 𝑗

The third step is an application of Lemma 6.6 and Lemma 6.7
where 𝑥𝑘 =

∑
𝑗∈B𝑘 𝑤 𝑗 , 𝑦𝑘 =

∑
𝑗∈𝐵∗

𝑘
𝑤 𝑗 and 𝑧𝑘 = 𝛾𝑘−1. Let 𝐶∗

𝑗
be

the optimal offline solution’s completion time of job 𝑗 . For each job
let [𝛾𝑘 𝑗−1, 𝛾𝑘 𝑗) be the interval that contains 𝐶∗

𝑗
. Then we have

𝐾∑︁
𝑘=0

𝛾𝑘−1
∑︁
𝑗∈B∗

𝑘

𝑤 𝑗 =
𝑁∑︁
𝑗=1

𝛾𝑘 𝑗−1𝑤 𝑗 ≤
𝑁∑︁
𝑗=1

𝑤 𝑗𝐶
∗
𝑗 .

The equality is a result of a difference in accounting. The first double
sum adds the weight of jobs the optimal algorithm schedules in each
interval and assumes it completes by time 𝛾𝑘−1. The second sum
uses 𝛾𝑘 𝑗 to index a single sum over 𝑗 , maintaining the assumption
the a job that finishes in [𝛾𝑘 𝑗−1, 𝛾𝑘 𝑗) by the optimal algorithm
is lower bounded by 𝛾𝑘 𝑗−1. These steps imply

∑
𝑗 𝑤 𝑗𝐶 𝑗 ≤ 4𝑅(1 +

𝜖)𝛼 ∑𝑗 𝑤 𝑗𝐶
∗
𝑗
. We select 𝛼 = 2 as the smallest such base that satisfies

𝛾𝑘+1 − 𝛾𝑘 ≥ 𝛾𝑘 and therefore MRIS is 8𝑅(1 + 𝜖)-competitive. □

6.4 Discussion
Remark 2. A curious reader might be interested in why we used

PQ instead of the (𝑅 + 1)-approximation result from Garey and
Graham [8] for makespan scheduling. This is because one cannot
use a makespan approximation ratio to prove Lemma 6.5, since
after constructing B𝑘 from J𝑘 from the knapsack problem, we do
not use the optimal makespan of B𝑘 to conclude PQ can schedule
the jobs by some multiple of 𝛾𝑘 .

Remark 3. One might be interested in whether the performance
bound can be improved in the special case where 𝑝 𝑗 = 1 for all jobs.
In this case, we can use bin-packing algorithms that are known
to have sublinear asymptotic approximation ratios with respect to
the number of resources [1]. However, for the reasons mentioned
above, we cannot directly use the asymptotic ratio or obtain tighter
upper bounds of a form similar to Lemma 6.3.

Remark 4. There may be cases in which the makespan of jobs
may also be an important consideration. Although our main prob-
lem is the average weighted completion time objective, our algo-
rithm is also bounded with respect to the makespan.

Lemma 6.9. MRIS is 8𝑅(1+𝜖)-competitive forminimizingmakespan.

Proof. Similar to the proof of Theorem 6.8, let 𝛾𝐾 be the time
at which the optimal makespan lies in the range [𝛾𝐾−1, 𝛾𝐾). MRIS
generates a feasible schedule, and the last job completes by time
4𝑅(1 + 𝜖)𝛾𝐾 . Setting 𝛾𝑘 = 2𝑘 , the competitive ratio is 8𝑅(1 + 𝜖). □

In a sense, our algorithm simultaneously optimizes the average
weighted completion time and makespan objectives.

7 TRACE-DRIVEN EVALUATION
While Section 6 provides a worst-case performance guarantee, in
this section, we evaluate the real-world behavior of MRIS with trace-
based simulation. We observe that it exhibits strong performance
compared with state-of-the-art cluster schedulers.

7.1 Experimental Setup
We use the Microsoft Azure traces for virtual machine (VM) alloca-
tion designed to evaluate packing algorithms [12]. It contains VM

ICPP ’24, August 12–15, 2024, Gotland, Sweden Donney Fan and Ben Liang

requests over 14 days with start and completion times and integer
priorities that we interpret as a weight. There is also a table of pos-
sible VM types for each request, with varying degrees of resource
demands. The dataset includes five resource types: CPU, memory,
hard drive (HDD) space, solid-state drive (SSD) space, and network
bandwidth. The dataset maps a VM type to resource usage as a
fraction of total capacity for up to 34 different machine types. VM
requests do not include 𝑝 𝑗 , so we determine it by subtracting the
start time from the completion time. There is a wide distribution of
𝑝 𝑗 , ranging from a few seconds to 90 days.

Several modifications to the dataset are required. Due to the lack
of a single machine type encompassing all VM types, we randomly
sample a machine type for each VM type, preserving the original
data. We use the first 4.096 million jobs of the dataset, such that the
last job is released at nearly 12.5 days. The system can evolve beyond
this time, until all jobs are scheduled and completed. The dataset
does not contain information regarding the number of machines
used to schedule these jobs; therefore, we set 𝑀 = 20 as the default.
Lastly, we ignore jobs with negative start times.

To keep simulation time manageable, we choose a factor 𝑓 to
“downsample” the job submissions to simulate a smaller number of
jobs arriving over the 12.5 days. For example, to simulate 64000 jobs
arriving over the 12.5-day time window, we sort the jobs by 𝑟 𝑗 and
select every 𝑓 = 64 jobs. To strengthen the statistical significance
of our results, we obtain multiple sampled job sets by ignoring the
first Δ arrival of jobs during downsampling, where Δ ∈ Z is drawn
uniformly from the interval [0, 𝑓) without replacement. For every
data point we obtain 10 sampled job sets, plot the mean, and shade
the 95% confidence interval in the following figures. Lastly, jobs
requiring SSD space do not require HDD space and vice versa, so
we combined these into one storage resource demand.

7.2 Comparison Benchmarks
For benchmarks, we select the following algorithms:
• Priority-Queue (PQ)
• Tetris [11]
• BF-EXEC [21]
• Collect-All-Priority-Queue (CA-PQ)

As mentioned before, Tetris is akin to PQ. At each time instance,
when resources are available on a machine 𝑖 , Tetris computes an
alignment score for each job 𝑗 not yet scheduled as 𝑎 𝑗 + 𝜀𝑣 𝑗 where
𝑎 𝑗 is the dot product score of the remaining resources of machine 𝑖
and 𝑣 𝑗 . It then recursively assigns jobs until no more jobs can be
scheduled. We note that Tetris uses the notion of the remaining

volume because of their preemption assumption, whereas we adapt
their algorithm to our environment. In effect, jobs are sorted by
SVF, selected by the alignment scores, and cannot be preempted.

The BF-EXEC scheduler gives preference jobs that have recently
arrived and uses SJF when selecting jobs from the queue. Upon
arrival of a new job, the scheduler assigns the job to the machine
with the lowest 𝐿2-norm of remaining resources, if feasible. Upon
departure of a job, the scheduler recursively finds the shortest job
in the queue and assigns it to the machine of the recently departed
job, given sufficient resource capacity.

As MRIS exercises patience in scheduling jobs, one may be in-
terested in the extreme case in which we wait for all jobs to arrive

4000 8000 16000 32000 64000
Number of jobs released in 12.5 days

10

15

20

Av
er

ag
ew

ei
gh

te
d

co
m

pl
et

io
n

tim
e

MRIS-WSVF
MRIS-SVF
MRIS-WSDF
MRIS-SDF
MRIS-WSJF
MRIS-SJF
MRIS-ERF

Figure 1: AWCT of MRIS under different sorting heuristics,
with𝑀 = 20 machines.

4000 8000 16000 32000 64000
Number of jobs released in 12.5 days

20

40

Av
er

ag
ew

ei
gh

te
d

co
m

pl
et

io
n

tim
e MRIS-WSJF

MRIS-Greedy-WSJF

Figure 2: AWCT comparison between two knapsack sub-
routines, with𝑀 = 20 machines.

before scheduling all jobs together. CA-PQ fills this role and is given
additional knowledge of the last job’s release time.

7.3 Sorting in MRIS
Since MRIS leverages PQ as a subroutine, there is freedom in how
we sort jobs in each interval. In fact, the competitive ratio in Theo-
rem 6.8 is independent of a sorting heuristic. We choose from the
following popular heuristics and show the value used to sort jobs
in non-decreasing order:
• (Weighted-)Smallest-Volume-First, (W)SVF: 𝑣 𝑗 (/𝑤 𝑗)
• (Weighted-)Shortest-Job-First, (W)SJF: 𝑝 𝑗 (/𝑤 𝑗)
• (Weighted-)Smallest-Demand-First, (W)SDF: 𝑢 𝑗 (/𝑤 𝑗)
• Earliest-Release-First (ERF): 𝑟 𝑗

Figure 1 illustrates a clear hierarchy. ERF is weak because it
simply schedules jobs as they arrive in a queue, ignoring processing
times and demands. WSDF tries to pack jobs better than ERF but
again ignores the time dimension. WSJF and WSVF perform the best,
attributing to efficient packing in the time dimension. We further
observe negligible difference between weighted and unweighted
variants in this dataset due to the small range of priorities.

Therefore, for the remaining evaluations, we select WSJF when
used as the sorting heuristic for the PQ subroutine in MRIS.

7.4 Choice of Knapsack Algorithm
In Section 6.1, we have found that CADP can use less additional
knapsack space compared with the greedy approach in the worst
case. We show this is true for the Azure dataset in the average
case in Figure 2. MRIS, when using the greedy approach to solve
knapsack (MRIS-Greedy), achieves 2% lower AWCT than dynamic
programming for a small number of jobs (4000), but when the
number of jobs increases, the greedy approach is over three times
worse than CADP. Both algorithms meet the volume constraint for
the maximum subset of jobs, but CADP is the better choice.

Online Non-preemptive Multi-Resource Scheduling for Weighted Completion Time on Multiple Machines ICPP ’24, August 12–15, 2024, Gotland, Sweden

8000 16000 32000 64000 128000 256000
Number of jobs released in 12.5 days

20

40

60

80

Av
er

ag
ew

ei
gh

te
d

co
m

pl
et

io
n

tim
e

MRIS-WSJF
CA-PQ-WSJF
PQ-WSJF

Tetris
BF-EXEC

Figure 3: Effect of job arrival rate on AWCT, with 𝑀 = 20
machines.

5 10 20 40
Number of machines

20

40

60

80

Av
er

ag
ew

ei
gh

te
d

co
m

pl
et

io
n

tim
e

MRIS-WSJF
CA-PQ-WSJF
PQ-WSJF

Tetris
BF-EXEC

Figure 4: Effect of the number of machines on AWCT, with
𝑁 = 64000 jobs.

7.5 Performance Comparison
7.5.1 Weighted Average Completion Time. In Figure 3, we first
observe that for a relatively small number of jobs, MRIS is out-
performed by schedulers such as Tetris, where the low number
of jobs over the fixed 12.5-day release window is insufficient for
MRIS to leverage all resources available in each interval. However,
MRIS exceeds all others when job arrival increases. We observe that
Tetris, BF-EXEC, and PQ perform similarly across all job arrivals.

When there is a significant number of arrived jobs, 20 machines
becomes insufficient and the other algorithms have similar per-
formance to batching jobs and applying PQ with WSJF sorting,
which serves as the worst-case reference. This suggests that most
job processing occur after the last job has arrived, and the problem
scenario moreso resembles an offline scheduling problem, where all
job parameters are revealed to the scheduler at time zero. Neverthe-
less, MRIS can more effectively schedule jobs with short processing
times, small demands, and large weights earlier than other sched-
ulers, on average.

We also investigate the scaling of the number of machines in
Figure 4. When a few machines are used to schedule a large number
of jobs, resource contention is significant, and MRIS outperforms
the others by achieving nearly half the AWCT compared to Tetris.
As more machines are available to relieve resource contention, PQ-
WSVF is sufficient to schedule such jobs, whereas our algorithm is
unable to maximize resource usage when using the interval con-
struction. Figures 3 and 4 suggest that MRIS has a performance
advantage under more heavily loaded scenarios.

7.5.2 Queuing Delay. To illustrate the source of the performance
gains of MRIS, we plot the CDF of queuing delays for a selected
number of jobs in Figure 5. In Tetris, BF-EXEC, and PQ-WSJF,
nearly 60% of the scheduled jobs have zero queuing delay, sug-
gesting that many jobs that arrive are scheduled immediately in

0 100 101 102

�euing delay (Days)

0.00

0.25

0.50

0.75

1.00

CD
F MRIS-WSJF

CA-PQ-WSJF
PQ-WSJF
Tetris
BF-EXEC

Figure 5: Queuing delay CDF of selected algorithms with
𝑀 = 20 machines and 𝑁 = 64000 jobs.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of resource types

20

30

40

Av
er

ag
ew

ei
gh

te
d

co
m

pl
et

io
n

tim
e

MRIS-WSJF
CA-PQ-WSJF
PQ-WSJF

Tetris
BF-EXEC

Figure 6: Effect of the number of resource types on AWCT,
with𝑀 = 20 machines and 𝑁 = 64000 jobs.

those algorithms. However, scheduling in this manner results in
a sharp increase in the queuing delays for other jobs. This sug-
gests that there are instances in which jobs are not treated fairly,
as exemplified by Lemma 4.1. Observing MRIS, the queuing delay
CDF increases more gradually. CA-PQ has the worst queuing delay
because many jobs suffer from waiting until the last released job to
start processing.

7.5.3 Synthetic Resource Scaling. Although the Azure dataset con-
tains four distinct resource types, we investigate the scheduler
performance when we augment the dataset to include more re-
source types. To achieve this, we let D be a job dataset. Then, for
every new resource and for each job 𝑗 , we uniformly sample a job
𝑗 ′ ∼ D. 𝑗 ′’s demand for this new resource is set to 𝑗 ’s CPU demand.
In this environment, we see that the other algorithms suffer signifi-
cantly more than MRIS when the number of resources increases. For
instance, in Figure 6, as the number of resources is increased from 4
to 20, the AWCT of Tetris increases by 80%, whereas for MRIS, this
is only 17%. We attribute this to MRIS’s approach of better packing
jobs through knapsack job selection and WSJF sorting.

7.5.4 Exercising Patience. Following the ideas of Section 4 we gen-
erate a synthetic input on one machine and multiple resources,
where one job arrives at time zero that consumes 14 time units on
the machine, not permitting other jobs to be run. Then, shortly after,
nearly 2500 jobs arrive of random sizes and small, randomized job
demands. PQ, Tetris, and BF-EXEC all commit to the single large
job prematurely, whereas MRIS exercises patience and schedules
the smaller jobs first before committing to the single large job. The
schedule is shown in Figure 7. Since nearly 2500 jobs suffer a delay
of 14 time units, the AWCT of MRIS is nearly three times less than
that of the other schedulers. Due to space constraints, the resource
use over time is shown for the CPU resource.

ICPP ’24, August 12–15, 2024, Gotland, Sweden Donney Fan and Ben Liang

0 20 40 60 80
0.0

0.5

1.0
MRIS-WSVF

0 20 40 60 80
0.0

0.5

1.0
OnlinePQ-WSVF

0 20 40 60 80
0.0

0.5

1.0
Tetris

0 20 40 60 80
0.0

0.5

1.0
BF-EXEC

Time [arb. units]

Re
so

ur
ce

us
ag

e
[a

rb
.u

ni
ts

]

Figure 7: Schedules of algorithms on a specific synthetic input
of 𝑁 = 2500 jobs. Job’s resource and processing demands are
illustrated as non-contiguous rectangles. Rectangles with the
same color across schedulers represent the same job.

8 CONCLUSION
In this work, we proposed Multi-Resource Interval Schedul-
ing (MRIS), an online algorithm for scheduling jobs with multiple
resource demands on multiple machines without the power of
preemption. We studied the average weighted completion time, a
popular objective in scheduling literature for fixed time horizons.
To the best of our knowledge, our work is the first to study this
problem under multiple resource constraints and in an online set-
ting. We showed that MRIS is 8𝑅(1+𝜖)-competitive for minimizing
AWCT, and used trace-driven simulations to show that MRIS out-
performs state-of-the-art schedulers, especially when the system is
heavily loaded. As future work, one can be inspired by Bansal et
al.’s algorithm, which has a sublinear dependence on the number of
resources for the offline vector bin packing problem [1], to design
a better makespan scheduler. A scheduler that jointly maximizes
the total weight given a deadline can also be considered.

ACKNOWLEDGMENTS
This work was funded in part by the Department of National De-
fence under the IDEaS program.

REFERENCES
[1] Nikhil Bansal, Marek Eliáš, and Arindam Khan. 2016. Improved Approximation

for Vector Bin Packing. In Proceedings of the Twenty-Seventh Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA ’16). Society for Industrial and Applied
Mathematics, 1561–1579.

[2] Marin Bougeret, Pierre Francois Dutot, Klaus Jansen, Christina Otte, and Denis
Trystram. 2010. Approximation Algorithms for Multiple Strip Packing. In Ap-

proximation and Online Algorithms (Lecture Notes in Computer Science). Springer,
Berlin, Heidelberg, 37–48.

[3] Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and Robert I. Davis.
2017. On the Pitfalls of Resource Augmentation Factors and Utilization Bounds in
Real-Time Scheduling. In Proceedings of 29th Euromicro Conference on Real-Time

Systems (ECRTS 2017). 9:1–9:25.
[4] Mukoe Cheong, Hyunsung Lee, Ikjun Yeom, and Honguk Woo. 2019. SCARL:

Attentive Reinforcement Learning-Based Scheduling in a Multi-Resource Hetero-
geneous Cluster. IEEE Access 7 (2019), 153432–153444.

[5] Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. 2017.
Approximation and online algorithms for multidimensional bin packing: A survey.
Computer Science Review 24 (May 2017), 63–79.

[6] Leah Epstein and Rob van Stee. 2005. Optimal Online Algorithms for Multidi-
mensional Packing Problems. SIAM J. Comput. 35, 2 (Jan. 2005), 431–448.

[7] Kyle Fox and Madhukar Korupolu. 2013. Weighted Flowtime on Capacitated
Machines. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on

Discrete Algorithms. Society for Industrial and Applied Mathematics, 129–143.

[8] Michael R. Garey and Ronald L. Graham. 1975. Bounds for Multiprocessor
Scheduling with Resource Constraints. SIAM J. Comput. 4, 2 (June 1975), 187–
200.

[9] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types. In Proceedings of 8th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’11). 323–336.
[10] Ronald L. Graham. 1969. Bounds on Multiprocessing Timing Anomalies. SIAM J.

Appl. Math. 17, 2 (March 1969), 416–429.
[11] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and

Aditya Akella. 2014. Multi-resource packing for cluster schedulers. SIGCOMM

Comput. Commun. Rev. 44, 4 (Aug. 2014), 455–466.
[12] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E. Greeff, David

Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. 2020. Protean: VM Allocation Service at Scale. In Proceedings of 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI ’20).
845–861.

[13] Leslie A. Hall, David B. Shmoys, and Joel Wein. 1996. Scheduling to minimize
average completion time: off-line and on-line algorithms. In Proceedings of the

seventh annual ACM-SIAM symposium on Discrete algorithms (SODA ’96). Society
for Industrial and Applied Mathematics, USA, 142–151.

[14] Oscar H. Ibarra and Chul E. Kim. 1975. Fast Approximation Algorithms for the
Knapsack and Sum of Subset Problems. J. ACM 22, 4 (Oct. 1975), 463–468.

[15] Sungjin Im, Janardhan Kulkarni, Benjamin Moseley, and Kamesh Munagala. 2016.
A Competitive Flow Time Algorithm for Heterogeneous Clusters Under Polytope
Constraints. In Approximation, Randomization, and Combinatorial Optimization.

Algorithms and Techniques (APPROX/RANDOM 2016) (Leibniz International Pro-

ceedings in Informatics (LIPIcs), Vol. 60). 10:1–10:15.
[16] Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. 2017. Competitive

Algorithms from Competitive Equilibria: Non-Clairvoyant Scheduling under
Polyhedral Constraints. J. ACM 65, 1 (Dec. 2017), 3:1–3:33.

[17] Sungjin Im, Mina Naghshnejad, and Mukesh Singhal. 2016. Scheduling jobs with
non-uniform demands on multiple servers without interruption. In Proceedings

of The 35th Annual IEEE International Conference on Computer Communications

(INFOCOM 2016). 1–9.
[18] Bala Kalyanasundaram and Kirk Pruhs. 2000. Speed is as powerful as clairvoyance.

J. ACM 47, 4 (July 2000), 617–643.
[19] Eugene L. Lawler. 1977. Fast approximation algorithms for knapsack problems.

In Proceedings of 18th Annual Symposium on Foundations of Computer Science

(sfcs 1977). 206–213.
[20] Chang-Gun Lee, Hoosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seongsoo

Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. 1998. Analysis of
cache-related preemption delay in fixed-priority preemptive scheduling. IEEE
Trans. Comput. 47, 6 (June 1998), 700–713.

[21] MohammadJavad NoroozOliaee, Bechir Hamdaoui, Mohsen Guizani, and Mahdi
Ben Ghorbel. 2014. Online multi-resource scheduling for minimum task comple-
tion time in cloud servers. In Proceedings of 2014 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS). 375–379.
[22] David Pisinger. 1999. Linear Time Algorithms for Knapsack Problems with

Bounded Weights. Journal of Algorithms 33, 1 (Oct. 1999), 1–14.
[23] Konstantinos Psychas and Javad Ghaderi. 2017. On Non-Preemptive VM Schedul-

ing in the Cloud. Proc. ACMMeas. Anal. Comput. Syst. 1, 2 (Dec. 2017), 35:1–35:29.
[24] Konstantinos Psychas and Javad Ghaderi. 2018. Randomized Algorithms for

Scheduling Multi-Resource Jobs in the Cloud. IEEE/ACM Transactions on Net-

working 26, 5 (Oct. 2018), 2202–2215.
[25] Uwe Schwiegelshohn, Andrei Tchernykh, and Ramin Yahyapour. 2008. Online

scheduling in grids. In Proceedings of 2008 IEEE International Symposium on

Parallel and Distributed Processing. 1–10.
[26] John Turek, Uwe Schwiegelshohn, Joel L. Wolf, and Philip S. Yu. 1994. Scheduling

parallel tasks to minimize average response time. In Proceedings of the fifth annual

ACM-SIAM symposium on Discrete algorithms (SODA ’94). USA, 112–121.
[27] Wei Wang, Ben Liang, and Baochun Li. 2015. Multi-Resource Fair Allocation in

Heterogeneous Cloud Computing Systems. IEEE Transactions on Parallel and

Distributed Systems 26, 10 (Oct. 2015), 2822–2835.
[28] Gerhard J. Woeginger. 1997. There is no asymptotic PTAS for two-dimensional

vector packing. Inform. Process. Lett. 64, 6 (Dec. 1997), 293–297.
[29] Huanle Xu, Yang Liu, and Wing Cheong Lau. 2023. Multi Resource Schedul-

ing with Task Cloning in Heterogeneous Clusters. In Proceedings of the 51st

International Conference on Parallel Processing (ICPP ’22). 1–11.
[30] Bo Yin, Yu Cheng, Lin X. Cai, and Xianghui Cao. 2017. Online SLA-Aware Multi-

Resource Allocation for Deadline Sensitive Jobs in Edge-Clouds. In Proceedings

of 2017 IEEE Global Communications Conference (GLOBECOM 2017). 1–6.
[31] Rui Zhang, Kui Wu, Minming Li, and Jianping Wang. 2016. Online Resource

Scheduling Under Concave Pricing for Cloud Computing. IEEE Transactions on

Parallel and Distributed Systems 27, 4 (April 2016), 1131–1145.
[32] Zizhan Zheng and Ness B. Shroff. 2016. Online multi-resource allocation for

deadline sensitive jobs with partial values in the cloud. In The 35th Annual IEEE

International Conference on Computer Communications (INFOCOM 2016). 1–9.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Single Resource Online Scheduling
	2.2 Multi-Resource Online Scheduling

	3 Problem Definition
	4 Non-Competitiveness of Priority-Queue Algorithms
	5 Multi-Resource Interval Scheduling
	5.1 Knapsack Constraint Approximation
	5.2 Priority-Queue for Makespan
	5.3 MRIS Algorithm Description

	6 Competitive Analysis
	6.1 Knapsack Constraint Approximation
	6.2 Priority-Queue for Makespan Scheduling
	6.3 Competitive Ratio of MRIS
	6.4 Discussion

	7 Trace-Driven Evaluation
	7.1 Experimental Setup
	7.2 Comparison Benchmarks
	7.3 Sorting in MRIS
	7.4 Choice of Knapsack Algorithm
	7.5 Performance Comparison

	8 Conclusion
	Acknowledgments
	References

