
Distributed Minimax Fair Optimization
over Hierarchical Networks

Wen Xu∗, Juncheng Wang†, Ben Liang∗, Gary Boudreau‡, Hamza Sokun‡
∗University of Toronto, Canada, †Hong Kong Baptist University, Hong Kong, ‡Ericsson, Canada

ABSTRACT

In modern applications, the underlying computation and commu-
nication networks are often hierarchical, which is typified by the
three-layer client-edge-cloud system that has become prominent in
recent times. We study minimax fairness in distributed optimization
over such systems, to provide robust performance guarantee for the
worst-case mixture of loss functions. We propose HierMinimax,
a communication efficient distributed algorithm to solve the mini-
max optimization problem. We provide convergence analysis for
both convex and non-convex loss functions, leading to performance
bounds that enable tuning the tradeoff between the communica-
tion complexity and the optimization convergence rate. Our ex-
periments on classification problems with canonical datasets show
that HierMinimax substantially improves the fairness in learning
accuracy and reduces the communication overhead compared with
the current best alternatives.

CCS CONCEPTS

• Computing methodologies → Distributed algorithms; Ma-

chine learning; • Networks;

KEYWORDS

Minimax optimization, distributed learning, hierarchical networks

ACM Reference Format:

Wen Xu, Juncheng Wang, Ben Liang, Gary Boudreau, and Hamza Sokun.
2024. Distributed Minimax Fair Optimization over Hierarchical Networks.
In The 53rd International Conference on Parallel Processing (ICPP ’24), August

12–15, 2024, Gotland, Sweden. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3673038.3673137

1 INTRODUCTION

Our work is motivated by federated learning (FL) [23] as a prime
example of distributed optimization. In FL, multiple local clients
collaboratively train a machine learning (ML) model with the as-
sistance of a server. The standard objective in FL is to find a best
global model 𝒘 that minimizes a weighted sum of the local loss
functions at individual clients:

min
𝒘

∑︁
𝑛∈N

𝑞𝑛 𝑓𝑛 (𝒘), (1)

where N is the set of clients, 𝑓𝑛 (𝒘) is the local loss function at the
𝑛th client, and 𝑞𝑛 ≥ 0 is some given local weight. It is common to
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choose 𝑞𝑛 such that it is proportional to the amount of data at the
𝑛th client.

FL is typically considered in a two-layer client-server architec-
ture [14, 18, 38]. In edge computing, the clients are mobile or IoT
devices and the server can be either an edge server or a cloud
server [3]. Exemplary algorithms under this architecture include
Federated Averaging (FedAvg) [23] and Local Stochastic Gradient
Descent (Local-SGD) [34]. For each training round, each client
updates its local model via SGD from a common global model using
its local data, and then the server aggregates all the updated local
models to generate a new global model.

However, in many practical applications, the underlying com-
munication networks are multi-layer hierarchical. An example
is to perform FL as a cloud-based distributed service, where the
clients are small remote devices and the server is in some far
away cloud center [3]. Therefore, the communication between the
clients and the server must go through some intermediate edge
server. Such hierarchical communication architecture was ignored
in [3, 14, 18, 23, 34, 38]. In contrast, a three-layer client-edge-cloud FL
system was considered and an optimization algorithm termed Hi-
erFAVG was proposed in [21]. Furthermore, an extension to enable
multi-step client-edge model aggregation and quantization was
studied in [22].

A persistent challenge in FL and distributed optimization in gen-
eral is that the heterogeneity of local data distributions can signifi-
cantly harm the optimization performance [14, 18, 38]. Specifically,
the computed global model that solves (1) can perform poorly for
individual clients if the local data distributions differ significantly.
It can also perform poorly when the data ratios of clients in train-
ing do not match that of the unseen data in reality, e.g., when the
clients process different amounts of data during training due to
their differing processing capabilities. To remedy this fairness issue,
minimax optimization was proposed in [25] as a special case of
distributionally robust optimization [11, 30]. In minimax optimiza-
tion, the weight vector 𝒒 = [𝑞1, . . . , 𝑞𝑁 ] becomes another set of
optimization variables. This new optimization problem is given by

min
𝒘

max
𝒒∈Q

𝐹 (𝒘, 𝒒), where 𝐹 (𝒘, 𝒒) =
∑︁
𝑛∈N

𝑞𝑛 𝑓𝑛 (𝒘), (2)

and Q is a subset of the (𝑁 −1)−dimensional probability simplex.
The global model𝒘 that solves (2) is guaranteed to be robust against
heterogeneity of data distributions. In particular, when constraint
Q is inactive, the learned model𝒘 performs well even for the worst-
off client that has the least favorable local data distribution. The
Stochastic Agnostic Federated Learning (Stochastic-AFL) algo-
rithm [25] was proposed to solve the minimax problem (2). It was
later extended to accommodate multi-step local updates in Dis-
tributionally Robust Federated Averaging (DRFA) [10]. In these
methods, for each training round, both the global model𝒘 and the
weight vector 𝒒 are updated. However, these works are limited to
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the conventional two-layer client-server architecture and cannot
be applied to the client-edge-cloud network.

This motivates us to design a distributed algorithm to solve the
minimax optimization problem (2) over a multi-layer hierarchical
network. In particular, we are interest in a solution that has prov-
able performance guarantees. To achieve this objective, we must
address several challenges in multiple fronts: 1) The intermediate
edge servers have unique impacts on minimax optimization, such
as client-edge model aggregation, that has not been explored in
existing literature. 2) Minimax optimization requires joint consid-
eration of the mutual impacts of hierarchical model updates and
weight updates on algorithm convergence performance. 3) The
multi-step local model updates at the clients and multi-step client-
edge aggregations can lead to asymmetric synchronization gaps,
as each update of the weight vector can only be performed once
for multiple steps of model update and aggregation. In this context,
the main contributions of this paper are as follows:

• We formulate a constrained minimax optimization problem
over the client-edge-cloud architecture. The model param-
eters and the weight vector for edge areas are jointly op-
timized to achieve minimax fairness across all edge areas
under a general convex constraint. To the best of our knowl-
edge, distributed minimax fair optimization over multi-layer
hierarchical networks has not been considered before.

• We propose a distributed algorithm called HierMinimax,
which utilizes the client-edge-cloud architecture to reduce
the communication overhead via both multi-step local model
updates at the clients and multi-step client-edge aggregation.
We adopt a checkpoint mechanism, which enables periodic
updates of the weight vector for efficient communication.
Furthermore, HierMinimax allows partial participation of
edge areas, local model updates via local SGD, and most im-
portantly, flexibility of communication frequencies between
the clients and the edge servers, as well as between the edge
servers and the cloud server.

• We analyze the convergence of HierMinimax to show that
it provides performance guarantees for both convex and
non-convex loss functions. We explore the communication-
convergence trade-off enabled by Hierminimax, showing
how we can reduce the communication complexity with-
out overly degrading the convergence rate in distribution
minimax optimization. Specifically, for any 𝛼 ∈ [0, 1), we
can achieveO(𝑇 1−𝛼 ) edge-cloud communication complexity
with O( 1

𝑇 (1−𝛼 )/2 ) convergence rate for convex loss functions
and O(𝑇 1−𝛼 ) edge-cloud communication complexity with
O( 1

𝑇 (1−𝛼 )/4 ) convergence rate for non-convex loss functions,
where 𝑇 is the number of training time slots.

• For numerical evaluation, we experiment with standard clas-
sification datasets for both convex logistic regression and
non-convex neural network training. Our experimental re-
sults demonstrate that Hierminimax substantially improves
the worst-case learning performance and reduces the com-
munication overhead over the current best alternatives.

The rest of this paper is structured as follows. In Section 2, we
present the related work. In Section 3, we describe the systemmodel
of multi-layer hierarchical networks. We present HierMinimax in

Table 1: Summary of related works on distributed minimax

optimization (Hier.: hierarchical, c.c.: communication com-

plexity, c.r.: convergence rate).

Convex loss Non-convex loss
Reference Hier. c.c. c.r. c.c. c.r.
[25] ✗ O(𝑇 ) O( 1

𝑇 1/2 ) N/A N/A
[10] ✗ O(𝑇 3/4) O( 1

𝑇 3/8 ) O(𝑇 3/4) O( 1
𝑇 1/8 )

Ours ✓ O(𝑇 1−𝛼 ) O( 1
𝑇 (1−𝛼 )/2 ) O(𝑇 1−𝛼 ) O( 1

𝑇 (1−𝛼 )/4 )

Section 4 and its convergence analysis in Section 5. Numerical
experiments are provided in Section 6. We conclude the paper in
Section 7.

2 RELATEDWORK

We provide a literature review on hierarchical FL and minimax
optimization. The differences between existingworks on distributed
minimax optimization and our work are summarized in Table 1.

2.1 Hierarchical FL

The standard FL algorithms were designed for two-layer client-
server systems [14, 18, 38]. To take advantages of both the connec-
tivity to a large number of clients at the cloud and the availability
of low-latency communication at the edge, a three-layer client-
edge-cloud FL system was considered in [21, 22]. The HierFAVG
algorithm in [21] naturally extends FedAvg to multi-layer networks,
and the Hier-Local-QSGD algorithm in [22] further extends Hier-
FAVG with model quantization. A similar study in [5] considered
heterogeneous operating rates and showed the dependence of the
convergence on the average operating rate, the network topology,
and the number of iterations. A convergence bound of hierarchical
SGD over non-independent data was derived based on upward and
downward divergences in [36]. However, none of these works con-
sidered optimizing the model performance over the worst mixture
of the data distributions.

2.2 Minimax Optimization

We are interested in learning over multiple distributions via mini-
max optimization [13, 32] to achieve distributionally robust learn-
ing [11, 30]. Minimax optimization has been studied in the game
theory and optimization literature [1, 27, 35]. First-order meth-
ods for minimax optimization include Gradient Descent Ascent
(GDA) [9, 20], Extra-gradient (EG) [16, 24], and Optimistic Gradient
Descent Ascent (OGDA) [7]. With the advent and popularity of ML,
many ML problems are found to have the minimax structure, such
as GANs [12], online learning [31], and adversarial robust learn-
ing [33]. However, all of these minimax optimization algorithms
require centralized implementation.

The authors in [25] were the first to give the formulation of (2)
in the context of FL and proposed Stochastic-AFL, which is a sto-
chastic, distributed, and privacy-preserving version of GDA. More
recently, in [10], DRFA was proposed to further accommodate a
more general communication pattern of FL through periodic model
averaging and weight vector updating. Both [10] and [25] are only
applicable to conventional two-layer client-server networks. In this
work, we study minimax optimization over the client-edge-cloud
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Figure 1: System model of hierarchical networks.

architecture. In particular, HierMinimax differs from DRFA [10] in
several key aspects: 1)HierMinimax allows both flexible multi-step
local model updates and multi-step client-edge aggregation (see
Section 4), 2) HierMinimax is guided by theoretical analysis of
the convergence rate and communication complexity caused by
hierarchical update and aggregation (see Section 5), and 3) Hier-
Minimax achieves substantial empirical advantages overDRFA (see
Section 6).

3 MINIMAX OPTIMIZATION OVER

CLIENT-EDGE-CLOUD ARCHITECTURE

We consider a multi-layer hub-and-spoke-type network topology.
Since the three-layer client-edge-cloud network architecture is
common in practical systems, we use it as an representative example
as shown in Fig. 1. All edge servers can directly communicate with
the cloud server. The cloud server can indirectly communicate with
any client through an edge server.

Let N be the set of all clients, whose cardinality is |N | = 𝑁 . Let
E be the set of all edge servers, whose cardinality is |E | = 𝑁E . The
set of clients that is associated with edge server 𝑒 ∈ E is denoted
by N𝑒 . We define an edge area as an edge server and all clients
associated with it. For convenience of notation, we assume the edge
servers have the same number of clients, i.e., |N𝑒 | = 𝑁0, ∀𝑒 ∈ E.
Hence, we have 𝑁 = 𝑁0𝑁E . Our work can be easily generalized
to the case where different edge servers have different numbers of
clients.

The clients, edge servers, and cloud server collaborate to compute
a global model 𝒘 . We assume the clients within each edge area
𝑒 ∈ E share the same local loss function, denoted by 𝑓𝑒 (𝑤). In the
FL example, this means that the data samples of clients in each edge
area are generated from the same distribution [14, 18, 38]. This is
without loss of generality, since if there are multiple distributions
in an edge area, we can group clients of the same distribution
and the edge server as a virtual edge area. Our goal is to jointly
optimize 𝒘 and the edge weights, denoted by 𝒑 = [𝑝1, . . . , 𝑝𝑁E ],
by minimizing a worst-case global loss, i.e., for the worst mixture
of local loss functions (e.g., data distributions in FL) at the edge.
Thus, problem (2) takes the following new form for a three-layer
client-edge-cloud network:

min
𝒘∈W

max
𝒑∈P

𝐹 (𝒘,𝒑), where 𝐹 (𝒘,𝒑) =
∑︁
𝑒∈E

𝑝𝑒 𝑓𝑒 (𝒘), (3)

Algorithm 1Hierarchical DistributedMinimaxOptimization
(HierMinimax)

1: Cloud initializes𝒘 (0) and 𝒑 (0) = [1/𝑁E , . . . , 1/𝑁E ].
2: for each round 𝑘 = 0, . . . , 𝐾 − 1 do

// Phase 1
3: Cloud samples edge servers E (𝑘 ) ⊆ E by 𝒑 (𝑘 ) .
4: Cloud samples (𝑐1, 𝑐2) uniformly from [𝜏1] × [𝜏2].
5: Cloud broadcasts𝒘 (𝑘 ) and (𝑐1, 𝑐2) to E (𝑘 ) .
6: for each edge server 𝑒 ∈ E (𝑘 )

do

7: 𝒘 (𝑘,𝜏2 )
𝑒 ,𝒘 (𝑘,𝑐2,𝑐1 )

𝑒 =ModelUpdate(𝒘 (𝑘 ) , 𝑐1, 𝑐2).
8: Cloud aggregates the global model via (5).
9: Cloud computes the checkpoint model via (6).

// Phase 2
10: Cloud samples edges U (𝑘 ) ⊆ E uniformly.
11: Cloud broadcasts𝒘 (𝑘,𝑐2,𝑐1 ) toU (𝑘 ) .
12: for each edge server 𝑒 ∈ U (𝑘 )

do

13: 𝑓𝑒 (𝒘 (𝑘,𝑐2,𝑐1 ) ) = LossEstimation(𝒘 (𝑘,𝑐2,𝑐1 ) ).
14: Cloud updates weight vector via (7).

W ⊆ R𝑑 , andP ⊆ Δ𝑁E−1 withΔ𝑁E−1 being the (𝑁E−1)-dimensional
probability simplex. We allow both W and P to be any compact
convex set.1

A naive approach to solve (3) is to directly adopt Stochastic-
AFL as follows. For each training round, the cloud server broadcasts
the current global model to all the clients through the edge servers.
Each client updates the model via single-step local SGD and sends
it through an edge server to the cloud server for global aggregation.
The edge weights are then updated by gradient ascent utilizing the
loss estimation of the global model among the edge areas. However,
the communication overhead of this approach is high, as communi-
cation between the edge areas and the cloud server is required per
training round of both the model update and the weight update.

Ideally, a communication-efficient algorithm should allow multi-
step local model updates at the clients and multi-step client-edge
aggregations per training round. However, this will require a way
to evenly sample the local loss values between the aggregation
instances over the entire training process, which is needed to update
the edge weights. We follow this idea and propose HierMinimax,
which we will provide provable performance guarantees.

4 HIERARCHICAL DISTRIBUTED MINIMAX

ALGORITHM

The HierMinimax algorithm is carried out over 𝐾 training rounds.
Each training round corresponds to one update of the global model
parameters𝒘 and the edge weights 𝒑 by the cloud server. In each
training round, 𝜏2 client-edge model aggregations are performed.
Each client-edge aggregation in turn is performed after 𝜏1 local
SGD steps at the clients. Thus, the total number of training time
slots is 𝑇 = 𝐾𝜏1𝜏2.

1Note that if P = Δ𝑁E −1 , the optimization over 𝒑 is essentially unconstrained and
the optimal minimax solution maximizes performance for the worst-off edge area that
has the least favorable loss function. Our formulation here is more general, where P
may represent, e.g., prior knowledge or parameter regularization.
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Figure 2: One training round for the updates of model parameters and the weight vector for HierMinimax.

We next discuss the detailed design of HierMinimax, while its
formal specification is given in Algorithm 1. As shown in Fig. 2, each
training round of HierMinimax contains two phases. In Phase 1,
the cloud server updates the global model parameters 𝒘 after 𝜏2
client-edge model aggregations, which corresponds to 𝜏1𝜏2 local
SGD steps at the clients. In this phase, the algorithm also obtains a
random checkpoint of an intermediate model. In Phase 2, the cloud
server updates the edge weights 𝒑 based on the checkpoint model
generated in Phase 1.

4.1 Phase 1: Model Parameter Update

In Phase 1 of each training round 𝑘 , the cloud server first samples
𝑚E edge servers, denoted by a set E (𝑘 ) , based on the probability
defined by the edge weights 𝒑 (𝑘 ) of the current round. The cloud
server also samples a checkpoint index (𝑐1, 𝑐2) from [𝜏1] × [𝜏2] uni-
formly at random. The cloud server then broadcasts the current
global model𝒘 (𝑘 ) and the checkpoint index (𝑐1, 𝑐2) to each sampled
edge server. Each sampled edge server 𝑒 ∈ E (𝑘 ) runs aModelUp-
date procedure based on𝒘 (𝑘 ) and (𝑐1, 𝑐2) received from the cloud.
The ModelUpdate procedure contains two parts.

Part (a): Edge Model Update. Each edge server 𝑒 ∈ E (𝑘 ) per-
forms 𝜏2 client-edge model aggregations. At the (𝑡2 + 1)-th client-
edge aggregation, each edge server 𝑒 first broadcasts the model
𝒘 (𝑘,𝑡2 )
𝑒 , which is the model at the edge server 𝑒 after 𝑡2 client-edge

aggregations in training round 𝑘 , to all clients N𝑒 associated with
the edge server. Each client 𝑛 ∈ N𝑒 then performs 𝜏1 steps of local
SGD starting from𝒘 (𝑘,𝑡2 )

𝑒 , i.e., at each step 𝑡1 ∈ {0, . . . , 𝜏1−1}, each
client 𝑛 performs the following SGD update:

𝒘 (𝑘,𝑡2,𝑡1+1)
𝑛 = ΠW (𝒘 (𝑘,𝑡2,𝑡1 )

𝑛 − 𝜂𝑤∇𝑤 𝑓𝑛 (𝒘 (𝑘,𝑡2,𝑡1 )
𝑛 ; 𝜉 (𝑡1 )𝑛 )), (4)

where𝒘 (𝑘,𝑡2,𝑡1 )
𝑛 is the local model after 𝑡1 local model update and 𝑡2

client-edge aggregation in 𝑘-th training round, 𝜂𝑤 is the learning
rate on the model update, 𝜉 (𝑡1 )𝑛 is a mini-batch training examples
sampled by client 𝑛, and ΠW (·) is the projection onto setW. After
finishing 𝜏1 steps of local SGD in (4), each client 𝑛 ∈ N𝑒 sends
back𝒘 (𝑘,𝑡2,𝜏1 )

𝑛 to the edge server 𝑒 ∈ E (𝑘 ) . Finally, each edge server
𝑒 ∈ E (𝑘 ) performs client-edge model aggregation via 𝒘 (𝑘,𝑡2+1)

𝑒 =
1
𝑁0

∑
𝑛∈N𝑒

𝒘 (𝑘,𝑡2,𝜏1 )
𝑛 .

Part (b): Checkpoint Model Update. Each edge server 𝑒 ∈
E (𝑘 ) obtains the checkpoint index (𝑐1, 𝑐2) from the cloud server. It
broadcasts 𝑐1 to its clients N𝑒 at the beginning of the 𝑐2-th step of
local aggregation. Then, when each client 𝑛 ∈ N𝑒 sends back its
updated model𝒘 (𝑘,𝑡2,𝜏1 )

𝑛 to edge server 𝑒 ∈ E (𝑘 ) , it also sends along
the checkpoint model𝒘 (𝑘,𝑐2,𝑐1 )

𝑛 . Each edge server 𝑒 ∈ E (𝑘 ) updates
its aggregate checkpoint model via𝒘 (𝑘,𝑐2,𝑐1 )

𝑒 = 1
𝑁0

∑
𝑛∈N𝑒

𝒘 (𝑘,𝑐2,𝑐1 )
𝑛 .

The checkpointmodel at the edge server will be used to approximate
the evolution of the local models for updating 𝒑 in Phase 2 to
guarantee convergence.

After parts (a) and (b) of the ModelUpdate procedure, each
sampled edge server 𝑒 ∈ E (𝑘 ) sends 𝒘 (𝑘,𝜏2 )

𝑒 and 𝒘 (𝑘,𝑐2,𝑐1 )
𝑒 to the

cloud server. The cloud server then performs edge-cloud model
aggregation to update the global model via

𝒘 (𝑘+1) =
1
𝑚E

∑︁
𝑒∈E (𝑘 )

𝒘 (𝑘,𝜏2 )
𝑒 . (5)

The cloud server also updates a new checkpoint model via

𝒘 (𝑘,𝑐2,𝑐1 ) =
1
𝑚E

∑︁
𝑒∈E (𝑘 )

𝒘 (𝑘,𝑐2,𝑐1 )
𝑒 . (6)

4.2 Phase 2: Edge Weight Update

In each training round 𝑘 , the cloud server uniformly samples a set of
edge serversU (𝑘 ) of size𝑚E and broadcasts the checkpoint model
𝒘 (𝑘,𝑐2,𝑐1 ) to these edge servers. Note that U (𝑘 ) can be different
from E (𝑘 ) in Phase 1. For each sampled edge server 𝑒 ∈ U (𝑘 ) , it
runs the LossEstimation procedure. Specifically, each sampled
edge server 𝑒 ∈ U (𝑘 ) broadcasts the checkpoint model𝒘 (𝑘,𝑐2,𝑐1 ) to
its clients N𝑒 . Each client 𝑛 ∈ N𝑒 calculates 𝑓𝑛 (𝒘 (𝑘,𝑐2,𝑐1 ) ; 𝜉 (𝑘 )𝑛 ), i.e.,
the loss on the checkpoint model via a mini-batch of samples 𝜉 (𝑘 )𝑛 .
After receiving the loss calculated from its clients, each edge server
𝑒 ∈ U (𝑘 ) estimates the loss of the checkpoint model over its data
distribution via 𝑓𝑒 (𝒘 (𝑘,𝑐2,𝑐1 ) ) = 1

𝑁0

∑
𝑛∈N𝑒

𝑓𝑛 (𝒘 (𝑘,𝑐2,𝑐1 ) ; 𝜉 (𝑘 )𝑛 ).
Each sampled edge server 𝑒 ∈ U (𝑘 ) then sends its estimated

loss to the cloud server. After receiving the loss estimations from
all the sampled edge servers, the cloud server constructs a vector
𝒗 = [𝑣1, . . . , 𝑣𝑁E ] where 𝑣𝑒 =

𝑁E
𝑚E

𝑓𝑒 (𝒘 (𝑘,𝑐2,𝑐1 ) ) if 𝑒 ∈ U (𝑘 ) , else
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𝑣𝑒 = 0. Recall that the minimax optimization objective in (3) is
𝐹 (𝒘,𝒑) = ∑

𝑒∈E 𝑝𝑒 𝑓𝑒 (𝒘). The 𝑒-th coordinate of its gradient with
respect to 𝒑 is [∇𝒑𝐹 (𝒘,𝒑)]𝑒 = 𝑓𝑒 (𝒘),∀𝒘 ∈ W. The expectation
of the 𝑒-th coordinate of 𝒗 is E[𝑣𝑒 ] =

𝑚E
𝑁E

𝑁E
𝑚E

𝑓𝑒 (𝒘 (𝑘,𝑐2,𝑐1 ) ) + (1−
𝑚E
𝑁E

) × 0 = 𝑓𝑒 (𝒘 (𝑘,𝑐2,𝑐1 ) ). Hence, the constructed 𝒗 is an unbiased
estimator of ∇𝒑𝐹 (𝒘 (𝑘,𝑐2,𝑐1 ) ,𝒑). The cloud server then updates the
edge weights via projected gradient ascent, given by

𝒑 (𝑘+1) = ΠP (𝒑 (𝑘 ) + 𝜂𝑝𝜏1𝜏2𝒗), (7)

where 𝜂𝑝 is the learning rate on 𝒑 and ΠP (·) is the projection onto
set P.

5 CONVERGENCE ANALYSIS

In this section, we show that HierMinimax provides guaranteed
convergence performance for both convex and non-convex local
loss functions. We note that new analysis techniques are required
to capture the three-layer client-edge-cloud architecture, as well
as multi-step local SGD updates and multi-step client-edge aggre-
gations. All proof details are given in the appendix with proof
prerequisites given in Appendix A.

We make the following assumptions, which are common in ex-
isting works on distributed minimax optimization [10, 20, 25].

Assumption 1 (Bounded Domains). The diameters of the com-

pact convex sets W and P are 𝑅W and 𝑅P , respectively.

Assumption 2 (𝐿-smoothness). There exists some positive 𝐿 such

that ∥∇𝑓𝑛 (𝒘1)−∇𝑓𝑛 (𝒘2)∥ ≤ 𝐿∥𝒘1−𝒘2∥,∀𝒘1,𝒘2 ∈ W, 𝑛 ∈ N and

∥∇𝐹 (𝒘1,𝒑1) − ∇𝐹 (𝒘2,𝒑2)∥ ≤ 𝐿∥(𝒘1,𝒑1) − (𝒘2,𝒑2)∥,∀(𝒘1,𝒑1),
(𝒘2,𝒑2) ∈ (W,P).

Assumption 3 (Bounded Gradients). There exist some positive

𝐺𝑤 and 𝐺𝑝 such that ∥∇𝒘 𝑓𝑛 (𝒘)∥2 ≤ 𝐺𝑤 and ∥∇𝒑𝐹 (𝒘,𝒑)∥2 ≤ 𝐺𝑝 .

Assumption 4 (Bounded Stochastic Gradient Variance).
There exist some positive𝜎2

𝑤 and𝜎2
𝑝 such thatE[∥∇𝑓𝑛 (𝒘 ; 𝜉)−∇𝑓𝑛 (𝒘)∥2

2]
≤ 𝜎2

𝑤 ,∀𝑛 ∈ N ,𝒘 ∈ W, and E[∥∇𝒑𝐹 (𝒘,𝒑; 𝜉) − ∇𝒑𝐹 (𝒘,𝒑)∥2
2] ≤

𝜎2
𝑝 ,∀𝒘 ∈ W and 𝒑 ∈ P.

Assumption 5 (BoundedGradientDissimilarity). Let∇𝑓𝑒 (𝒘)
be the gradient of the edge loss function 𝑓𝑒 (𝒘) for any 𝑒 ∈ E. There
exists some positive Ψ such that the gradient dissimilarity is bounded

by sup𝒘∈W,𝒑∈P,𝑒∈E
∑
𝑗∈E 𝑝 𝑗 ∥∇𝑓𝑒 (𝒘) − ∇𝑓𝑗 (𝒘)∥2 ≤ Ψ.

5.1 Convex Loss

We first analyze the performance of HierMinimax when the local
loss functions are convex in𝒘 , i.e., 𝑓𝑛 (𝒘1) ≥ 𝑓𝑛 (𝒘2)+∇𝑓𝑛 (𝒘2)𝑇 (𝒘1−
𝒘2),∀𝒘1,𝒘2 ∈ W,∀𝑛 ∈ N . Then the global loss function 𝐹 (𝒘,𝒑) is
convex in𝒘 . Since 𝐹 (𝒘,𝒑) is also linear in 𝒑, it is a convex-concave
function. The standard way to measure the optimality of a solution
(�̂�, �̂�) for constrained convex-concave optimization is the duality
gap, given by

max
𝒑∈P

𝐹 (�̂�,𝒑) − min
𝒘∈W

𝐹 (𝒘, �̂�), (8)

where �̂� = 1
𝐾

∑𝐾−1
𝑘=0 𝒑 (𝑘 ) is the time-averaged edge weights, �̂� =

1
𝑚𝑇

∑𝑇−1
𝑡=0

∑
𝑛∈𝑆 (𝑡 ) 𝒘

(𝑡 )
𝑛 is the time-averaged model parameters, and

𝑆 (𝑡 ) is the set of sampled clients at iteration 𝑡 , whose cardinality

is𝑚 =𝑚E𝑁0. Let (𝒘∗,𝒑∗) be a minimax point, in the sense that a
Nash equilibrium is established [26]. The duality gap of (𝒘∗,𝒑∗)
is zero as max𝒑∈P 𝐹 (𝒘∗,𝒑) = 𝐹 (𝒘∗,𝒑∗) = min𝒘∈W 𝐹 (𝒘,𝒑∗) for
convex-concave functions by the von Neumann minimax theo-
rem [35]. Hence, the lower the duality gap is, the better the solution
(�̂�, �̂�) is, as an approximation of a Nash equilibrium.

We require a key lemma in our convergence analysis which
bounds the squared distance between any local model𝒘 (𝑡 )

𝑛 and the
virtual global model𝒘 (𝑡 ) = 1

𝑚

∑
𝑛∈𝑆 (𝑡 ) 𝒘

(𝑡 )
𝑛 .

Lemma 1 (Bounded Sqared Model Divergence). For Algo-
rithm 1 with convex loss, assuming 1−20𝜂2

𝑤𝐿
2𝜏2

1 (1+𝜏
2
2 ) ≥ 1

2 , we
have

1
𝑚𝑇

𝑇−1∑︁
𝑡=0

∑︁
𝑛∈𝑆 (𝑡 )

E
[𝒘 (𝑡 ) −𝒘 (𝑡 )

𝑛

2]
≤ 20𝜂2

𝑤𝜏
2
1
(𝑚 + 1
𝑚

𝜎2
𝑤 + Ψ

)
+ 20𝜂2

𝑤𝜏
2
1𝜏

2
2
(𝑚E + 1

𝑁0
𝜎2
𝑤 + Ψ

)
.

Proof. See Appendix B. □

Leveraging Lemma 1, we have the following theorem.

Theorem 1. The duality gap achieved byHierMinimax for convex

loss is upper bounded by

E
[

max
𝒑∈P

𝐹 (�̂�,𝒑) − min
𝒘∈W

𝐹 (𝒘, �̂�)
]

≤
𝑅2
P

2𝜂𝑝𝑇
+
𝜂𝑝𝜏1𝜏2

2
𝐺2
𝑝 +

𝜂𝑝𝜏1𝜏2

2𝑚
𝜎2
𝑝︸                                   ︷︷                                   ︸

maximization gap

+
𝑁E𝑅2

W
2𝜂𝑤𝑇

+ 𝜂𝑤𝑁E
2

𝐺2
𝑤 + 𝜂𝑤

2𝑁0
𝜎2
𝑤︸                                   ︷︷                                   ︸

minimization gap

+ 10𝐿𝑁E𝜂
2
𝑤𝜏

2
1
(𝑚 + 1
𝑚

𝜎2
𝑤 + Ψ

)︸                              ︷︷                              ︸
client-edge aggregation

+ 10𝐿𝑁E𝜂
2
𝑤𝜏

2
1𝜏

2
2
(𝑚E + 1

𝑁0
𝜎2
𝑤 + Ψ

)
︸                                    ︷︷                                    ︸

edge-cloud aggregation

.

Proof. We require the following two lemmas: Lemma 3 bounds
the update of model𝒘 and Lemma 4 bounds the update on weight
𝒑. The proof details are given in Appendix C. □

Theorem 1 provides a means to tune the tradeoff between the
communication complexity and the convergence rate. Suppose
we set 𝜏1 and 𝜏2 such that 𝜏1𝜏2 ∈ Θ(𝑇𝛼 ) for any 𝛼 ∈ [0, 1). The
communication complexity between the edge and cloud servers is
Θ(𝑇 1−𝛼 ). Let 𝜂𝑝 = Θ( 1

𝑇 (1+𝛼 )/2 ), and let 𝜂𝑤 = Θ( 1
𝑇 1−2𝛼 ) if 𝛼 ∈ (0, 1

4 )
and 𝜂𝑤 = Θ( 1

𝑇 1/2 ) if 𝛼 ∈ [ 1
4 , 1). From Theorem 1, the convergence

rate of HierMinimax is O( 1
𝑇 (1−𝛼 )/2 ). Note that 𝛼 is a tunable value.

As 𝛼 increases, the communication complexity O(𝑇 1−𝛼 ) decreases
but the convergence rate O( 1

𝑇 (1−𝛼 )/2 ) becomes worse, i.e., we can
trade convergence rate to reduce communication complexity.

One extreme case is to let 𝜏1 = 𝜏2 = 1. Then, the communication
complexity is O(𝑇 ) and the convergence rate is O( 1

𝑇 1/2 ). This re-
covers the same scaling in 𝑇 for Stochastic-AFL in [25]. Another
interesting and more general case is 𝜏2 = 1. When substituting this
into Theorem 1, we recover a duality gap bound that scales in 𝑇
and 𝜏1 in the same way as DRFA in [10]. We further note that Hier-
Minimax allows any choice from a wider range of trade-off points
beyond these special cases.
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5.2 Non-convex Loss

The loss functions of many modern ML applications such as neural
networks training are non-convex. A Nash equilibrium may not
exist in this setting and the duality gap is no longer a meaningful
measure of optimality [20]. We first define Φ :W → R such that
Φ(𝒘) = max𝒑∈P 𝐹 (𝒘,𝒑). Hence, our optimization formulation (3)
is equivalent to min𝒘∈W Φ(𝒘). Since for any given𝒘 ∈ W, 𝐹 (𝒘, ·)
is linear in 𝒑, Φ(𝒘) can be computed efficiently. However, since Φ
itself is non-convex in 𝒘 , the problem of finding the global mini-
mum of Φ is still in general NP-hard. Therefore, in the non-convex
optimization literature, the stationary point is commonly used for
measuring the optimality of the solutions [4]. However, the function
Φ is not necessarily differentiable, making it improper to directly
use the gradient ∇Φ.

We first follow the approach in [8, 20] to define a Moreau enve-
lope to facilitate our convergence analysis. The 𝜆-Moreau envelope
of a function Φ with a positive parameter 𝜆 is

Φ𝜆 (𝒘) = min
𝒙∈W

{
Φ(𝒙) + (1/2𝜆)∥𝒙 −𝒘 ∥2} . (9)

We choose 𝜆 = 1/2𝐿 such that Φ1/2𝐿 (·) is differentiable [20, Lemma
3.6]. Then the stationarity of the function Φ can be approximately
measured by ∥∇Φ1/2𝐿 (·)∥.

We observe that the analysis methods in [8, 20, 29] are for algo-
rithms solving minimax optimization of nonconvex-concave objec-
tives with the same updated frequencies on both sets of optimiza-
tion variables. Therefore, they are not directly applicable to the
analysis of HierMinimax, as the edge weights are updated for one
time after both multi-step local client model updates and multi-step
client-edge aggregations are performed. As part of the new analy-
sis required to bound the performance of HierMinimax, we first
present the following lemma to bound the distance between any lo-
cal model𝒘 (𝑡 )

𝑛 and the virtual global model𝒘 (𝑡 ) = 1
𝑚

∑
𝑛∈𝑆 (𝑡 ) 𝒘

(𝑡 )
𝑛 .

Lemma 2 (Bounded Divergence of Model). For Algorithm 1

with non-convex loss, assuming 1 − 2𝜂𝑤𝐿𝜏1 (1 + 𝜏2) ≥ 1
2 , we have

1
𝑚𝑇

𝑇−1∑︁
𝑡=0

1
𝑚

∑︁
𝑛∈𝑆 (𝑡 )

E
[𝒘 (𝑡 ) −𝒘 (𝑡 )

𝑛

]
≤ 2𝜂𝑤𝜏1

(𝑚 + 1
𝑚

𝜎𝑤 +
√
Ψ
)
+ 2𝜂𝑤𝜏1𝜏2

(𝑚E + 1
𝑁0

𝜎𝑤 +
√
Ψ
)
. (10)

Proof. The proof follows similar steps as the proof of Lemma 1,
and it is omitted due to space constraint. The difference is that we
bound E[∥𝒘 (𝑡 )−𝒘 (𝑡 )

𝑛 ∥] instead of E[∥𝒘 (𝑡 )−𝒘 (𝑡 )
𝑛 ∥2] in Lemma 1. □

Leveraging Lemma 2, we have the following theorem.

Theorem 2. The time-averaged expectation of the squared norm

of the (1/2𝐿)-Moreau envelope of Φ, achieved by HierMinimax for

non-convex loss, is upper bounded by

1
𝑇

𝑇−1∑︁
𝑡=0
E
[∇Φ1/2𝐿 (𝒘 (𝑡 ) )

2]
≤

4Φ1/2𝐿 (𝒘 (0) )
𝜂𝑤𝑁E𝑇

+ 16𝐿
√
𝐾𝜂𝑤𝜏1𝜏2𝐺𝑤

√︃
𝐺2
𝑤 + 𝜎2

𝑤

+ 4𝐿
𝑅2
P√

𝐾𝜂𝑝𝜏1𝜏2
+ 8𝜂𝑝𝜏1𝜏2𝐿(𝐺2

𝑝 +
𝜎2
𝑝

𝑚
)

+ 4𝜂𝑤
𝑁E

(𝐺2
𝑤+

𝜎2
𝑤

𝑚
) + 8𝜂𝑤𝜏1𝑅W𝐿2

𝑁E
(𝑚 + 1
𝑚

𝜎𝑤 +
√
Ψ)

+ 8𝜂𝑤𝜏1𝜏2𝑅W𝐿2

𝑁E
(𝑚E + 1

𝑁0
𝜎𝑤 +

√
Ψ). (11)

Proof. The proof consists of the following key steps. We first
derive a bound for the update of𝒘 (𝑡+1) with respect to Φ1/2𝐿 and
the LHS of (10) in Lemma 2. Then we apply Lemma 4 to bound one
update of 𝒑 in the proof of Theorem 1. Finally, we use Lemma 2
and the block technique in general non-convex-concave optimiza-
tion [20], which controls the gap between 𝒑 and its optimal value
at each 𝑡 , to complete the proof. Further details are omitted due to
space constraint. □

Similarly to the convex case, Theorem 2 provides a means to
tune the tradeoff between the communication complexity and the
convergence rate. Let 𝜏1𝜏2 ∈ Θ(𝑇𝛼 ) for any 𝛼 ∈ [0, 1). The commu-
nication complexity between the edge and cloud servers isΘ(𝑇 1−𝛼 ).
Let 𝜂𝑝 = Θ( 1

𝑇 (1+3𝛼 )/4 ) and 𝜂𝑤 = Θ( 1
𝑇 (3+𝛼 )/4 ), the convergence

rate is O( 1
𝑇 (1−𝛼 )/4 ). As 𝛼 increases, the communication complexity

O(𝑇 1−𝛼 ) decreases but the convergence rate O( 1
𝑇 (1−𝛼 )/4 ) becomes

worse.
For the special case 𝜏1 = 𝜏2 = 1, HierMinimax has communica-

tion complexity O(𝑇 ) and convergence rate O( 1
𝑇 1/4 ). We note that

this is the same as the best possible convergence rate for centralized
minimax optimization with nonconvex loss in [20]. HierMinimax
can achieve this convergence rate while incurring maximum com-
munication complexity, but it can also be tuned to reduce its con-
vergence speed in exchange for higher communication efficiency.
For the other special case 𝜏2 = 1, it is easy to check from Theorem 2
that HierMinimax recovers a Moreau envelope bound that scales
in 𝑇 and 𝜏1 in the same way as DRFA in [10].

6 NUMERICAL EXPERIMENTS

In addition to deriving the communication complexity and con-
vergence scaling results shown in the previous section, we further
conduct experiments to study the numerical performance of Hi-
erMinimax. We use distributed machine learning as an example
application. Our experiments are conducted via PyTorch version
2.0.1 [28].

We consider the following benchmarks for performance compar-
ison:

• FedAvg [23]. This is the standard method for FL. It does
not use edge servers. It solves the minimization problem (1)
via local SGD with multi-step local model update in each
training round.

• Stochastic-AFL [25]. See Section 3 for details. This method
does not use edge servers. It solves the minimax problem (3)
by single-step local model update in each training round.

• DRFA [10]. This method is similar to Stochastic-AFL, ex-
cept that it solves the minimax problem (3) by multi-step
local model update in each training round.

• HierFAVG [21]. Thismethod uses the same three-layer client-
edge-cloud architecture as HierMinimax but solves the min-
imization problem (1).
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Figure 3: Average and worst test accuracies with convex loss

functions (for EMNIST-Digits).

Figure 4: Average and worst test accuracies with non-convex

loss functions (for Fashion-MNIST).

For all methods with multi-step model updates, we set 𝜏1 = 2.
Furthermore, for methods utilizing hierarchical architectures, we
set 𝜏2 = 2, i.e., 𝜏1 = 𝜏2 = 2 for both HierFAVG and HierMinimax,
so that both models have the same amount of model updates.

6.1 Convex Loss Functions

We consider multinomial logistic regression as the model and cross-
entropy loss as the loss function. They are applied to the image
classification dataset EMNIST-Digits [6], which contains 10 classes
of hand-written digits. We set 𝑁E = 10, 𝑁0 = 3, 𝑚E = 5, W =

R7850, and P = Δ9. To create heterogeneous data distributions, we
assign one distinct class of training data to the clients of each edge
area. We use SGD of learning rate 𝜂𝑤 = 0.001 with batch size 1 for
each local model update and learning rate of 𝜂𝑝 = 0.001 for the
weight vector update.

Fig. 3 shows a comparison of the average test accuracy and worst
test accuracy among the clients. Clearly, the three methods that
solve the minimax problem (3) provide much better worst-case
performance, while paying only a small price on the average perfor-
mance. Furthermore, HierMinimax substantially outperforms the
two-layer minimax methods. Specifically, to reach 80% worst accu-
racy, HierMinimax takes only 8200 communication rounds, com-
pared with 16652 rounds for Stochastic-AFL and 11727 rounds for
DRFA, corresponding to overhead reduction of 51% and 30%, respec-
tively. HierMinimax also substantially outperforms the three-layer
minimization method HierFAVG with communication overhead
reduction of 55% from 18228 rounds. We further note that FedAvg
does not reach 80% worst accuracy even after 20000 communication
rounds.

6.2 Non-convex Loss Functions

For non-convex loss, we consider a two hidden-layer fully-connected
neural network, with 300 and 100 neurons in the hidden-layers,
ReLU as the activation function, and cross-entropy loss as the loss
function. It is applied to perform amore difficult image classification

Table 2: Comparison of HierFAVG and HierMinimax.

Datasets Methods Average Worst Variance
EMNIST-Digits [6] HierFAVG 0.9070 0.8035 21.0504

HierMinimax0.8999 0.8348 5.5657
Fashion-MNIST [37] HierFAVG 0.8072 0.4829 206.6945

HierMinimax0.7631 0.6051 24.7095
MNIST [17] HierFAVG 0.8703 0.7572 30.9331

HierMinimax0.8501 0.7818 20.2926
Adult [2] HierFAVG 0.8180 0.6453 76.2957

HierMinimax0.8123 0.7323 16.3589
Synthetic [19] HierFAVG 0.7539 0.2102 732.6033

HierMinimax0.7250 0.2896 478.8593

task on Fashion-MNIST [37], which contains 10 classes of clothes.
We set 𝑁E = 10, 𝑁0 = 3,𝑚E = 2, W = R266610, and P = Δ9. To
create heterogeneous data distributions, we adopt a more control-
lable way as in [15]: for 𝑠% similarity we allocate to each edge area
𝑠% i.i.d. data and the remaining (100 − 𝑠)% by sorting according
to label. Here we present the case 𝑠 = 50. We use SGD of learning
rate 𝜂𝑤 = 0.001 with batch size 8 for each local model update and
learning rate of 𝜂𝑝 = 0.0001 for the weight vector update.

Fig. 4 shows a comparison of the average test accuracy and worst
test accuracy among the clients. Again, the three methods that solve
the minimax problem (3) provide substantial improvements on the
worst-case performance, compared with their counterparts solving
the minimization problem (1), while maintaining similar average
performance. HierMinimax again substantially outperforms the
two-layer minimax methods and three-layer minimization meth-
ods. Specifically, to reach 50% worst accuracy, HierMinimax takes
21576 communication rounds, which is a 52% reduction from the
45201 communication rounds needed by Stochastic-AFL, a 23%
reduction from the 28087 communication rounds by DRFA, and a
41% reduction from the 36445 communication rounds byHierFAVG.
We further note that FedAvg does not reach 50% worst accuracy
even after 50000 communication rounds.

6.3 Minimax Fairness and Variance

We further investigate the fairness of HierMinimax in terms of
test accuracies achieved by different edge areas. In addition to
the average and worst test accuracy discussed earlier, we further
compare the variance of test accuracies over edge areas to explicitly
consider the uniformity of test accuracies. The first part of Table 2
contains the results of logistic regression models solving image
classification problems on EMNIST-Digits [6], Fashion-MNIST [37],
and MNIST [17]. We observe that HierMinimax typically yields
only slightly lower average test accuracy compared withHierFAVG.
However, HierMinimax achieves much higher worst test accuracy,
especially for a harder dataset such as Fashion-MNIST. Meanwhile,
the variance of test accuracies over different edge areas achieved
by HierMinimax is much lower than that of HierFAVG, as much
as one order of magnitude in the case of Fashion-MNIST.

Table 2 additionally shows the results for salary prediction on
the Adult dataset [2] and sample classification on the Synthetic
dataset [19]. For Adult, we consider 2 edge areas, each with data
samples from Doctorate and non-Doctorate groups, respectively.
We train a logistic regression model on categorical features with
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𝜂𝑤 = 0.001 and 𝜂𝑝 = 0.0001. For Synthetic, we consider 100 edge
areas and train a logistic regression model with 𝜂𝑤 = 𝜂𝑝 = 0.0001.
Similar to [19], we report the worst 10% accuracy. We again observe
substantial advantage of HierMinimax over HierFAVG on both
Adult and Synthetic.

7 CONCLUSION

We propose HierMinimax for distributed minimax optimization
over a three-layer network architecture exemplified by the common
client-edge-cloud system in mobile edge computing. Our conver-
gence analysis, for both convex and non-convex loss functions,
sheds light on the tradeoff between the communication complexity
and the convergence rate. In experiments with standardML datasets,
we further show that HierMinimax has substantial advantages in
terms of communication overhead reduction and worst-case per-
formance, compared with the existing two-layer approaches and
the three-layer minimization approach.
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A PREREQUISITES TO PROOFS

We first introduce the symbols and notations that will be used
throughout our appendices. We use 𝑘 ∈ [𝐾] to indicate the 𝑘-th
training round and 𝑡 ∈ [𝑇 ] to indicate the 𝑡-th training time slots
(iterations) with𝑇 = 𝐾𝜏1𝜏2. Let the sampled clients after 𝑘-th global
aggregation be 𝑆 (𝑘 ) = ∪𝑒∈E (𝑘 )N𝑒 . We denote the cardinality of
𝑆 (𝑘 ) by 𝑚 = 𝑚E𝑁0, where 𝑚E is the number of sampled edge
servers and 𝑁0 is the number of clients in each edge area. Note that
for any 𝑡 ∈ [𝑇 ], we have 𝑆 (𝑡 ) = 𝑆 (𝑘 ) for any 𝑘𝜏1𝜏2 ≤ 𝑡 < (𝑘+1)𝜏1𝜏2.

To facilitate our proofs, we define the following auxiliary vari-
ables. At iteration 𝑡 , let the average model of all selected clients
be 𝒘 (𝑡 ) = 1

𝑚

∑
𝑛∈𝑆 (𝑡 ) 𝒘

(𝑡 )
𝑛 . The full gradient of the model 𝒘 (𝑡 )

𝑛 at
client 𝑛 is denoted by 𝑔 (𝑡 )𝑛 = ∇𝑓𝑛 (𝒘 (𝑡 )

𝑛 ) and the stochastic gradient
of the model 𝒘 (𝑡 )

𝑛 at client 𝑛 is denoted by ℎ (𝑡 )𝑛 = ∇𝑓𝑛 (𝒘 (𝑡 )
𝑛 ; 𝜉 (𝑡 )𝑛 ).

The average full and stochastic gradient at edge server 𝑒 are de-
noted by 𝑔 (𝑡 )𝑒 = 1

𝑁0

∑
𝑛∈N𝑒

𝑔
(𝑡 )
𝑛 , ℎ

(𝑡 )
𝑒 = 1

𝑁0

∑
𝑛∈N𝑒

ℎ
(𝑡 )
𝑛 . The aver-

age full and stochastic gradient of all selected clients are denoted
by 𝑔 (𝑡 ) = 1

𝑚

∑
𝑛∈𝑆 (𝑡 ) 𝑔

(𝑡 )
𝑛 , ℎ (𝑡 ) = 1

𝑚

∑
𝑛∈𝑆 (𝑡 ) ℎ

(𝑡 )
𝑛 .

Recall that at iteration 𝑡 , the weight vector 𝒑 has been updated
⌊ 𝑡
𝜏1𝜏2

⌋ times, so we denote the global minimax objective at time

𝑡 by 𝐹 (𝒘 (𝑡 ) ,𝒑 ( ⌊ 𝑡
𝜏1𝜏2

⌋ ) ). We note that the stochastic gradient ℎ (𝑡 )

https://doi.org/10.1137/1.9781611971132
https://doi.org/10.1137/1.9781611971132
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
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is an unbiased estimate of the full gradient of 𝐹 (𝒘 (𝑡 ) ,𝒑 ( ⌊ 𝑡
𝜏1𝜏2

⌋ ) ), i.e.,

EE (𝑡 ) ,{𝜉 (𝑡 )𝑛 }
𝑛∈𝑆 (𝑡 )

[ℎ (𝑡 ) ]=EE (𝑡 ) [𝑔 (𝑡 ) ]=E[
∑
𝑒∈E 𝑝

( ⌊ 𝑡
𝜏1𝜏2

⌋ )
𝑒 ∇𝑓𝑒 (𝒘 (𝑡 )

𝑒 )].
Furthermore, from Assumption 4, we can show that the variance
of ℎ (𝑡 ) is bounded by E

[
∥ℎ (𝑡 ) − 𝑔 (𝑡 ) ∥2] ≤ 𝜎2

𝑤

𝑚 .
Now, we derive the bias and variance of the estimation of 𝒑.

Recall that 𝒗 (𝑘 ) is the vector constructed in Phase 2 of training
round 𝑘 . Denote the stochastic gradient of 𝒑 in this training round
by 𝒖 (𝑘 ) = 𝜏1𝜏2𝒗 (𝑘 ) . The full gradient of 𝐹 (𝒘 (𝑡 ) ,𝒑) with respect to 𝒑
is 𝒗 (𝑡 ) . Its 𝑒-th coordinate is [𝒗 (𝑡 ) ]𝑒 = 𝑓𝑒 (𝒘 (𝑡 ) ) = [∇𝑝𝐹 (𝒘 (𝑡 ) ,𝒑)]𝑒
for all 𝑒 ∈ E. We further define �̄� (𝑘 ) =

∑(𝑘+1)𝜏1𝜏2
𝑡=𝑘𝜏1𝜏2+1 𝒗

(𝑡 ) , which is the
summation of the virtual full gradient with respect to 𝒑 over 𝜏1𝜏2
iterations within the 𝑘-th round. Then the stochastic gradient of 𝒑
in our algorithm is unbiased, i.e., E

[
𝒖 (𝑘 )

]
= E

[
𝜂𝑝𝜏1𝜏2𝒗 (𝑘 )

]
= �̄� (𝑘 ) ,

as we sample a timestamp from an interval of length 𝜏1𝜏2 and sample
each edge server uniformly and independently. Note that 𝒖 (𝑘 ) also
has bounded variance E

[𝒖 (𝑘 ) − �̄� (𝑘 )
2] ≤ 𝜏2

1𝜏
2
2

𝑚 𝜎2
𝑝 .

B PROOF OF LEMMA 1

Proof. We first bound each𝐴(𝑡 ) for 𝑡 ∈ [𝑘𝜏1𝜏2, (𝑘 + 1)𝜏1𝜏2], i.e.,
𝑡 = 𝑘𝜏1𝜏2 + 𝑡2𝜏1 + 𝑡2 where 0 ≤ 𝑡2 < 𝜏2 and 0 ≤ 𝑡1 ≤ 𝜏1. Let 𝑒 be the
edge server with which client 𝑛 is associated. We define

C1 =
𝑡2−1∑︁
𝑖=0

1
𝑁0

∑︁
𝑛′∈N𝑒

𝜏1−1∑︁
𝑗=0

𝜂𝑤ℎ
(𝑘,𝑖, 𝑗 )
𝑛′ and C2 =

𝑡1−1∑︁
𝑗=0

𝜂𝑤ℎ
(𝑘,𝑡2, 𝑗 )
𝑛 .

We have𝒘 (𝑡 )
𝑛 = 𝒘 (𝑘,0,0) − C1 − C2. We further define

C3 =
1
𝑚E

∑︁
𝑒′∈E (𝑡 )

𝑡2−1∑︁
𝑖=0

1
𝑁0

∑︁
𝑛′′∈N𝑒′

𝜏1−1∑︁
𝑗=0

𝜂𝑤ℎ
(𝑘,𝑖, 𝑗 )
𝑛′′

C4 =
1
𝑚

∑︁
𝑛′∈𝑆 (𝑡 )

𝑡1−1∑︁
𝑗=0

𝜂𝑤ℎ
(𝑘,𝑡2, 𝑗 )
𝑛 .

We have𝒘 (𝑡 ) = 𝒘 (𝑘,0,0) − C3 − C4.
We define 𝐴(𝑡 ) = 1

𝑚

∑
𝑛∈𝑆 (𝑡 ) E[∥𝒘 (𝑡 )

𝑛 −𝒘 (𝑡 ) ∥2]. Hence,

𝐴(𝑡 ) (𝑎)≤ 2
𝑚

∑︁
𝑛∈𝑆 (𝑡 )

E
[C1 − C3

2] + 2
𝑚

∑︁
𝑛∈𝑆 (𝑡 )

E
[C2 − C4

2]
, (12)

where (𝑎) follows from ∥𝒙 +𝒚∥2 ≤ 2(∥𝒙 ∥2 + ∥𝒚∥2).
We now bound the right-hand side (RHS) of (12). For the first

term, we have
2
𝑚

∑︁
𝑛∈𝑆 (𝑡 )

E
[C1 − C3

2]
(𝑎)
≤

2𝜂2
𝑤𝑡2𝜏1
𝑚

∑︁
𝑛∈𝑆 (𝑡 )

𝑡2−1∑︁
𝑖=0

𝜏1−1∑︁
𝑗=0
E
[ ∑︁
𝑛′∈N𝑒

ℎ
(𝑘,𝑖, 𝑗 )
𝑛′

𝑁0
−

∑︁
𝑛′′∈𝑆 (𝑡 )

ℎ
(𝑘,𝑖, 𝑗 )
𝑛′′

𝑚

2]
(𝑏 )
≤ 10𝜂2

𝑤𝑡2𝜏1

𝑡2−1∑︁
𝑖=0

𝜏1−1∑︁
𝑗=0

(𝑚E + 1
𝑁0

𝜎2
𝑤 + 2𝐿2𝐴(𝑘,𝑖, 𝑗 ) + Ψ)

(𝑐 )
≤ 10𝜂2

𝑤𝜏2𝜏1

𝜏2−1∑︁
𝑖=0

𝜏1−1∑︁
𝑗=0

(𝑚E + 1
𝑁0

𝜎2
𝑤 + 2𝐿2𝐴(𝑘,𝑖, 𝑗 ) +Ψ), (13)

where (𝑎) is by Jensen’s inequality; (𝑏) is by first both adding and
subtracting four terms 1

𝑁0

∑
𝑛′∈N𝑒

𝑔
(𝑘,𝑖, 𝑗 )
𝑛′ , 1

𝑁0

∑
𝑛′∈N𝑒

∇𝑓𝑛′ (𝒘 (𝑘,𝑖, 𝑗 ) ),
1
𝑚

∑
𝑛′′∈𝑆 (𝑡 ) ∇𝑓𝑛′′ (𝒘 (𝑘,𝑖, 𝑗 ) ), and 1

𝑚

∑
𝑛′′∈𝑆 (𝑡 ) 𝑔

(𝑘,𝑖, 𝑗 )
𝑛′′ , and then ap-

plying Jensen’s inequality, along with Assumptions 2, 4, and 5; and
(𝑐) is by upper bounding 𝑡2 by 𝜏2. Applying the same techniques
to the second term on the RHS of (12), we can show that

2
𝑚

∑︁
𝑛∈𝑆 (𝑡 )

E
[C2 − C4

2]
≤ 10𝜂2

𝑤𝜏1

𝜏1−1∑︁
𝑗=0

(𝑚 + 1
𝑚

𝜎2
𝑤 + 2𝐿2𝐴(𝑘,𝑡2, 𝑗 ) + Ψ

)
. (14)

Substituting (13) and (14) into (12) and summing the resulting
inequality over 𝑡 from 𝑘𝜏1𝜏2 to (𝑘 + 1)𝜏1𝜏2 − 1, we have
𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑡1=0

𝐴(𝑘,𝑡2,𝑡1 )

=10𝜂2
𝑤𝜏

2
1

𝜏2−1∑︁
𝑡2=0

𝜏1−1∑︁
𝑗=0

(𝑚 + 1
𝑚

𝜎2
𝑤 + 2𝐿2𝐴(𝑘,𝑡2, 𝑗 ) + Ψ

)
+ 10𝜂2

𝑤𝜏
2
1𝜏

2
2

𝜏2−1∑︁
𝑖=0

𝜏1−1∑︁
𝑗=0

(𝑚E + 1
𝑁0

𝜎2
𝑤 + 2𝐿2𝐴(𝑘,𝑖, 𝑗 ) + Ψ

)
(𝑎)
≤ 20𝜂2

𝑤𝜏
3
1𝜏2

(𝑚 + 1
𝑚

𝜎2
𝑤 + Ψ

)
+ 20𝜂2

𝑤𝜏
3
1𝜏

3
2
(𝑚E + 1

𝑁0
𝜎2
𝑤 + Ψ

)
, (15)

where (𝑎) is by assuming 1 − 20𝜂2
𝑤𝐿

2𝜏2
1 (1 + 𝜏

2
2 ) ≥

1
2 . Summing (15)

over 𝑘 from 0 to 𝐾 − 1 and diving both sides by 𝑇 = 𝐾𝜏1𝜏2, we
complete the proof. □

C PROOF OF THEOREM 1

We first prove Lemma 3 and Lemma 4 to facilitate the proof of
Theorem 1.

Lemma 3 (Upper Bound for One Iteration of𝒘). For all𝑤 ∈
W and 𝑡 ∈ [𝑇 ], we have

E
[𝒘 (𝑡+1) −𝒘

2] − E[𝒘 (𝑡 ) −𝒘
2] ≤ 𝐿𝜂𝑤𝐴

(𝑡 ) + 𝜂2
𝑤𝐺

2
𝑤 +

𝜂2
𝑤

𝑚
𝜎2
𝑤

− 2𝜂𝑤
𝑁E
E
[
𝐹 (𝒘 (𝑡 ) ,𝒑 ( ⌊ 𝑡

𝜏1𝜏2
⌋ ) ) − 𝐹 (𝒘,𝒑 ( ⌊ 𝑡

𝜏1𝜏2
⌋ ) )

]
. (16)

Proof. We have

E
[𝒘 (𝑡+1) −𝒘

2] (𝑎)
≤ E

[𝒘 (𝑡 ) − 𝜂𝑤ℎ (𝑡 ) −𝒘
2]

(𝑏 )
= E

[𝒘 (𝑡 ) − 𝜂𝑤𝑔 (𝑡 ) −𝒘
2] + 𝜂2

𝑤E
[𝑔 (𝑡 ) − ℎ (𝑡 )2]

(𝑐 )
≤ E

[𝒘 (𝑡 ) −𝒘
2] +𝐴(𝑡 )

1 +𝐴(𝑡 )
2 +

𝜂2
𝑤

𝑚
𝜎2
𝑤 , (17)

where (𝑎) follows from the update rule in (4) and projection onto
a closed convex set, (𝑏) follows from both adding and subtracting
𝜂𝑤𝑔

(𝑡 ) , expanding the squares and eliminating the zero-valued
cross-term, and (𝑐) is from bounded variance ofℎ (𝑡 ) and definitions
of 𝐴(𝑡 )

2 =𝜂2
𝑤E[∥𝑔 (𝑡 ) ∥2] and 𝐴(𝑡 )

1 =−2𝜂𝑤E[(𝑔 (𝑡 ) )𝑇 (𝒘 (𝑡 ) −𝒘)].
We now bound 𝐴(𝑡 )

1 on the RHS of (17). We have 𝐴(𝑡 )
1

𝐴
(𝑡 )
1

(𝑎)
≤ −2𝜂𝑤

𝑚
E
[ ∑︁
𝑒∈E (𝑡 )

∑︁
𝑛∈N𝑒

(
∇𝑓𝑛 (𝒘 (𝑡 )

𝑛 )
)𝑇 (𝒘 (𝑡 ) −𝒘 (𝑡 )

𝑛 )
]
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− 2𝜂𝑤
𝑚
E
[ ∑︁
𝑒∈E (𝑡 )

∑︁
𝑛∈N𝑒

(
∇𝑓𝑛 (𝒘 (𝑡 )

𝑛 )
)𝑇 (𝒘 (𝑡 )

𝑛 −𝒘)
]

(𝑏 )
≤ 2𝜂𝑤

𝑚
E
[ ∑︁
𝑒∈E (𝑡 )

∑︁
𝑛∈N𝑒

𝑓𝑛 (𝒘 (𝑡 )
𝑛 )− 𝑓𝑛 (𝒘 (𝑡 ) )+ 𝐿

2
∥𝒘 (𝑡 )−𝒘 (𝑡 )

𝑛 ∥2]
+ 2𝜂𝑤

𝑚
E
[ ∑︁
𝑒∈E (𝑡 )

∑︁
𝑛∈N𝑒

𝑓𝑛 (𝒘) − 𝑓𝑛 (𝒘 (𝑡 )
𝑛 )

]
(𝑐 )
= −2𝜂𝑤

𝑁E
E
[
𝐹 (𝒘 (𝑡 ),𝒑 ( ⌊ 𝑡

𝜏1𝜏2
⌋ ) ) − 𝐹 (𝒘,𝒑 ( ⌊ 𝑡

𝜏1𝜏2
⌋ ))

]
+ 𝜂𝑤𝐿𝐴(𝑡 ), (18)

where (𝑎) follows from the definition of 𝑔 (𝑡 ) , (𝑏) is from the 𝐿-
smoothness and convexity of 𝑓𝑛 for any 𝑛 ∈ N , and (𝑐) holds
because 𝑓𝑒 = 1

𝑁0

∑
𝑛∈N𝑒

𝑓𝑛 and we sample the edge servers based

on 𝒑
( ⌊ 𝑡

𝜏1𝜏2
⌋ ) .

We then bound 𝐴(𝑡 )
2 on the RHS of (17). We have

𝐴
(𝑡 )
2

(𝑎)
≤

𝜂2
𝑤

𝑚

∑︁
𝑒∈E (𝑡 )

∑︁
𝑛∈N𝑒

E
[∇𝑓𝑛 (𝒘 (𝑡 )

𝑛 )
2] (𝑏 )

≤ 𝜂2
𝑤𝐺

2
𝑤 , (19)

where (𝑎) is from Jensen’s inequality and (𝑏) is from Assumption 3.
Substituting (18) and (19) into (17), we obtain (16). □

Lemma 4 (Upper Bound for One Update of 𝒑). For all 𝒑 ∈ P
and 𝑘 ∈ [𝐾], we have

E
[𝒑 (𝑘+1) − 𝒑

2] − E[𝒑 (𝑘 ) − 𝒑
2] ≤ 𝜂2

𝑝𝜏
2
1𝜏

2
2𝐺

2
𝑝 +

𝜂2
𝑝𝜏

2
1𝜏

2
2

𝑚
𝜎2
𝑝

− 2𝜂𝑝
(𝑘+1)𝜏1𝜏2∑︁
𝑡=𝑘𝜏1𝜏2+1

E
[
𝐹 (𝒘 (𝑡 ) ,𝒑) − 𝐹 (𝒘 (𝑡 ) ,𝒑 (𝑘 ) )

]
. (20)

Proof. Following similar arguments of Lemma 3, we have

E
[𝒑 (𝑘+1) − 𝒑

2]≤E[𝒑 (𝑘 ) − 𝒑
2]+𝐵 (𝑘 )

1 +𝐵 (𝑘 )
2 +

𝜂2
𝑝𝜏

2
1𝜏

2
2

𝑚
𝜎2
𝑝 , (21)

where we define 𝐵 (𝑘 )
1 = E

[
2(𝜂𝑝𝑢 (𝑘 ) )𝑇 (𝒑 (𝑘 ) − 𝒑)

]
and 𝐵 (𝑘 )

2 =

E
[𝜂𝑝𝑢 (𝑘 )2] .
We now bound the RHS of (21). By substituting𝑢 (𝑘 ) =

∑(𝑘+1)𝜏1𝜏2
𝑡=𝑘𝜏1𝜏2+1 𝑣

(𝑡 )

into 𝐵 (𝑘 )
1 , we have

𝐵
(𝑘 )
1

(𝑎)
= 2𝜂𝑝

(𝑘+1)𝜏1𝜏2∑︁
𝑡=𝑘𝜏1𝜏2+1

E
[ (
∇𝒑𝐹 (𝒘 (𝑡 ) ,𝒑)

)𝑇 (𝒑 (𝑘 ) − 𝒑
) ]

(𝑏 )
= −2𝜂𝑝

(𝑘+1)𝜏1𝜏2∑︁
𝑡=𝑘𝜏1𝜏2+1

E
[
𝐹 (𝒘 (𝑡 ) ,𝒑) − 𝐹 (𝒘 (𝑡 ) ,𝒑 (𝑘 ) )

]
, (22)

where (𝑎) follows from the definition of ∇𝒑𝐹 (𝒘,𝒑) and the linearity
of expectation, and (𝑏) is from the linearity of 𝐹 (𝒘,𝒑) in 𝒑 given
any𝒘 .

Substituting 𝑢 (𝑘 ) into 𝐵 (𝑘 )
2 , we have

𝐵
(𝑘 )
2

(𝑎)
≤ 𝜂2

𝑝𝜏1𝜏2

(𝑘+1)𝜏1𝜏2∑︁
𝑡=𝑘𝜏1𝜏2+1

E
[𝑣 (𝑡 )2] (𝑏 )

≤ 𝜂2
𝑝𝜏

2
1𝜏

2
2𝐺

2
𝑝 , (23)

where (𝑎) is from Jensen’s inequality and (𝑏) is from Assumption 3.
Substituting (22) and (23) into (21), we prove (20). □

We now prove Theorem 1.

Proof. We start from bounding the expected duality gap

max
𝒑∈P
E
[
𝐹 (�̂�,𝒑)

]
− min

𝒘∈W
E
[
𝐹 (𝒘, �̂�)

]
= max

𝒘∈W,𝒑∈P

(
E
[
𝐹 (�̂�,𝒑)

]
− E

[
𝐹 (𝒘, �̂�)

] )
(𝑎)
≤ max

𝒘∈W,𝒑∈P
E
[ 1
𝑇

𝑇∑︁
𝑡=1

(
𝐹 (𝒘 (𝑡 ) ,𝒑) − 𝐹 (𝒘,𝒑 ( ⌊ 𝑡

𝜏1𝜏2
⌋ ) )

) ]
(𝑏 )
= max

𝒘∈W,𝒑∈P
(C5 + C6), (24)

where (𝑎) is from the convexity in𝒘 and linearity in 𝒑 and (𝑏) is
from the definitions of

C5 = E
[ 1
𝑇

𝐾−1∑︁
𝑘=0

(𝑘+1)𝜏1𝜏2∑︁
𝑡=𝑘𝜏1𝜏2+1

𝐹 (𝒘 (𝑡 ) ,𝒑) − 𝐹 (𝒘 (𝑡 ) ,𝒑 (𝑘 ) )
]

C6 = E
[ 1
𝑇

𝑇∑︁
𝑡=1

𝐹 (𝒘 (𝑡 ) ,𝒑 ( ⌊ 𝑡
𝜏1𝜏2

⌋ ) ) − 𝐹 (𝒘,𝒑 ( ⌊ 𝑡
𝜏1𝜏2

⌋ ) )
]
.

We now bound C5. Rearranging the terms of (20) in Lemma 4
and dividing both sides by 1

2𝜂𝑝 , we have

(𝑘+1)𝜏1𝜏2∑︁
𝑡=𝑘𝜏1𝜏2+1

E
[
𝐹 (𝒘 (𝑡 ) ,𝒑) − 𝐹 (𝒘 (𝑡 ) ,𝒑 (𝑘 ) )

]
≤ 1

2𝜂𝑝
(
E
[𝒑 (𝑘 ) − 𝒑

2] − E[𝒑 (𝑘+1) − 𝒑
2] )

+
𝜂𝑝𝜏

2
1𝜏

2
2

2
𝐺2
𝑝 +

𝜂𝑝𝜏
2
1𝜏

2
2

2𝑚
𝜎2
𝑝 . (25)

Summing (25) over 𝑘 and dividing both sides by 𝑇 , we have

C5 ≤ 1
2𝜂𝑝𝑇

E
[𝒑 (0) − 𝒑

2] + 𝜂𝑝𝜏1𝜏2

2
𝐺2
𝑝 +

𝜂𝑝𝜏1𝜏2

2𝑚
𝜎2
𝑝

≤
𝑅2
P

2𝜂𝑝𝑇
+
𝜂𝑝𝜏1𝜏2

2
𝐺2
𝑝 +

𝜂𝑝𝜏1𝜏2

2𝑚
𝜎2
𝑝 . (26)

Next, we bound C6. Rearranging the terms of (16) in Lemma 3
and multiplying both sides by 𝑁E

2𝜂𝑤 , we have

E
[
𝐹 (𝒘 (𝑡 ) ,𝒑 ( ⌊ 𝑡

𝜏1𝜏2
⌋ ) ) − 𝐹 (𝒘,𝒑 ( ⌊ 𝑡

𝜏1𝜏2
⌋ ) )

]
≤ 𝜂𝑤𝑁E

2
𝐺2
𝑤 +

𝜂2
𝑤

𝑁0
𝜎2
𝑤

+ 𝐿𝑁E
2

𝐴(𝑡 ) + 𝑁E
2𝜂𝑤
E
[𝒘 (𝑡 )−𝒘

2]− 𝑁E
2𝜂𝑤
E
[𝒘 (𝑡+1)−𝒘

2]
. (27)

Summing (27) over 𝑡 and dividing both sides by 𝑇 , we have

C6 ≤
𝑁EE

[𝑤 (0)−𝑤
2]

2𝜂𝑤𝑇
+ 𝐿𝑁E

2𝑇

𝑇∑︁
𝑡=1

𝐴(𝑡 )+
𝜂𝑤𝑁E𝐺2

𝑤

2
+
𝜂𝑤𝜎

2
𝑤

2𝑁0

(𝑎)
≤

𝑁E𝑅2
W

2𝜂𝑤𝑇
+ 𝜂𝑤𝑁E

2
𝐺2
𝑤 + 10𝐿𝑁E𝜂

2
𝑤𝜏

2
1
(𝑚 + 1
𝑚

𝜎2
𝑤 + Ψ

)
+ 𝜂𝑤

2𝑁0
𝜎2
𝑤 + 10𝐿𝑁E𝜂

2
𝑤𝜏

2
1𝜏

2
2
(𝑚E + 1

𝑁0
𝜎2
𝑤 + Ψ

)
, (28)

where (𝑎) is from the bound on 𝐴(𝑡 ) in Lemma 1. Substituting
the bound on C5 in (26) and the bound on C6 in (28) into (24), we
complete the proof. □


	Abstract
	1 Introduction
	2 Related Work
	2.1 Hierarchical FL
	2.2 Minimax Optimization

	3 Minimax Optimization over Client-Edge-Cloud Architecture
	4 Hierarchical Distributed Minimax Algorithm
	4.1 Phase 1: Model Parameter Update
	4.2 Phase 2: Edge Weight Update 

	5 Convergence Analysis
	5.1 Convex Loss
	5.2 Non-convex Loss

	6 Numerical Experiments
	6.1 Convex Loss Functions
	6.2 Non-convex Loss Functions
	6.3 Minimax Fairness and Variance

	7 Conclusion
	Acknowledgments
	References
	A Prerequisites to Proofs
	B Proof of Lemma 1
	C Proof of Theorem 1

