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Abstract—Middleboxes are ubiquitous in today’s networks. Fairness. The scheduler should provide some measure of
They perform deep packet processing such as content-basedservice isolation across flows, so that the bad behaviour of
filtering and transformation, which requires multiple categories rogue traffic will not affect the QoS of regular flows. In

of resources €.g., CPU, memory bandwidth, and link bandwidth). . . .
Depending on the processing requirement of traffic, packet particular, each flow should receive service at least ateel |

processing for different flows may consume vastly different When everyresource is allocated in proportion to the flow’s
amounts of resources. Multi-resource fair queueing allowdlows weight, irrespective of the behaviours of other traffic.
to obtain a fair share of these resources, providing service  Bounded delay: Interactive Internet applications such as
isolation across flows. However, previous solutions for mtit \;ijeq streaming and online games have stringent end-to-end
rgsource fair quguelng are. either expenswe to |mplement at del . t It is h . tant f hedul t
high speeds, or incurring high scheduling delay for flows wit €lay requirements. 1t IS hence important for a scheduler 1o
uneven weights. In this paper, we present a new fair queueing Offer a bounded scheduling delay. Such a delay bound should
algorithm, called Group Multi-Resource Round Robin (GMR?), be a small constant, independent of the number of flows.
that schedules packets irO(l) time, while achieving near-perfect Low complexity: As the volume of traffic through middle-
faimess with a low scheduling delay bounded by a small conait. |5y as increases [15], [16], it is important to make schexyli
Tq our knqwledge, .thIS work represents the.flrst. multl-rgsquce decisi t hiah ds. Ideall ket scheduler houl
fair queueing algorithm that are provably fair, highly effic ient, ecisions at high speeas. ldeally, a packet scheduler Ghou
and with low delays. have a time complexity that is a small constant, independent
of the number of flows. In addition, the scheduling algorithm
should be amenable to practical implementations.
. INTRODUCTION Despite recent advances in multi-resource fair queueing
Fair queueing algorithms [1], [2], [3], [4], [5] are desighe (e.g., [10]), how a multi-resource packet scheduler is to be
to schedule packets in network switches in a fair and efficietlesigned to satisfyll three desirable properties remains an
manner, and serve as the foundation of Quality of Serviogpen and elusive challenge. Existing designs either arerexp
(QoS) research in networking. With fair queueing algorishmsive to implement at high speeds, or provide no guaranteed
a scheduler determines the order in which packets of variadslay bound. In particular, DRFQ [10], the first multi-resce
independent flows are forwarded on a shared output liflajr queueing that implements Dominant Resource Fairness
allocating a fair share of the outgoing bandwidth to each.flodDRF) [17], associates packets with timestamps, and s¢ééedu
With the evolution of network appliances, output bandwidtthe one with the earliest timestamp. It suffers from a sqgrtin
is no longer the only shared resource in today’s enterpribettleneck with high scheduling complexity, logarithmicthe
networks. Modern network appliances or “middleboxes” doumber of flows. To avoid the sorting bottleneck of DRFQ,
more than just packet forwarding. In addition, they perforwe have designed a simpler scheduler, referred to a3, MR
filtering (e.qg.,firewalls), optimization €.g.,HTTP caching and our previous work [18]. MR serves flows in a round-robin
WAN optimization), and transformatior(g.,dynamic request fashion, and reduces the scheduling complexitytd) time
routing) based on traffic contents [6], [7], [8], which remui per packet. However, as we shall show in Sec. Il, MRay
the support of multiple resources such as CPU, memdncur an unbounded delay for weighted flows, and is hence
bandwidth, and link bandwidth [9], [LOMulti-resource fair unsuitable for applications with stringent delay requiesits.
gueueingalgorithms are therefore needed to schedule thesdn this paper, we present a new packet scheduling algorithm,
resources to meet the QoS requirements of flows. referred to asGroup Multi-Resource Round Rob{EMR?),
While fair queueing for bandwidth sharing have been exhat achieves all three desirable properties. GRups flows
tensively studied [1], [2], [11], [3], [12], [4], multi-remurce with similar weights into a small number of groups, each
fair queueing imposes new scheduling challenges as flows associating with a timestamp. The scheduling decisions are
competing for multiple resources and may have vastly difier made in a two-level hierarchy. At the higher level, GMR
resource requirements. For example, flows that require fanakesnter-groupscheduling decisions by choosing the group
warding a large amount of small packets congest the memavith the earliest timestamp, while at the lower leviglra-
bandwidth of a software router [13], while those that requigroup scheduling serves flows within a group in a round
IP security encryption (IPSec) needs more CPU processimapin fashion. GMR is highly efficient, as it requires only
time [14]. Despite their heterogeneous resource requinésne a time complexity ofO(1) per packet in almost all practical
flows are expected to receiygedictable service isolatioto scenarios. In addition, as a highlight of this paper, we show
meet their QoS requirements. This requires a multi-resourtthat GMR achieves near-perfect fairness across flows, with its
packet scheduler with the following three desired propsrti scheduling delapounded by a small constarithese desirable



resource that could be used to increase the throughput of a
- : backlogged flow is wasted in idle. DRF hence serves as a
Link [ Pl E P2 [e P3 E P4 ‘ promising notion of fairness for multi-resource fair quiege
T To measure how well a packet scheduler implements DRF,
the following Relative Fairness Bound (RFB) generalizes th
Fig. 1. A schedule that implements DRF, where flow 1 sendsegiadRl, P2, Gglestani fairness measure [11] to the multi-resourcengett
-+ while flow 2 sends packets Q1, Q2, ... and is used as an important fairness metric [10], [18], [21].
Definition 1: For any packet arrivals and any time interval
(t1,t2), let T;(t1,t2) be the packet processing time flow
receives on its dominant resource (ih, t2), and is referred
to as thedominant servicelLet B(¢1,t2) be the set of flows
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properties are not only proven analytically, but also \etiédl
experimentally in this paper. To our knowledge, G/MR the
first multi-resource fair queueing algorithm that offersaane

perfect fairness withO(1) time complexity and a constanty, . - o backlogged i1, t2). Finally, let w; be the weight

scheduling (_jelay bou_nd. . . of flow i. The Relative Fairness Bounis defined as
The remainder of this paper is organized as follows. We clar-

ify the design objectives and discuss the drawbacks ofiegist RFB — sup Ti(t1,t2) _ T;(t1,t2)
multi-resource queueing schemes in Sec. Il. In Sec. lll, we t1,t2;i, i EB(t1 ,t2) w; W
present our design of GMRalgorithm. Theoretical analysis

and simulation studies are then given in Sec. IV and Y\N

respectively. Sec. VI concludes the paper.

RFB bounds the gap of dominant services received by any
o flows in any backlogged period. Intuitively, the smaller
the gap, the fairer the scheduler. One of our objectives is to
design a scheduler with RFB being a small constant.

Scheduling Delay:In addition to fairness, scheduling delay

In this section, we explain some terminologies and clarif another important concern for a packet scheduler. The
the detailed design objectives of a multi-resource sclgdulscheduling delay is defined as the time that elapses between
We then briefly revisit existing multi-resource fair quen@i the instance a packet reaches the head of its queue, and the
algorithms and show that they either suffer from high coninstance the packet finishes being processedlbresources.

Il. OBJECTIVES ANDCHALLENGES

plexity or incur unbounded scheduling delay. The delay is introduced by the scheduling algorithm and is
also referred to asingle packet delayn the fair queueing
A. Design Objectives literature [22], [23], [24], [25]. Intuitively, flows withdrger

weights are expected to experience smaller delay. In thd ide
case, the delayl experienced by a flow should be within
mall constant amount that ilsversely proportionako the
served processing rate (weight) of the flow,,

Dominant Resource Fairness:Fairness is the primary
design objective for a packet scheduler. The recently mego
Dominant Resource Fairness (DRF) serves as a promisﬁ1
notion of fairness in a system containing multiple resosurc@I
[10], [17], [19], [20]. DRF generalizes max-min fairness to d < Clw;, (1)
the dominant resourcén the multi-resource setting [17]. The
dominant resource is defined as the one that requires ¥eereC'is a constant.
maximum packet processing time. Specifically, hetbe the ~ Scheduling Complexity: To handle a large volume of traffic
number of resources under consideration. For papkdet at high speeds, the scheduler must operate with low scmeduli
7.(p) be the time required to process it on resourceThe complexity, defined as the time required to make a packet

dominant resource* of packetp is scheduling decision. Ideally, this complexity should bereak
. constant, independent of the number of flows.
= afg:?ixﬁ(p) : In summary, a good packet scheduler should offer near-

. o perfect fairness and a constant delay bound that is inyersel
Under DRF, flows receive the same processing time on thEFoportionaI to the flow's weight, while operating iB(1)

dominant resources (assuming flows are of equal weightg)se complexity as well. Unfortunately, none of the exigtin

For example, consider two flows. Flow 1 requires basic fogesign provides all these properties, as we shall see inexte n
warding, where the link bandwidth is the dominant resourcg,psection.

while flow 2 requires security encryption, where CPU is
the dominant resource. To achieve DRF, packets should be )
scheduled in a way such that the link transmission time flo Previous Work and Challenges
1 receives is equal to the CPU processing time flow 2 receivesThere are two alternative approaches that existing multi-
Fig. 1 illustrates such a schedule, where flow 1 sends packetsource fair queueing algorithms use in their design.
P1, P2, ..., while flow 2 sends packets Q1, Q2, .... Timestamp-based algorithme.§.,[10], [21]) associate times-

It has been shown in [10], [21] that a schedule that achieviesnps with each packet upon its arrival. Whenever there is a
DRF allows flows to receive service at least at the same lewgheduling opportunity, the packet with the earliest titmep
as when every resource is allocated in proportion to thes scheduled. Since these schedulers need to sort paclesttim
weights, irrespective of the behaviours of other trafficiclis  tamps, they suffer from high scheduling complexity, reupgjr
commonly known as providingervice isolatioracross flows. O(logn) time per packet, where is the number of flows.
Moreover, a DRF schedule iwork conservingin that no This sorting bottleneck significantly limits the scalatyiliof
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Fig. 2. MR® schedule fails to offer weight-proportional delay when fioare  Fig. 3. An improved schedule over MRin Fig. 2, where the scheduling
assigned uneven weight®} denotes thekth packet of flow:. delay is significantly reduced?; denotes thesth packet of flowi.

these algorithms, and necessitates a simpler schedulemAgD(1) complexity, yet incurs high scheduling delaysd.,[4],

alternative, Multi-Resource Round Robin (MR[18] serves [27], [23]). To achieve the best of both worlds, one appraach

flows in rounds. Each flow maintains @edit accountand to combine fairness and delay properties of timestampebase

in each round, a certain amount of credit that is proportionalgorithms with low time complexity of round-robin schemes

to the flow’s weight is given. The amount of available credithis is typically done by grouping flows into a small num-

represents the dominant service the flow is allowed to corsuber of classes. The scheduler then uses the timestamp-based

in one round. A flow can overdraw its credit, and the excessiadgorithm to determine which class to serve. Within a class,

consumption will be deducted from the credit given in thetneghe scheduling resembles a round-robin scheme. While this

round. MR eliminates the sorting bottleneck and requires onlstrategy turns out to be an effective approach for bandwidth

O(1) complexity per packet [18]. sharing [22], [28], [29], [24], [25], generalizing it to setule
However, MR fails to offer a weight-proportional delay multiple resources imposes non-trivial technical chajksn

bound. To see this, consider an example where 6 flows &é&en that flows may have different dominant resources, the

competing for both middlebox CPU and the link bandwidtrscheduler has to maintain a consistent service level aelbss

Each packet of flow 1 requires 1 time unit for CPU processirthese resources. We answer this challenge in the next sectio

and 2 for link transmission. Each packet of other flows resgpuir

2 time unit for CPU processing and 1 for link transmission. I1l. GROUPMULTI-RESOURCEROUND ROBIN

Flow 1 Weighs 1/2, while flow 2 to 6 each Weighs 1/10. The In this section, we present our design of Group Multi-

amount of credits flow 1 receives in one round is hence fesource Round Robin (GMiRthat provides all the desirable

times those given to the other flows. Fig. 2 illustrates anBM%Chedu"ng properties defined in Sec. Il.

schedule, whereé”, denotes thé:ith packet of flow:. We see

tha_t the sched_ule offers Weight-proportional services rimit _A. Basic Intuition

weight-proportional delay. The maximum packet scheduling

delay flow 1 experiences is 13 time units.d., packetP}),

more than half of that experienced by other flowg(,packet

PZ has been delayed by 20 time units).

While round robin may incur high delay in a general
scenario, Theorem 1 indicates that it provides a good delay
bound when flows are of similar weights (within a small

Formally, the following analyses show that Minay incur constant factor ofv’). In other words, if we group flows with
unbounded scheduling delay when flows are assigned uneyEpilar weights to dlow group then within the group, round

weights. Letl be the maximum ratio between weights 0]robin serves as an excellent scheduler. The challenge is to
tWo f|OV\}S ie schedulenter-group flows with different weights. Recall that

@) in MR3, flows are always served in a “burst” mode [18]. For
example, in Fig. 2, flow 1 schedules 5 packets in a row in
The following theorem bounds the single packet delay ofMRround 1, and has to wait for an entire round to schedule its

W = max; ; wi/wj .

The proof is deferred to our technical report [26]. next packef; in round 2, resulting in a long scheduling delay
Theorem 1: Under MR, for any flow i, the scheduling of that packet.
delay of its packetP is bounded by Instead of serving flows in a “burst” mode, a better strat-

egy is to spread their scheduling opportunities over time, i
proportion to their respective weights. Fig. 3 illustratas
whereL is the maximum packet processing time across flowisaproved schedule over MRIn Fig. 2, where the scheduling
andm is the number of resources under consideration.  opportunities of flow 1 are interleaved between those ofrothe
By Theorem 1, we see that the delay bound of MRflows. Compared to MR schedule in Fig. 2, the maximum
critically depends on the weight distributions and may Imeeo scheduling delay of flow 1 is significantly reduced from 13 to
arbitrarily large wheri¥ > 1. To summarize, it remains open5, and the delay of other flows is also reduced from 20 to 16.
to design a multi-resource packet scheduler that offers-nea Our design follows exactly this intuition. The algorithm
perfect fairness with low complexity and small delay boundgroups flows with similar weights to a flow group, and makes
Similar complexity and delay issues have also been a magmheduling decisions in a two-level hierarchy. At a higher
challenge in the long evolution @&fingle-resourcdair queue- level, the algorithm makes inter-group scheduling deoisio
ing algorithms for bandwidth sharing, where both timestampo determine a flow group, with the objective of distributing
based schemes and round robin are the two basic approathesscheduling opportunities over time, in proportion te th
in the design. The former provides good delay bounds yapproximate weights of flows. Within a group, timra-group
requires high complexity to sort packet timestam@g([1], scheduler serves flows in a round-robin fashion. We shailvsho
[2], [11], [12], [5]). The later approach, on the other hahds in Sec. IV that this simple combination leads to remarkable

D(P) < 4(m+W)*L/w; ,



performance guarantees. For now, we focus on the detailed R} R
design in the following subsections. R R R R
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Suppose there arebacklogged flows sharing: middlebox 0 2 4 6 8 10 12 14 16 Sl

resources. Without loss of generality, let the flow weight Fig. 4. An illustration of the scheduling rounds of flow graupvhere R}
be normalized such that denotes the scheduling roundf flow group Gy.

The scheduler groups flows with similar weights to a flovgi ] 7] 7 ] f5 | H}qu [0 ‘
group. Specifically, flow grougr;, is defined as ' - . ~ § ——

Gr={i: 27" <w;<27¥N  k=12.. (3
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Thus, the weights of any two flows belonging to the same flowiy. 5. An illustration of GMR scheduler assigning slots to flows in the

group are within a factor of 2 of each other. _example of Fig. 2, wherg‘,f _denotes the packet processing for flow G,
Such a grouping strategy leads to a small number of figiythe scheduling round of its flow group .

groupsng,, bounded byn, < log, W. As pointed out in [22], , )

[24], [25], for a practical flow weight distribution, the niger For every virtual slott, the inter-group scheduler chooses

of flow groupsn, < 40 and can hence be safely assumed £&ong all pending flow groups the one with the earliest
a small constant. This significantly reduces the complesdty timestamp, defined dhe ending slot of the current scheduling
the inter-group scheduling. round of that flow groupTies are broken arbitrarily. From the

selected flow group, the intra-group scheduler then chooses

a pending flow and assigns it the current sidivith details

to be described in Sec. 1lI-D). A flow temporarily ceases to
The inter-group scheduler determines a flow group to pge pending once it has been assigned a slot in the current

tentially schedule a flow. Each group is associated with heduling round of its flow group, and will become pending

timestamp, and the one with the earliest timestamp is s#lectagain at the beginning of the next scheduling round, if remai

With appropriate timestamps, the scheduling opportuitithg backlogged. If no group is pending in slatthe slot is

of a flow group would be weight-proportionally distributecskipped. Algorithm 1 summarizes this inter-group schewuyli
over time. Given that the number of groupg is a small process.

constant, the complexity of sorting the group timestamps is

also a small constar®(logn,). Among various timestamp- Algorithm 1 InterGroupScheduling

based algorithms, we find that [22] is particularly attraeti 1. + = 0

for multi-resource extension, due to its simple timestam@: P = {flow groups that are pending in slo}

computation. Extending other algorithms.d.,[24], [25]) to  3: while TRUE do o

multiple resources would require referring to the idealize % CN00S€Gk € P, where(yy has the earliest timestamp
. . . ; . 5: IntraGroupScheduling{)

fluid DRGPS model [21], incurring high complexity. 6:

7

8

C. Inter-Group Scheduling

P =P — Gy, if G is no longer pending
The scheduler maintains aaccounting mechanisnson- if P =0 then
sisting of a sequence ofirtual slots indexed by 0, 1, 2, Keep idle until there is a backlogged flow
.... Each slot isexclusivelyassigned to one flow, and is the & Advancet to the next slot with pending flows
scheduling opportunity of this flow. Each flow grodg, is else _
) i . P . t=t+1

associated with a set gicheduling roundgach spanning” 15 angif
contiguous slots. The first scheduling round of flow groups: P = P u {flow groups that become pending in skjt
G, denotedR}, starts at slot 0 and ends at st — 1, 14: end while
while the second scheduling round, denotBd, starts at
slot 2 and ends at sloe**! — 1, and so on. Fig. 4 gives Fig. 5 illustrates an example of the inter-group scheduler
an example. Note that the scheduling rounds of differeassigning slots to flows in the example of Fig. 2, whefe
flow groups overlap by design. The scheduler assigns eat#motes the packet processing for flewin the scheduling
backlogged flowi € G}, exactly one slot per scheduling roundound! of its flow group. Note that the slot axis is only for
of flow groupGy,. This allows flowi to receive one schedulingthe accounting mechanism, while the time axis shows the real
opportunity every2* slots, roughly matching the flow’s weighttime elapse. Flow 1 belongs @, as its weight is 1/2, while
(i.e., 27F < w; < 27%+1), The scheduling opportunities offlows 2 to 6 are grouped 1@, as each of their weights is 1/10.
flows are hence weight-proportionally distributed overdgim At slot 0, bothG; and G, are pending, with the end of the

Following [22], a flow group is calledctiveif it contains at current scheduling round at slot 1 and slot 15, respectiVéig
least one backlogged flow. A backlogged flow Gy, is called inter-group scheduler hence picks, from which the intra-
pendingif it has not yet been assigned a slot in the curregroup scheduler selects flow 1 as it is the only backlogged
scheduling round of7;. A flow group is called pending if it flow in G;. Flow 1 then schedules its packets for processing
contains at least one pending flow. and ceases to be pending in the current scheduling round. As




a result, in slot 1, onlyG, is pending and flow 2 is assignedw;. Despite their weight difference, both flows are assigned
the slot. Flow 1 becomes pending again in slot 2 as a nexactly 1 slot per scheduling round @f,. Therefore, to ensure
scheduling round of its flow grouf¥; starts, and is selectedweight-proportional dominant services, the given credits
for the similar reason as in slot 0. Flow groufs and G4 shown in (4) are proportional to their respective weights.
are hence selected alternately in the following slots waitii  Moreover, for each flow € G, since2™% < w; < 27++1,
flows of G, are assigned slots and cease to be pending. Ntite scaling factoR*L in (4) ensures that
that slots 11, 13, and 15 are not shown in Fig. 5 as no flow is IL<e
o . <e¢ <2L. (5)

pending in these slots, and are hence skipped by the schedule

Unlike the single-resource scheduling [22], in the multiBecause the given credits are larger than the maximum packet
resource environment, a flow may not receive dominant s@ocessing time, they can always compensate for the overcon
vices in its assigned slots. For example, in Fig. 5, flow gumption of dominant services flowincurs in the previous
is assigned slot 0, but receives dominant servides, (ink scheduling round. As a result, floiwvill always have available
transmission) later in slot 1. Flow 2, on the other hangredits when assigned a slot, and can schedtlast one
always receives dominant servicae( CPU processing) in packet In addition, by (5), the given credits are roughly the
its assigned slots. Without appropriate control, the piirén sameacross all flow groupsThis is significant as flow € G,
service asynchronicity may lead to a significant work pregreis already assigned slots in proportion to its approximate
gap between two resources, resulting in the poor fairneds ameight2—%, so that in each slot, the scheduler should allocate
long scheduling delay. We show in the next subsection thgt tiall flows approximately the same dominant services.

problem is effectively solved by the intra-group scheduler ~ Progress Control Mechanism: In addition to the credit
system, the scheduler also employs a progress control mecha

nism to reinforce aelatively consistenprocessing ratacross
resources Specifically, whenever a flow € Gy, is assigned
Once the flow group is determined, the intra-group scheg-siot ¢ in the scheduling round of Gy, the scheduler
uler chooses a pending flow from that group in a round-robghecks the work progress on the last resource (usually the
manner. Compared to round robin for bandwidth sharéng.( link bandwidth). If flowi has already received services on the
[4], [23], [27], [29], [22], [24], [25]), the intra-group $eduler |ast resource in the previous scheduling rodnd1, or flow
operates with two important differences. First, for thegmse ; is a new arrival, then its packet is scheduled immediately.
of DRF, the scheduler maintainsceedit systento keep track Otherwise, the scheduleteferspacket schedulingintil flow
of the dominant services a flow receives, not the amount pktarts to receive service on the last resource in the prsviou
bits a flow transmits. Second, the scheduler emplgy®gress scheduling round— 1 of G.. For example, as shown in Fig. 5,
control mechanisnto reinforce arelatively consistentvork in slot 12, the packet processing for flowik(, f;) is withheld
progress across resources, so as to eliminate the adviasis efin round 7 until the packet processed in roundi@.( f?)
caused by the aforementioned service asynchronicity. starts transmission. Similar deferral has also been shown i
Credit System: Every time a flow: is assigned a slot, it slots 14 and 16. Intuitively, this progress control mechani
receives a credit; (whose size is given in (4) below), whichensures that the work progress on one resource is not ahead
is the time given to the flow for packet processing on itgf that on the other by more than 1 round, hence achieving
dominant resourcén the current scheduling round. As longan approximately consistent processing rate across ressur
as there are available credits, flaws allowed to schedule a in spite of the potential service asynchronicity. This pess
packet for processing, and the corresponding packet BInges control mechanism is essential to deriving the constardydel
time on the dominant resource is deducted from its totalitrechound of GMR3, as shown in our analysis in Sec. IV.
A flow ¢ canoverdrawthe processing time by scheduliay  To summarize, Algorithm 2 gives detailed design of the
most one more packéhan those allowed by the availableintra-group scheduling. Every flow grou@; maitains an
credits. The excessive consumption of dominant servicesAstiveFlowLisfk] for its backlogged flows. It also uses
tracked by theexcess countet;, and will be deducted from RoundRobinCountgt] and Roundk] to keep track of the cur-
the credit given in the next scheduling round as a penalty @nt scheduling round. Every time flow groa. is selected,
overconsumption. the intra-group scheduler chooses flowe Gy at the head
While MR? adopts a similar credit system in its design [18Jof ActiveFlowLisfk]. Flow i is given a credit to compensate
the intra-group scheduler of GMRoperates with an important for its overdraft in the previous round, and schedule packet
difference. Every time a flow is assigned a slot, instead ofuntil no credit remains or no packet is backlogged (line 6 to
receiving arelasticamount of credits in different rounds, it is15). After that, the flow ceases to be pending and is appended
given afixed-sizecredit that is proportional to its weight;. to the tail of the active list if it remains backlogged. Flow
Specifically, for flowi € Gy, the given credit; is groupGy, ceases to be pending when all its backlogged flows
& are serviced in the current scheduling round. If no flow is
¢ =2"Lw;, () backlogged, flow groui:, becomes inactive.
where L is the maximum packet processing time. The moti-
vation for defining credit in this manner is two-fold. E. Handling New Packet Arrivals
To begin with, even if two flows, j belong to the same In addition to determining the packet scheduling order,
group Gy, flow i’s weightw; may be up to twice as large asGMR? scheduler also needs to handle new packet arrivals.

D. Intra-Group Scheduling



Algorithm 2 IntraGroupSchedulinggy,) ar, is set to 1 if flow groupG. is active, and 0 otherwise.
1: if RoundRobinCountgt] == 0 then Similarly, bit p, is 1 if groupGy, is pending, and 0 otherwise.

g Sgﬁzgllj]oljrcl:ount{aﬂ }rfécgn?rilr?tvvsl_é?\tekéhl]ﬁ%gtrggn d 6, Choosing_a flow grouplt is easy to check tha_\t, in all slof
4: end if the scheduling round of flow grou@; ends earlier than those
5: Flow i = ActiveFlowLisfk].RemoveFromHead() of all flow groupsGy/, wherek’ > k (see Fig. 4). Flow group
6: by = 2"Lw; —e; > b; tracks the available credit of floiw  G) hence has a higher priority to be chosen thiap. As a
7: while IsBacklogged{) and b; > 0 do result, the chosen grou@;, can be identified by locating the
g: Wh'{,?/.FlowprogressonLQStResou[@h< Roundk] —1.do  \iohimost bitp,, of bitmapp that is set to 1. Such an operation

: ithhold the scehduling opportunity of flow ; L
10:  end while can be done irO(1) by a standargriority encoder[22].
11:  PacketP = Queué¢i].Dequeue() Advancing to the earliest slot with pending groupgcause
12:  P.SchedulingRound= Roundk] _ the start of the scheduling round for groGR is also the start
13:  ProcessPackeR) > Schedule for CPU processing ¢ 5 scheduling round of all groups)., wherek’ > k (see
14: b; = b; — DominantProcessingTini€’) .
15 end while Fig. 4), the scheduler should advance to the start of the next
16: if IsBackloggedi) then scheduling round of the lowest-numbered flow group that is
170 e;= —b; > e; tracks the overdraft of credits of flow active. This can be identified by locating the rightmostdait
18:  ActiveFlowListk]. AppendToTail¢) that is set to 1, and the new slot is the smallest multiple of
;gf 9|See/_ . 2k greater than the current slatWith the surport of priority
51- end if encoder, all these operations are don®ifl) time.
22: RoundRobinCountgk] -= 1 Updating the pending se#t slot ¢, an active flow groudr,
23: if RoundRobinCountgk] == 0 then becomes pending #* dividest. To identify all these groups,
ggf en dFilfOW groupG', ceases to be pending it is sufficient to locate the least significant bit othat is set
26 if ActiveFlowListi] = 0 then to 1. Let it be thekth least significant bit of. _Then all active
27:  DeactivateGy) > Flow groupG}, ceases to be active flow groupsGy, wherek’ < k become pending at and can
28: end if be found via some simple bit operations@i1) [22].

Intra-Group Scheduling: In Algorithm 2, an essential
) , . . operation is to track the work progress on the last resource

Algorithm 3 gives the detailed procedure. In addition Q¢ yhe selected flowi (line 8 to 10) to determine if the
enqueueing the newly arrived packeto the queue of flow gopeqyling opportunity of flow should be withheld. For the
i € Gy to which the packet belongs, the scheduler algq,nse of efficient implementation, a packeof flow i, upon
appends flow to the active list of its flow grouft, if flow  gopeqyling, is associated a tag recording the current stingd
iis pre_wously inactive. Flow groupry, is also activated if it 5,14 of flow groupGy to which flow i belongs (line 12 of
is inactive before. Algorithm 2). Whenever packe? starts processing on the last

Algorithm 3 PacketArrivalP) resourcen, thg progress of flow on that resource is updated
1: Let ¢ be the flow to which the newly arrived packetbelongs as the SChedu“.ng rounq t_agged t‘? padR?Wh'Ch will be u_sed
2: Queui].Enqueuep) later to determine the timing of withholding packet prodegs
3: Let Gy, be the flow group to which flow belongs of flow ¢ (line 8). All these operations can be done(xi1).
4: if ActiveFlowLisfk].Contains() == FALSE then Another operations that may introduce additional complex-
5: ActiveFlowLisfk].AppendToTail() N . . . )
6 if IsActive(Gs) == FALSE then ity is to ob_taln the packet processing tlm_e on the o_Iomlnant
7: ActivateGy) > Flow groupG), becomes active resource (line 14). Note that such information is requirely o
8  end if after the packet has been processed by CPU. At that time the
9: end if scheduler knows exactly how the packet should be processed

next and what resources are required. The packet processing
time on each of the following resource can hence be accyratel
F. Implementation and Complexity inferred via some simple packet profiling technique®ifl).
So far, we have described the design of GMmn this For example, a sim_pl_e linear model based_on t.he packet size
subsection, we show that appropriate implementations tio b&® proved to be sufﬂmently acj‘cura}te for estlm:?mon [101'_
the inter-group and intra-group scheduling allows GMmR To conclude, with appropriate |mplementat|on§ mentlpned
make packet scheduling decisions@{1) complexity. above, both inter-group and intra-group scheduling dewssi
Inter-Group Scheduling: There are three important oper-can be made i®(1) time per packet, making GMRa highly
ations in Algorithm 1,i.e., choosing a flow group (line 4), efficient multi-resource scheduler for middleboxes.
advancing to the earliest slot with pending groups (linea@y
updating the pending sé? (line 13). Given a small number

of flow groupsn,, all these operations can be done(il) IV. PERFORMANCEANALYSIS

time using the simple methods described in [22], which we

briefly mention in the following. In this section, we analyze the properties of Gid show
The scheduler uses two bitmaps= a,,, ...a2a; andp = that it achieves near-perfect fairness with schedulingudel

Pn, - --P2p1 10 track the active and pending flow groups. Bibounded by a small constant.



A. Fairness Scheduling delay D(P)

Resource

For the purpose of fairness analysis, we derive the RFB of g1 0 B 72 I N o) R Fe-
GMR? defined in Sec. II. We start by bounding the dominant ~ fffffff f E = : !fl fffffffff :*
services a flow receives in any backlogged periobdis) as R (SR o ! . '
follows. The complete proof is deferred to [26]. mo__. N LA S @ ,,,,, Jf_flzl ,,,,,, . it .

Lemma 1: Let T;(¢1,t2) be the dominant service a back- to 11 Lo A tn,—1 tﬁf Time

logged flow: receives in a time intervdl,t2). We have
Fig. 6. The illustration of a scenario where the scheduliriay D(P)
reaches the maximum. Herﬁf, denotes the processing of flawn scheduling

(6) \
round! of its flow group.

where x is the minimum number of contiguous slots that
completely contair(ty, t2). hence provides near-perfect fairness across flows, ircéspe

Proof sketch: Let z; be the number of slots assigned to flovef their traffic patterns. This is significant as the fairness
i € Gy in (t1,t2). By Algorithm 2, the progress gap betweerguarantees provided by existing multi-resource fair qireue
any two resources is upper bounded by 1 scheduling rousdhemese.g.,[10], [18], all assume flows do not change their
It is hence easy to verify that flow receives services on its dominant resources throughout the backlogged periodsa(a.k
dominant resourcat leastin x; — 2 scheduling rounds, and the resource monotonicity assumpti¢h0]).
at mostin z; + 2 scheduling rounds. The dominant services
flow i receives are hence at ledst; — 2)c; — L and are at B, Scheduling Delay
most (x; + 2)c; + L, wherec; = 2F Lw; is the credit given to
flow 4, i.e.,

In addition to the fairness guarantees, we show that &MR
ensures that the scheduling delay is bounded by a small
constant that is inversely proportional to the flow’s weidgfd
see this, the following two lemmas are needed in the analysis
Their proofs are deferred to [26].

Lemma 2: Let d. be the dominant services flowe G
receives in scheduling rouridof G.. We have

Also, the number of scheduling rounds of flow groGp
contained in(t1,t2) is at leastr; — 2, and is at most:; + 2.
Because each scheduling round®jf spans exactl@* slots,
we have2”(z; — 2) < z < 2%(z; + 2), which is equivalent to

(i —

0<d <3L. (13)
27 ky —2< g <27 kx4 2. (8) .
o _ Lemma 3: For flow i € G and scheduling rountof Gy,
Substituting (8) to (7), we derive let t, be the time when flow finishes being processed on
Ti(t1,t2) < (i + 2)ei + L resource 1 in round of Gy, and¢; the time when flow:
T —k finishes being processed on the last resourcén round!.
<2 r+4)e+L (@ We have
=27%29F Lw; + 4¢; + L t1 —to < 12mL/w; .
< zLlw; +9L, We now bound the scheduling delay of GMRBSs follows.
Similarly, we also derive Theorem 3: For all flow1, the scheduling delay of its packet
P is bounded by
Ti(tl, tQ) Z (Il - 2)01 — L Z SCL’LUZ —9L . (10)
o D(P) < 24mL/w; ,
Combining (9) and (10) leads to the statement. [ ]

We are now ready to derive the RFB of GMRs follows. Wherem is the number of resources.

Theorem 2: For any time intervalt,, t;) and any two flows Proof: For any f'OWi € Gy, the scheduling delay of its
i, j that are backlogged, we have packetP reaches its maximum wheR reaches the head of

the queue in scheduling rouridof Gy, but is processed in
Titi,ta) _ Tyt t2) < 9L (i + L) . the next round + 1. Since there are at mo&t+! slots in
Wy j B w; Wy between and each slot is assigned to one flow, the number of
Proof: For any flowi, applying Lemma 1 and dividing both flows served during this timey, is upper bounded bg"+!.
sides of (6) byw;, we have Let these flows bejy, ..., j,, operating in their respective
current scheduling rounds, .. .,l,,. In particular,j,, =i

Wy

zL —9L/w; < Ti(t1, t2)/w; < xL +9L/w; . (11) andi,, = I + 1. By Algorithm 2, flow j; starts service on
Similarly inequalities also hold for flo, i.e. resource 1 no later than the time its previous flofinishes
T being processed on the last resouncén round!. Similarly,
xL — 9L /w; < Tj(t1,t2)/w; <axL +9L/w; . (12) flow j, starts its service on resource 1 no later than the time its
Taking the difference between (11) and (12) gives the StaPer_gvious flowy; finishes being processed on the last resource

ment.

Theorem 2 indicates that GMRbounds the difference
between the normalized dominant services received by t

flows in any backlogged periothy a small constant. GMR

m in roundl;, and so on. Fig. 6 illustrates this scenario, where
t. is the latest time flowj, receives service on resource 1 in
round/, of its flow group,z =1,2,.... We then have

WO

tep1 —t: <md7 <3Lm, z=12.., (14)



TABLE | TABLE Il

SUMMARY OF PERFORMANCE OFGMR? AND EXISTING SCHEMES WHERE PARAMETERS OF LINEAR MODEL FORCPUPROCESSING TIME IN3
n 1S THE NUMBER OF FLOWS AND m IS THE NUMBER OF RESOURCES MIDDLEBOX MODULES BASED ON MEASUREMENT RESULTS IN10].
Scheme Complexity Fairness’ Scheduling Delay Module CPU processing time [is)
DRFQ [10] O(log n) L(1/w; +1/wj) Unknown Basic Forwarding 0.00286 x PacketSizelnBytes- 6.2
MR3 [18] O(1) 2L(1/w; + 1/w;) | 4(m + W)?L/w; Statistical Monitoring | 0.0008 x PacketSizelnByteg- 12.1
GMR?3 O(1) OL(1/w; + 1/w;) 24mL]/w; IPSec Encryption 0.015 x PacketSizelnBytes- 84.5

where the second inequality is derived from Lemma 2. In othfllows a simple linear model based on packet sizeand

words, the time span of processing flgw on all resources IS axz + B, wherea,, and 3, are parameters of module

in roundl. reaches its maximum when the processing time &d are summarized in Table II. The link transmission time is

maximized on every resource. proportional to the packet size, and the output bandwidth of
Now let ¢, be the time when packe? reaches the head ofthe middlebox is 200 Mbps, the same as [10].

the queue in scheduling rouridof its flow group, which is  Fairness: We confirm experimentally that GMRprovides

also the time when flow finishes being processed on resourceear-perfect service isolation across flows, irrespectiaeir

1 in round! (see Fig. 6). By Lemma 3, we have behaviours. The simulator generates 30 traffic flows thad sen
1300-byte UDP packets for 30 seconds. Flows 1 to 10 pass
tr —to < 12mL/w; . (15) through the Basic module; flows 11 to 20 undergo statistical

With (14) and (15), we bound the deldy(P) as follows: monitoring; while flows 21 to 30 require IPSec encryption.
Among all these flows, flow 1, 11, and 21 are rogue traffic,

D(P) <377 (ts —t.1) each sending 30,000 pkts/s. All other flows behave normally,
< 12mL/w; + 3Lmny each sending 3,000 pkts/s. Flows are assigned random weight
< 12mL/w; + 3Lm2k+1 uniformly drawn from 1 to 1000. Fig. 7a depicts the dominant

services, in seconds, received by different flows under MR
< 24mLjwi normalized to their respective weights. We see that detipite
where the last inequality holds because® < w; < 2-++1, presence of ill-behaving traffic, GMRallows flows through
which implies2*+! < 4/w;. m different modules to receive weight-proportional dominan
Theorem 3 gives a strictly weight-proportional Schedu"ngervices, enforcing service isolation. Similar resultgehalso
delay bound that isndependent of the number of flavighis been observed using DRFQ and KRand are not shown in
implies that a flow is guaranteed to be scheduled within the figure.
small constant amount of time that is inversely proportiona Scheduling Delay: We next confirm experimentally that
to the processing rate (weight) the flow deserves, irresectGMR? significantly improves the packet scheduling delay, as
of the behaviours of other flows. To our knowledge, this is tfeompared to existing multi-resource scheduling altevesti
first multi-resource packet scheduler that offers this prop  The simulator generates 150 UDP flows with flow weights
To conclude, Table | compares the performance of GMRiniformly drawn from 1 to 1000. A flow randomly chooses one
with DRFQ [10] and MR [18]. We see that GMRis the only ©Of the three middlebox modules to pass through. To congest
scheduler that provides provably good performance guaeantthe middlebox resources, the flow rate is set to 500 pktsth, wi

on fairness, delay, and complexity. packet sizes uniformly drawn from 200 B to 1400 B, which are
the typical settings for Ethernet. For each processed pagke
V. SIMULATION RESULTS record its scheduling delay, using DRFQ, RIRand GMR,

F | ( tudv t th tical Ivsi respectively. The simulation spans 30 seconds.
or compiementary study 10 our neoretical analysis, we Fig. 7b shows the CDF of the scheduling delay a packet

experimentally evaluate the fairness and delay performaiic experiences, from which we see the significance of GMR

PO ;
G'\éR V|a| S'Sm?lat_'c;\r:ls' imulati it based on delay improvement: Using GMR over 95% packets are
eneral Setup. simuiation TESUlLS are based on OUlgqqqyled within 20 ms, which is roughly the minimum time

event-driven packet simulator written with 3,000 lines o acket has to wait under DRFQ and MRA detailed
C++ code. Packets follow Poisson arrivals and are proces%?ﬁistics breakdown is given in Fig. 7c and 7d. Fig. 7c

s_enally on resources, W't.h. CPU processing f|rst., followgd bshows the mean scheduling delay a flow experiences with
link transmission. In addition to GMR we also implement

DRFQ [10] and MR [18] for the purpose of comparison. Therespecuve to its weight. We see that GRBonsistently leads

mulator simulat ket g in 3 tvpical mi bto a smaller mean delay than the other two schedulers for
simufator simuiates packet processing In o typical matkeh 46t 41 flows, especially for those with large weightsisTh
modules,i.e., basic forwarding (Basic), statistical monitorin

: . . gdelay improvement is not limited to the average case. Fig. 7d
(Stat. Mon.), and IP.SeCl.mty epcrypqon (IPSec). The finst t_ ives the maximum delay a flow experiences with respect
modules are bandwidth intensive, with monitoring consmgmrfo its weight. We see that both GMRand DRFQ offer a
slightly more CPU resources, while IPSec is CPU mtens'v\?/eight—proportional delay bound. While DRFQ achieves a
According to the measurement results reported in [10], t

. . . X aller delay bound for flows with smaller weights, GMR
CPU processing time required by each middlebox mOdLﬁ generally better for more important flows with medium

1The fairness analysis of DRFQ and MRequires that flows do not c:hangetO Iqrge Weightsl. MP{, on the other hand.,.fails t(_) prOVide
their dominant resources throughout the backlogged perfibal], [18]. service differentiations among flows. Intuitively, sincevik
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Fig. 7. Simulation results of the fairness and delay peréoroe of GMR, as compared to DRFQ and MRFigure (a) dedicates to the fairness evaluation,

while (b), (c), and (d) compare the scheduling delay of thedatschedulers.

are served in rounds, in the worst case, a packet has to wgl V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and G. Shi, ‘iBesand

for the entire scheduling round until it is processed, inicgra
worst-case delay that is as long as the span of an entire ro
GMR? avoids this problem by distributing the scheduling
opportunities over time, in proportion to the flows’ weights [11]
[12]
VI. CONCLUDING REMARKS

In this paper, we design a new packet scheduler, call[elg]
Group Multi-Resource Round Robin (GMR that allows
independent flows to have a fair share on multiple middleb&X]
resources. GMR groups flows with similar weights to the
same flow group, and makes scheduling decisions in a two-
level hierarchy. The inter-group scheduler determines & fIg1ol
group, from which the intra-group scheduler picks a flow in a
round-robin manner. Through this design, GMBliminates [16]
the sorting bottlenecks suffered by existing muIti—reseur[ 7]
scheduling alternatives such as DRFQ, and is able to han&le
a large volume of traffic at high speeds. More importantly,
we show, both analytically and experimentally, that GMR!18l
ensures constant scheduling delay bound that is inversely
proportional to the flow's weight, hence offering predideab [19]
delay guarantees for individual flows. To our knowledge,
GMR? is the first multi-resource fair queueing algorithm thabo
offers near-perfect fairness with a constant schedulingyde
bound inO(1) complexity. 21]
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