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Abstract—The location of active users is an important factor in
the performance analysis of mobile multicell networks, but it is
difficult to quantify due to the wide variety of user mobility and
session patterns. In particular, the channel holding times in each
cell may be arbitrarily distributed and dependent on those in
other cells. In this work, we study the stationary distribution
of users by modeling the system as a multi-route queueing
network with Poisson inputs. We consider arbitrary routing
and arbitrary joint probability distributions for the channel
holding times in each route. Using a decomposition-composition
approach, we show that the user distribution (1) is insensitive
to the user movement patterns, (2) is insensitive to general and
dependent distributed channel holding times, (3) depends only
on the average arrival rate and average channel holding time at
each cell, and (4) is completely characterized by an open network
with M/M/∞ queues. This result is validated by experiments
with the Dartmouth user mobility traces.

I. INTRODUCTION

In designing ever more efficient and capable mobile access
networks, the accurate modeling of how user mobility and
session connectivity patterns affect network performance is of
paramount interest. However, compared with wired networks,
the analytical modeling of mobile networks is burdened with
many additional technical challenges. Some of the most d-
ifficult factors are the following: (1) the movement of users
may be individually arbitrary, without following any common
mobility pattern [2]; (2) the session durations may have a
general probability distribution, supporting diverse data and
multimedia applications [3]; (3) the channel holding times
at different cells are correlated, dependent on the speed or
trajectory of different users [4].

In this paper, we study the distribution of active users in a
multicell network, which has important utilization in network
management and planning. Prior studies have led to several
analytical models to estimate the user distribution with various
degrees of detail and generality to facilitate tractable analysis
[5]–[8]. In terms of user movement, [5], [6], and [7] assume
that users move from one cell to another probabilistically and
memorylessly, while [8] focuses on scattered single cells, so
that user movement among multiple cells is not discussed.
None of them consider the arbitrary user movement patterns.
In terms of channel holding times, [5] uses the sum of hyper-
exponentials or the Coxian distribution to approximate arbi-
trary distributions; [8] assumes generally distributed channel
holding times but concerns only a single cell; and [6] and
[7] consider generally but independently distributed channel

This work has been supported in part by grants from Bell Canada and the
Natural Sciences and Engineering Research Council (NSERC) of Canada. An
extended technical report is available at [1].

holding times in different cells. None of the above works
consider the dependence among channel holding times.

Different with these works, we consider general mobility
and session patterns, only requiring that the new session
arrivals form a Poisson process, which is well supported by
experimental data [7], [9], [10]. We model the user mobility
with a general system with multiple routes, each representing
one type of users with a specific movement pattern. A general
probability distribution is used to represent the session dura-
tions. As a consequence, the channel holding times at different
cell sites are no longer independent.

Through a decomposition-composition approach, we derive
a closed-form expression for the joint stationary distribution
for the number of users in all cells. We observe five important
conclusions on user distribution: first, it is insensitive to how
the users move through the system; second, it is insensitive to
the general distribution of channel holding times; third, it is
intensive to the correlation among the channel holding times;
fourth, it depends only on the average arrival rate and average
channel holding time at each cell; and fifth, it is perfectly
captured by an open Jackson network with M/M/∞ queues.

Note that the authors of [7] have also observed a surprising
match between analysis and real-life user mobility traces from
the Dartmouth study [11], even though their analysis assumes
simple M/G/∞ mobility and session models without consid-
ering arbitrary user movement patterns or dependent channel
holding times. No analytical explanation is given in [7] for
this observation. In contrast, our work provides theoretical
support for it, since we show that the user distribution is also
insensitive to arbitrary user movement patterns and dependent
channel holding times.

II. SYSTEM MODEL

Consider a cellular network with C cells. There are L
independent routes, each defined as a finite ordered sequence
of cells. The jth stage on the lth route corresponds to the jth
cell in the sequence, which is denoted as c(l, j). Let Nl be
the number of stages on the lth route. Each user of the lth
route starts a new session in cell c(l, 1); then it moves along
the route through cells c(l, 1), c(l, 2) . . . c(l, Nl), as long as the
session remains active. The user is considered to have departed
the network when its session terminates or when it exits cell
c(l, Nl). We allow an arbitrary number of arbitrary routes to
cover all possible movement patterns.

For each route, we assume the arrivals of new sessions to
form a Poisson process. Let λl0 be the new session arrival
rate at the lth route. The session duration of a user on the lth
route is modeled as an arbitrarily distributed random variable
Tl. After a new session arrival, let τl1 denote the residual
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Fig. 1. System model.

cell dwell time of the user in the 1st stage on the lth route,
which is arbitrarily distributed. Let τlj , 2 ≤ j ≤ Nl, denote
the cell dwell time of the user in the jth stage on the lth
route, which are also arbitrarily distributed. Then, the channel
holding time of the jth stage on the lth route, tlj , if it exists,
can be represented as follows:
tl1 = min{Tl, τl1},

tlj = min{Tl −
j−1∑
i=1

τli, τlj}, if Tl >

j−1∑
i=1

τli, 2 ≤ j ≤ Nl.

Fig. 1 shows an example network with 3 routes. Route 1
starts from cell 1 and passes cell 3, 4 and 6 (i.e., c(1, 1) = 1,
c(1, 2) = 3, c(1, 3) = 4 and c(1, 4) = 6). A user starts a
session in cell 1, and the session is terminated in cell 4. The
corresponding T1, τ11, τ12, τ13, t11, t12, and t13 are labeled in
the figure.

Let xlj , 1 ≤ l ≤ L, 1 ≤ j ≤ Nl, denote the number
of active users in the jth stage on the lth route; let yn,
1 ≤ n ≤ C, denote the number of active users in the nth
cell. Let x = [{xlj : 1 ≤ l ≤ L, 1 ≤ j ≤ Nl}]T and
y = [y1, y2, . . . , yC ]

T . We aim to derive π(x) and π1(y),
the joint stationary distributions for x and y, respectively.

III. USER DISTRIBUTION IN SINGLE-ROUTE NETWORK

We first derive the stationary user distribution on a single
route. We construct a reference single-route memoryless net-
work, where all the channel holding times are independent-
ly and exponentially distributed. We prove insensitivity by
showing an equivalence between the original network and the
memoryless network in terms of user distribution.

A. Queueing Network Model for Single-Route Network

Consider exclusively the lth route in the network. Through-
out this section, we will carry the route index l in most
symbols, since they will be re-used in the analysis of multiple-
route networks.

As shown in Fig. 2(a), we model the route as a tandem-
liked queueing network, except with early exists. The node
labeled with 0 represents the exogenous world. The jth queue,
1 ≤ j ≤ Nl, represents the jth stage of the route, and units in
this queue represent sessions in the jth stage. Each queue has
infinite servers, since the sessions are served in parallel with
no waiting. The channel holding time of a session in the jth
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Fig. 2. Single-route network and decomposition.

stage, tlj , is equivalent to the service time of the jth queue.
The handoff of a session from the jth stage to the (j + 1)th
stage is equivalent to a unit movement from the jth queue to
the (j+1)th queue. The termination of a session is equivalent
to the movement from a queue to node 0.

Let plk denote the probability that a session lasts for k
stages. It is given by

plk = P
[ k−1∑
j=1

τlj < Tl ≤
k∑

j=1

τlj

]
, for 2 ≤ k ≤ Nl − 1,

with pl1 = P [Tl ≤ τl1] and plNl
= P

[∑Nl−1
j=1 τlj < Tl

]
.

Note that we have
∑Nl

k=1 plk = 1. Given a session in the kth

stage, it enters the (k+1)th stage with probability
∑Nl

j=k+1 plj∑Nl
j=k plj

and terminates with probability plk∑Nl
j=k plj

.



B. Reference Single-Route Memoryless Network

We define a reference single-route memoryless network, as
a Jackson network with the same topology as the original
single-route network, where each queue has infinitely many
independent and exponential servers. An illustration is shown
in Fig. 2(b). Let tlj denote the average value of tlj , given
that the number of stages is larger than j on the lth route. By
matching the mean service times in this memoryless network
with those of the original network, we see that its external
arrival rate is λl0, the service rate of the jth queue is λlj =

1
tlj

,
the service rate from the kth queue to the (k + 1)th queue is∑Nl

j=k+1 plj∑Nl
j=k plj

λlk, and the service rate from the kth queue to node

0 is plk∑Nl
j=k plj

λlk.

Let w′
lj be the positive invariant measure of the jth queue

that satisfies the routing balance equations of the single-route
memoryless network, with the convention that at node 0, w′

0 =
1. It can be derived from the topology of Fig. 2(b) that

w′
l1 = λl0,

w′
lj = λl0(1−

j−1∑
n=1

pln), 2 ≤ j ≤ Nl.
(1)

Let wlj =
w′

lj

λlj
. Then the stationary distribution of this network

is [12]

π0(x) =

Nl∏
j=1

e−wljw
xlj

lj

1

xlj !
. (2)

C. Insensitivity of Single-Route Network

For the original single route network, we employ a
decomposition-composition approach to derive its stationary
user distribution.

Given that one session lasts for k stages, we denote the
channel holding times as a k-dimensional random vector t̂lk =
{t̂lk1, . . . t̂lkj , . . . , t̂lkk}, where t̂lkj is the channel holding time
at the jth stage. We assume that t̂lk is an arbitrarily distributed
discrete random vector with Mlk possible realizations1. For
any i, 1 ≤ i ≤ Mlk, we define a k-dimensional deterministic
vector t̃lki = [t̃lki1, . . . , t̃lkij , . . . , t̃lkik]

T corresponding to the
ith realization of t̂lk. Let qlki be the probability of the ith
realization given that the session lasts for k stages. Also, let
Plki = plkqlki denote the probability that a session lasts for k
stages and it is in the ith realization.

By do so, we decompose the original network into a
multiple-branch queuing network as shown in Fig. 2(c), which
is referred to as the decoupled network. In this network, there
are Nl main branches, where the kth main branch represents
the event that a session lasts for k stages. The kth main
branch contains Mlk sub-branches, where the ith sub-branch
represents the realization where t̂lk = t̃lki. Furthermore,
the jth queue in the ith sub-branch of the kth main branch
represents the jth stage of the ith realization of the sessions
that last for k stages.

1For a vector of continuous channel holding times, we can use a sequence of
discrete distributions with decreasing granularity to approach its distribution.

Hence, each queue of the decoupled network has infinite
servers with deterministic service time, t̃lkij , for the jth stage
of the ith sub-branch of the kth main branch. Furthermore,
the arrival rate of the ith sub-branch of the kth main branch
is λ̃lki0 = Plkiλl0. Let x̃ = [{x̃lkij : 1 ≤ k ≤ Nl, 1 ≤ j ≤
k, 1 ≤ i ≤ Mlk}]T be the vector of number of sessions in
the jth stage of the ith sub-branch of the kth main branch.
Denote by πD(x̃) the stationary distribution of the decoupled
network.

Note that the stationary distribution of a Jackson network
with infinite servers at each queue is insensitive with respect
to the distribution of the service times [13]. Therefore, πD(x̃)
remains unchanged if we create a reference Jackson network
by replacing each queue in the decoupled network with a
queue that has exponential service time with service rate
λ̃lkij = 1

t̃lkij
. Let w̃′

lkij be the positive invariant measure of
the jth stage of the ith sub-branch of the kth main branch
of the memoryless version of the decoupled network, which
satisfies the routing balance equations with the convention that
at node 0, w′

0 = 1. Since each sub-branch is a chain network,
we have

w̃′
lkij = Plkiλl0. (3)

Let w̃lkij =
w̃′

lkij

λ̃lkij
. Then the stationary distribution of the

decoupled network is

πD(x̃) =

Nl∏
j=1

Nl∏
k=j

Mlk∏
i=1

e−w̃lkij w̃
x̃lkij

lkij

1

x̃lkij !
. (4)

Next, we re-compose π(x) by summing up πD(x̃) satis-
fying xlj =

∑Nl

k=j

∑Mlk

i=1 x̃lkij , ∀j. To derive π(x), we first
introduce the following lemma.

Lemma 1: Consider a stationary open Jackson network with
N queues each with an infinite number of servers. Let xj be
the number of units in the jth queue and x = [x1, . . . xN ]T .
Suppose {J1,J2, . . .JM} is a set of mutually exclusive
subsets of {1, 2, . . . , N}. Let zi =

∑
j∈Ji

xj , i = 1, 2, . . . ,M ,
denoting the sum of units in the queues inside Ji. Then, the
distribution of z = [z1, . . . zM ]T is

π(z) =
M∏
i=1

e−vivzii
1

zi!
, (5)

where vi =
∑

j∈Ji
wj , and wj is the expected number of units

in the jth queue.
Proof: For a Jackson network with infinite servers at each

queue, the stationary queue lengths are independent Poisson
random variables with mean wj for the jth queue. Hence, zi
is Poisson with mean vi =

∑
j∈Ji

wj for all i. Furthermore,
since {Ji} are mutually exclusive, {zi} are independent.

Next, we note that the expected service time spent in the
jth stage given that the jth stage exists, i.e., j ≤ k for the kth
main branch, can be computed as

tlj =

∑Nl

k=j

∑Mlk

i=1 Plkit̃lkij∑Nl

k=j

∑Mlk

i=1 Plki

=

∑Nl

k=j

∑Mlk

i=1 Plkit̃lkij

1−
∑j−1

n=1 pln
. (6)



Combining this with (3), we have
Nl∑
k=j

Mlk∑
i=1

w̃lkij =

Nl∑
k=j

Mlk∑
i=1

λl0Plki

λ̃lkij

=

Nl∑
k=j

Mlk∑
i=1

λl0Plkit̃lkij = λl0(1−
j−1∑
n=1

pln)tlj

=
λl0

λlj
(1−

j−1∑
n=1

pln) = wlj . (7)

Therefore, by Lemma 1, we have

π(x) =
∑

x̃:xlj=
∑Nl

k=j

∑Mlk
i=1 x̃lkij ,∀j

πD(x̃)

=

Nl∏
j=1

e−wlj
w

xlj

lj

xlj !
, (8)

which is restated as the following theorem:
Theorem 1: The single-route network has the same sta-

tionary distribution as that of the corresponding single-route
memoryless network: π(x) = π0(x).

IV. USER DISTRIBUTION IN MULTIPLE-ROUTE NETWORK

In this section, we briefly describe the general case with
multiple L routes in the network. Since the L routes are inde-
pendent, we model the multiple-route network as a paralleling
of L single-route networks. Similar to Section III, we con-
sider a reference multiple-route memoryless network, which
is a paralleling of L corresponding single-route memoryless
networks. Due to the independence of the routes, the stationary
distributions of the multiple-route network and multiple-route
memoryless network can be computed as the product of the
stationary distributions of corresponding single-route network-
s and single-route memoryless networks respectively. Since
each single-route network has the same stationary distribution
with its corresponding single-route memoryless network, the
multiple-route network has the same stationary distribution as
that of the corresponding multiple-route memoryless network
π(x) = π0(x).

Let λn be the average total arrival rate to cell n, including
both new and handoff arrivals. Let tn be the average channel
holding time in cell n, considering all routes and stages. Thus,

λn =
∑

l,j:c(l,j)=n

Nl∑
k=j

Mlk∑
i=1

λl0Plki, (9)

tn =

∑
l,j:c(l,j)=n

∑Nl

k=j

∑Mlk

i=1 λl0Plkit̃lkij∑
l,j:c(l,j)=n

∑Nl

k=j

∑Mlk

i=1 λl0Plki

. (10)

Then from (7) and Lemma 1, we can obtain

π1(y) =
∏
n

e−(λntn) (λntn
)yn 1

yn!
. (11)

From (11), we can observe the stationary distribution (1) is
insensitive with respect to movement patterns; (2) is insensitive
with respect to the distribution of channel holding times,
or the correlation among them; (3) only depends on the

average arrival rates and average channel holding times in
individual cells; (4) has the exact same form of an M/M/∞
open Jackson network (the number of users in each cell is
independent and Poisson).

V. EXPERIMENTAL STUDY

In this section, our analysis is validated via experimenting
with real-world traces, the Dartmouth traces [11]. In our exper-
iment, we use data from the academic area in the Dartmouth
traces, with 152 APs and more than 5000 users, during a 17-
week period (Nov. 1, 2003 to Feb. 28, 2004). We focus on the
Simple Network Management Protocol (SNMP) logs, which
are constructed every five minutes, when each AP polls all the
users attached to it. By analyzing such SNMP logs, we can
derive the average arrival rate, average channel holding time,
and the stationary distribution by relative frequency.

A. Data Preprocessing

1) Data Extraction: We focus on data accumulated from 9
am to 5 pm on Monday to Friday. We also discard the data
accumulated during the periods of holiday breaks, including
Thanksgiving (Nov. 26, 2003 to Nov. 30, 2003) and Christmas
and New Year (Dec. 17, 2003 to Jan. 4, 2004).

2) Trace Gap Padding: In the SNMP logs, a user may
disappear from the SNMP report and soon reappear. This
may be caused by the user departing and then returning
to the network, or due to the missing of an SNMP report.
Following the solution proposed in [7], we set a departure
length threshold Td = 10 minutes. Only if a user disappears
and reappears within Td, it is regarded as staying in the
network and the missing SNMP logs are padded.

3) Open Users: A fraction of the users may stay in the
system during almost all working hours. These users are re-
garded as closed users. Since our analytical model assumes an
open network, the closed users are excluded in our experiment.
If a user stays for greater than or equal to 7.5 hours during
working hours on a valid day, it is regarded as a closed user. In
our experiment, we observe that 9.91% of all users are closed
users. An analytical model for accommodating closed users is
provided in [7], which can also be applied to our work.

B. Trace Analysis

1) Poisson Arrivals: We test the arrival process of new
session at each AP against the Poisson assumption in two
steps. In the first step, we run an independence test, which
indicates whether the number of arrivals in different time
intervals are independent. In the second step, we run a
Poisson distribution test, which indicates whether the number
of arrivals are Poisson distributed in a fixed time interval. The
details of the two-step test can be found in [1]. We observe
that 124 of the 152 APs pass the two-step test. Those APs are
referred to as valid APs, while the other 28 APs are referred
to as invalid APs. In our experiments, we study the effects of
both including and excluding the non-Poisson new sessions,
which refer to sessions that are initiated at invalid APs. We
emphasize that the Poisson test is for new arrivals only. Even



for those APs that pass the Poisson test, the overall session
arrival process includes both new arrivals and handoff arrivals
and hence is non-Poisson.

2) Dependency of Channel Holding Times: We check the
dependency of channel holding times in different stages. The
entropies of the distributions of channel holding times at
stages 1, 2, 3 and 4 are 4.0657, 3.4172, 3.3942 and 2.9792,
respectively, in bits. The entropy of their joint distribution is
10.2998 bits. Hence, the entropy gap is 4.0657 + 3.4172 +
3.3942+2.9792−10.2998 = 3.5565 bits, much larger than 0.
This shows that the channel holding times at different stages
are dependent.

3) AP Locations and Distance Constraint: APs that are far
away are likely to have little effect on each other, regardless of
the mobility and session patterns. Therefore, to rigorously test
the joint distribution of several APs, we are more interested in
selecting APs located close to each other. We set a distance
constraint, under which APs are located pairwisely less than
500 meters from each other. In the experiments, we will test
for cases with this distance constraint.

C. KL Divergence and Entropy Gap for User Distributions

To compare the real and analytical joint distributions of
multiple APs, we compute the Kullback-Leibler (KL) diver-
gence Hkl between them. We also test the independence of the
user distributions in different cells by computing the entropy
gap Hgap, between the sum of the entropies of real marginal
distributions and the entropy of the real joint distribution. The
entropy of the real joint distribution Hreal are also presented
for reference.

Given n, the number of APs we aim to study, we randomly
choose n different APs with the distance constraint. Then we
compute Hkl, Hgap, and Hreal with respect to these APs. By
running this procedure 100 times, we obtain the sample mean
and sample standard deviation of Hkl, Hgap, and Hreal. In
subsequent studies, we plot the sample mean versus n, along
with bars showing one sample standard deviation.

Fig. 3 shows Hkl, Hgap, and Hreal versus n under the con-
ditions of either including or excluding non-Poisson sessions.
Note that the plot points are slightly shifted to avoid overlaps.
We observe that both Hkl and Hgap are much smaller than
Hreal, when we either exclude invalid sessions or exclude
invalid APs, illustrating that the real distributions are close to
the analytical distributions, and the real marginal distributions
of single APs are approximately independent. When we do not
exclude invalid sessions or invalid APs, Hkl and Hgap become
larger, showing that the analytical distribution is influenced by
the non-Poisson arrivals. However, since there is only a small
fraction of non-Poisson arrival sessions, Hkl and Hgap remain
much smaller than Hreal. Thus, our analytical conclusions are
validated by the real-world trace experiment.

VI. CONCLUSIONS

In this paper, we have studied the user distribution in
multicell network by establishing a precise analytical model,
considering arbitrary user movement and arbitrarily and de-
pendently distributed channel holding times. We have derived
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the stationary distribution of the number of users in each cell,
which is only related to the average arrival rate and the average
channel holding time of each cell, and hance is insensitivity
with respect to the general movement and session patterns. We
use the Dartmouth trace to validate our analysis, which show
that the analytical model is accurate.
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