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Abstract—User-centric base station (BS) cooperation has been
regarded as an effective solution to improve network coverage
and throughput in next-generation wireless systems. However, it
also introduces more complicated handoff patterns, which may
potentially degrade user performance. In this paper, we aim
to quantify the number of handoffs in user-centric cooperative
wireless networks. The challenges are two-fold: (1) BSs are
spatially randomly deployed, and (2) user-centric BS cooperation
further creates complicated network topologies so that it is
difficult to track handoffs in the system. We propose a stochastic
geometric analysis framework on user mobility, to derive a
theoretical expression for the handoff rate experienced by an
active user with arbitrary movement trajectory. Furthermore,
we characterize the average downlink user data rate under a
common non-coherent joint-transmission scheme, which is used
to illustrate the tradeoff between handoff rate and data rate
in optimizing the cooperative cluster size for each user. Finally,
computer simulation is conducted to validate the correctness and
usefulness of our analysis.

I. INTRODUCTION

Base station (BS) cooperation is expected to become an
important feature in next-generation wireless networks [1]. It
allows simultaneous connections from one user to multiple
BSs, to significantly enhance the received power level and
reduce interference. In addition, compared with the traditional
single-BS association mode, users are less likely to enter a
dead spot, e.g., near the cell edge, where the received signal-
to-interference-plus-noise-ratio (SINR) becomes too low.

A central element in the implementation of BS cooperation
is BS clustering, where a set of BSs are selected to coopera-
tively serve a user. There are two types of BS clustering modes,
namely the disjoint clustering and user-centric clustering. In
the disjoint clustering mode, the entire geographical region
of the network is partitioned into multiple non-overlapping
subregions, and the BSs in each subregion cooperatively serve
users within the subregion. In the user-centric clustering mode,
each user is served by its individual cluster of neighboring
BSs. As the user moves, its BS clusters are updated, so
that each BS appears in different clusters. The user-centric
clustering mode is more advantageous compared with its
disjoint counterpart, since the BS clusters are continuously
updated based on the user location, which avoids the low-
SINR cluster edges that are artificially created in disjoint

The majority of the work was done while the first author was affiliated with
the University of Toronto, Canada.
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Fig. 1. An example of virtual cells. The numbers 1 to 9 indicate 9 BSs;
{A,B} indicates the virtual cell region served by BSs A and B.

clustering. Consequently, in this work, we focus on the user-
centric clustering mode.

However, in the presence of user-centric BS cooperation,
mobility management becomes more challenging. The hand-
off patterns are more complicated compared with those in
traditional single-BS association systems, since the handoffs
now involve changes in terms of a set of multiple BSs.
Different from the single-BS association scenario, there are
no explicit cells surrounding individual BSs. Instead, we need
to characterize the virtual cell, which corresponds to the
region where a user connects with the same set of BSs.
If a user crosses the boundary between two virtual cells,
its connected BS set is changed and a handoff is made.
However, due to the spatial randomness of BSs as well as
user-centric BS cooperation, the virtual cells are generated
randomly and irregularly. It is difficult to characterize the
virtual cell boundary and to track boundary crossings made
by users in the system. Fig. 1 shows an example topology
where users are served by two closest BSs. Clearly, previously
developed techniques for single-BS handoff analysis [2]–[5]
are insufficient to model the complex handoff patterns in such
user-centric cooperative wireless networks.

Characterizing the handoff rate can provide important guide-
lines for system design. For example, optimizing the BS
cluster size requires accounting for the impacts of both the
handoff rate and the data rate. Consider the example in
Fig. 2, where an active user’s trajectory is indicated by the
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(a) A user is served by two closest BSs. It
makes 4 handoffs. For example, it accesses
BSs 1 and 2 at A, BSs 1 and 3 at B, and
makes a handoff at X .
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(b) Same BS locations and user trajectory as
above. The user is served by three closest BSs.
It makes 6 handoffs. For example, it accesses
BSs 1, 2, and 4 at C, BSs 1, 2, and 3 at D,
and makes a handoff at Y .

Fig. 2. A comparison between two-BS cooperation and there-BS cooperation.
BSs are represented by circles; blue curves show virtual cell boundary; user
trajectory is shown as the magenta arrow.

magenta arrow. If the user is served by two cooperative BSs,
it experiences 4 handoffs, as shown in Fig. 2(a). In contrast, as
shown in Fig. 2(b), if the user is served by three cooperative
BSs, it experiences 6 handoffs. However, in the latter case, the
user could potentially experience a higher data rate since it is
served by one more BS. Thus, an optimal system design must
balance the tradeoff between a larger BS cluster to improve
data rate and more frequent handoffs, which increases cost and
potentially deteriorates service quality.

In this work, we propose a new stochastic geometric anal-
ysis framework to quantify the handoff rate in a user-centric
cooperative wireless network, where each user is served by its
K closest BSs. We model the BSs as a Poisson point process
(PPP) to capture their spatial randomness. Our contributions
are as follows:

• Through stochastic and analytic geometric analysis, we
derive an exact expression for the handoff rate experi-
enced by an active user with arbitrary movement trajec-
tory.

• As a study on the application of the above handoff rate
analysis, after calculating the average downlink data rate

of users under the non-coherent joint-transmission (NC-
JT) scheme, we further investigate the optimal cluster
size K, to balance the tradeoff between handoff rate
and data rate. We find that the optimal cluster size is
asymptotically inversely proportional to the square of
the user velocity and inversely proportional to the BS
intensity.

• Computer simulation is conducted to validate the cor-
rectness and usefulness of our analysis, through which
we also show that the handoff rate derived under the
PPP assumption provides close approximations even if
the BSs are non-PPP distributed.

The rest of this paper is organized as follows. In Section
II, we discuss the relation between our work and prior works.
In Section III, we present the system model. In Section IV,
we present the theoretical analysis on the handoff rate in the
system. In Section V, we study the optimal cluster size as an
application scenario. In Section VI, we validate our analysis
with simulation. Finally, conclusions are given in Section VII.

II. RELATED WORKS

In this section, we summarize the prior research in stochas-
tic geometric modeling of cooperative wireless networks, and
the existing techniques for handoff analysis.

A. Stochastic Geometric Analysis of Cooperative Wireless
Networks

In order to capture the spatial randomness of BSs and users,
analysis techniques based on the theory of stochastic geometry
have been applied to evaluate performance metrics such as
interference distribution, coverage probability, data rate, and
throughput in cooperative wireless networks. In these works,
the BSs are often assumed to be spatially distributed as a PPP.
In [6], a two-BS cooperation model was proposed and the user
coverage probability was derived for this model. In [7]–[9],
various forms of the disjoint clustering mode of BS coopera-
tion were studied. In [10]–[15], the performance of different
joint transmission schemes in user-centric BS cooperation
was evaluated, including NC-JT [10], [11], synchronous joint
transmission [12], interference nulling [13], and coordinated
beamforming [14], [15]. All of these works focused only on
networks with stationary users, and thus handoffs were not
studied.

B. Handoff Analysis in Wireless Cellular Networks

In the scope of handoff analysis, all previous works con-
cerned only the single-BS association scenario. One well-
known category of analysis techniques employ queueing for-
mulation, without explicitly modeling the geometric patterns
of cell shapes in the networks [16]–[19]. In these works,
cells were modeled as queues containing active users, and
handoffs were modeled as unit transfers between queues.
Another common category of analysis techniques assume
regularly grided cells for mathematical convenience. Examples
of such geometric topologies include hexagonal grids [20],
[21], square grids [22], and circles overlaying hexagons [23].



To further capture the spatial randomness of network topolo-
gies, a seminal study on user mobility was conducted in [2] for
a single-tier cellular network with randomly distributed BSs,
where the BSs were modeled as a homogeneous PPP, and cell
splitting was modeled as a standard Poisson Voronoi. The case
of multi-tier cellular networks was considered in [3] and [4],
where each tier of BSs was modeled as a homogeneous PPP,
and the resultant cell splitting was modeled as a weighted
Poisson Voronoi. Further extension to [3] was given in [5],
where the BS tiers were modeled as Poisson cluster processes
(PCPs), such that their aggregation around highly populated
areas could be accommodated. However, the above works
considered only single-BS association, which is not applicable
to BS cooperative wireless networks.

III. SYSTEM MODEL

In this section, we describe the user-centric cooperative
network under consideration, clarifying the notions of user
handoffs and virtual cells.

A. User-Centric Cooperative Wireless Network

We consider a single-tier wireless system with BSs scattered
in the two-dimensional Euclidean space R2 according to a
homogeneous Poisson point process (PPP) Φ with intensity
λ. The PPP assumption is commonly adopted in stochastic
geometric analysis in the research literature [10]–[15], [24]–
[27]. We additionally show through simulation in Section VI
that our results derived under the PPP assumption provide
close approximations even when BSs are non-PPP distributed.

A general user-centric cooperation scheme where each user
is served by its K closest BSs is assumed, where the minimum
value of K is Kmin = 2. Note that we do not need to specify
the transmission scheme for handoff analysis, so that this
model is applicable to many different scenarios, such as NC-
JT, cooperative beamforming, and cloud radio access network
(C-RAN).

B. Handoffs in User-Centric Cooperative Wireless Network

A handoff is defined as the event that the connected BS set
of an active user is changed. One major goal of this work is to
quantify the rate of handoffs of some active user moving in the
network. Therefore, we need to characterize the virtual cell,
defined as the region in which a user is served by the same set
of K BSs. Since Φ is a PPP, the overall virtual cells correspond
to a Kth-order Poisson Voronoi [6], [14], an example of which
is shown in Fig. 1. Let T

(1)
K denote the overall set of cell

boundary of the Kth-order Poisson Voronoi. Whenever an
active user crosses T(1)

K , the set of connected BSs are changed,
and thus a handoff is made. Let T0 denote the trajectory of
the user, which is of finite length. The number of handoffs
the user experiences is equal to the number of intersections
between T0 and T

(1)
K , which is denoted by N (T0,T(1)

K ).

C. Kth-order Poisson Voronoi

We formally define T
(1)
K as follows. Let C =

{x1, . . . ,xK} ⊂ Φ denote a set of K BSs. The Kth-order

Voronoi cell with respect to the BS set C is defined as the set
of points closer to x1, . . . ,xK than any other points in Φ, i.e.,

V(C) = {y ∈ R2
∣∣∀x ∈ C,x′ ∈ Φ\C, |y − x| ≤ |y − x′|}.

(1)

In other words, the distance from an arbitrary point in V(C)
to any BS in C is no larger than the distance from the point
to any BS not in C. Note that a BS may not be in the cell
formed by itself. For example, in Fig. 1, neither BS 6 nor BS
8 is inside the region served by BSs {6, 8}. We also note that
for some C, V(C) = ∅. In Fig. 1, nowhere is served by BSs
{1, 9}.

Thus, T(1)
K corresponds to the set of points on R2 which

belongs to two different cells:

T
(1)
K = {y ∈ R2

∣∣∃C ̸= C′, s.t. y ∈ V(C)
∩

V(C′)}. (2)

Note that T(1)
K can be determined by Φ, and thus it is a fiber

process [28] generated by Φ. Because Φ is stationary and
isotropic, T(1)

K is also stationary and isotropic.

IV. HANDOFF RATE ANALYSIS

In this section, we present an analytical framework to
quantify the handoff rate. First, we rewrite T

(1)
K in a more

appropriate form. Second, the handoff rate is derived through
analyzing the length intensity of T

(1)
K , which is in turn

derived through characterizing the area intensity of the ∆d-
neighborhood of T(1)

K .
Note that in the rest of this paper, we define B(x, r) as the

disk region
{
y ∈ R2

∣∣|x−y| ≤ r
}

, and Bc(x, r) as the region{
y ∈ R2

∣∣|x− y| ≥ r
}

.

A. Rewriting Cell Boundary T
(1)
K

We first rewrite T
(1)
K in a more appropriate form, which will

facilitate the handoff analysis in the subsequent steps.

Theorem 1. T
(1)
K can be rewritten as follows:

T
(1)
K =

{
y ∈ R2|∃{x1,x2, . . . ,xK−1,xK ,x′

K} ⊂ Φ,

s.t. |z− y| ≤ |xK − y| = |x′
K − y| ≤ |x− y|, ∀z ∈ (3)

{x1, . . . ,xK−1} and ∀x ∈ Φ\{x1, . . . ,xK−1,xK ,x′
K}
}
.

See Appendix A for the proof.
Theorem 1 suggests that T

(1)
K is the set of points, whose

distances to two BSs are the same, and this distance is greater
than or equal to the distances to some arbitrary set of K − 1
BSs, but is less than or equal to the distances to all the other
BSs.

B. Length Intensity and Area Intensity

Handoffs occur at the intersections between an active user’s
trajectory with T

(1)
K . In order to track the number of inter-

sections, we need to first study the intensity of T
(1)
K . Higher

intensity of T
(1)
K leads to greater opportunities for boundary

crossing, and thus higher handoff rate.
Let µ1

(
T

(1)
K

)
denote the length intensity of T

(1)
K , which

is defined as the expected length of T
(1)
K in a unit square.



Because T
(1)
K is stationary and isotropic, the unit square could

be arbitrarily picked on R2. Hence, we have

µ1

(
T

(1)
K

)
= E

(∣∣∣T(1)
K

∩
[0, 1)2

∣∣∣
1

)
, (4)

where |L|1 denotes the length of a collection of curves L (i.e.,
one-dimensional Lebesgue measure of L).

In order to derive µ1

(
T

(1)
K

)
, we need to introduce the ∆d-

extended cell boundary of T(1)
K , denoted by T

(2)
K (∆d), which

is defined as

T
(2)
K (∆d) =

{
y ∈ R2

∣∣∣∃x ∈ T
(1)
K , s.t. |x− y| < ∆d

}
. (5)

In other words, T(2)
K (∆d) is the ∆d-neighborhood of T(1)

K . A
point is in T

(2)
K (∆d) if and only if its (shortest) distance to

T
(1)
K is less than ∆d.
The area intensity of T

(2)
K (∆d) is defined as the expected

area of T(2)
K (∆d) in a unit square:

µ2

(
T

(2)
K (∆d)

)
= E

(∣∣∣T(2)
K (∆d)

∩
[0, 1)2

∣∣∣
2

)
, (6)

where |S|2 denotes the area of some region S (i.e., two-
dimensional Lebesgue measure of S).

Note that T(2)
K (∆d) is stationary and isotropic. As a result,

given a reference user located at 0, the area intensity of
T

(2)
K (∆d) is equal to the probability that the reference user

at 0 is in T
(2)
K (∆d).

µ2

(
T

(2)
K (∆d)

)
= P(0 ∈ T

(2)
K (∆d)). (7)

The probability in (7) is analytically tractable, which will be
presented in the next subsection.

C. Derivations of Area Intensity of T(2)
K (∆d)

In this subsection, we present the derivation of
P
(
0 ∈ T

(2)
K (∆d)

)
. First, we study the probability that

the reference user at 0 is in T
(2)
K (∆d), given the distance

between 0 and its Kth closest BS. We observe the following
theorem:

Theorem 2. Suppose the reference user is located at 0, the
distance between the reference user and its Kth closest BS
is RK . The conditional probability of 0 ∈ T

(2)
K (∆d) given

RK = r0 is

P
(
0 ∈ T

(2)
K (∆d)|RK = r0

)
= 8λ∆dr0 +O(∆d2). (8)

See Appendix B for the proof.
Second, through deconditioning on RK , we can derive the

unconditioned probability that the reference user at 0 is in
T

(2)
K (∆d).

Theorem 3. The area intensity of T(2)
K (∆d) is

µ2

(
T

(2)
K (∆d)

)
=P(0 ∈ T

(2)
K (∆d))

=
8Γ
(
1
2 +K

)√
λ∆d

Γ(K)
√
π

+O(∆d2), (9)

where Γ(·) denotes the Gamma function.

See Appendix C for the proof.

D. From Area Intensity to Handoff Rate

We first derive the length intensity of T
(1)
K from the area

intensity of T(2)
K (∆d):

µ1

(
T

(1)
K

)
= lim

∆d→0

µ2

(
T

(2)
K (∆d)

)
2∆d

(10)

=
4Γ
(
1
2 +K

)√
λ

Γ(K)
√
π

, (11)

where (10) is obtained by noting the relationship between the
total length of a collection of curves in R2 and the total area
of their ∆d-neighborhood [29, Section 3.2].

Second, we note that the expected number of intersections
between an arbitrary curve and a stationary and isotropic fiber
process in R2 is 2

π multiplied by both the length of the curve
and the length intensity of the fiber process [28, Section 9.3].
Therefore, the expected number of intersections between an
arbitrary user’s trajectory T0 and T

(1)
K (i.e., handoffs) is given

by

E
(
N (T0,T(1)

K )
)
=

2

π
µ1

(
T

(1)
K

)
|T0|1, (12)

where |T0|1 denotes the length of T0.
Finally, let v denote the instantaneous velocity of an active

user, and H(K, v) denote its handoff rate given K and v.
Then, from (11)-(12) we have

H(K, v) =
8Γ
(
1
2 +K

)√
λ

Γ(K)π
√
π

v. (13)

E. One Useful Property of Handoffs

Whenever a user makes a handoff, the user is at T
(1)
K .

From (3), we know that the distances between the user to
two reference BSs are the same, and this reference distance
is greater than or equal to the distances to some arbitrary set
of K − 1 BSs, but is less than or equal to the distances to all
the other BSs. Since BSs are randomly distributed on the two-
dimensional space, the probability that the reference distance
is exactly equal to the distance between the user to any BSs
other than the two reference BSs is 0. Thus, with probability 1,
the handoff is made only between the two reference BSs, and
all the other BSs are not involved. Therefore, we can conclude
that with probability 1, a handoff is a soft handoff where only
one of the K connected BSs is changed. In this case, (13) is
equivalent to the soft handoff rate where only one of the K
connected BSs is changed. Other types of handoff rates, where
more than one BSs are changed, are all 0.

Note that the handoffs in the user-centric clustering scenario
are quite different with those in the disjoint clustering scenario.
In the disjoint clustering scenario, the entire cluster of BSs are
changed when the user crosses the cluster boundary.

V. DOWNLINK USER DATA RATE ANALYSIS AND OPTIMAL
BS CLUSTER SIZE

In this section, we present an application scenario of the
above handoff rate analysis. We first study the downlink user
data rate under the NC-JT scheme. Then, we discuss the



optimal cluster size K that balances the handoff rate and the
data rate. Note that we focus on the NC-JT scheme because it
is one of the most commonly adopted cooperative transmission
schemes in practical systems [30], and it is easily implemented
since the tight synchronization of joint signal transmission is
not required [10].

Previous works such as [10], [11] derived the downlink
user data rate in non-closed form with multiple levels of
integrations, which brings great difficulty to design the optimal
cluster size K. In this work, we propose an alternative method,
where a constant term with respect to K is ignored in the data
rate analysis, and the optimal K is then derived in a simplified
way.

A. Non-Coherent Joint Transmission Model

In this subsection, we briefly present the channel model
and the NC-JT scheme. In addition to the general user-
centric model presented in Section III, we make additional
assumptions as follows.

We assume that each user and BS is equipped with a single-
antenna. Each BS transmits at power level P . If a BS is located
at x, then the received power at y is Phx,y

|x−y|α , where α > 2 is
the pathloss exponent, |x−y|α is the propagation loss function,
and hx,y is the normalized fast fading term. Corresponding to
common Rayleigh fading with power normalization, hx,y is
independently exponentially distributed with unit mean. After
assigning K closest BSs to a user, NC-JT is implemented
in the downlink transmission, so that the user receives a
non-coherent sum of multiple copies of the useful signal
transmitted by the K cooperative BSs, and BSs not in the
cooperation set generate interference to the user [10], [11]. In
addition, we focus on the interference limited scenario, where
the noise is negligible.

B. Data Rate Analysis

In this subsection, we study the average user data rate
via stochastic geometric analysis. Due to the stationarity of
BSs, we focus on the average performance of a reference
user located at 0, which is equivalent to the average user
performance in the system [25].

Without loss of generality, we assume that the user is operat-
ed on a unit frequency bandwidth. Following the discussion in
[10], [11], under NC-JT, the signal to interference ratio (SIR)
at the reference user is expressed as

SIR(K) =

∑
x∈ΦK

|x|−αhx,0∑
x∈Φc

K
|x|−αhx,0

, (14)

where ΦK corresponds to the point process of the K (clos-
est) cooperative BSs, and Φc

K corresponds to the point
process of the other non-cooperative BSs. Let S(K) ,∑

x∈ΦK
|x|−αhx,0 be the received signal power from the

K cooperative BSs, and I(K) ,
∑

x∈Φc
K
|x|−αhx,0 be the

sum interference caused by non-cooperative BSs. Following
conventional stochastic geometric analysis, we study the worst

case scenario where the interference is summed over all non-
cooperative BSs [10]–[12], [14]. Then, the average data rate
of the reference user is

R(K) = E [log2(1 + SIR(K))] (15)
= E [log2(S(K) + I(K))]− E [log2(I(K))] .

Note that we have

S(K) + I(K) =
∑
x∈Φ

|x|−αhx,0, (16)

which is a term irrelevant to K. Since we aim to derive
the optimal K, the term E [log2(S(K) + I(K))] , C0 can
be regarded as a constant and is ignored in the subsequent
analysis.

In the next step, we study E [log2(I(K))]. However, this
term is still difficult to characterize. Therefore, we resort to
analyzing its upper bound using Jensen’s inequality:

E [log2(I(K))] ≤ log2(E[I(K)]). (17)

Correspondingly, we focus on a lower bound of the average
data rate as follows:

R′(K) = C0 − log2(E[I(K)]). (18)

As shown in Sections V-C and V-D, the characterization of
log2(E[I(K)]) instead of E [log2(I(K))] will lead to a simple
closed-form expression, which can then be used to search for
the optimal K in a simplified manner. The steps (15)-(18)
differentiate our work with previous research literature, such
as [10], [11], where the user data rate is expressed in non-
closed form with multiple levels of integrations, which brings
great difficulty in subsequent optimization of K. Furthermore,
as shown in Section VI, the values of E [log2(I(K))] are close
to those of log2(E[I(K)]) over a wide range of parameter
settings. Therefore, the approximation of E [log2(I(K))] by
log2(E[I(K)]) is an important simplification step in deriving
the optimal K.

C. Derivation of E [I(K)]

The overall interference is summed over all BSs outside
the set of K closest BSs to 0. Given the distance from
the reference user to its Kth closest BS RK = r0, the
point process of Φc

K is a PPP with intensity λ in the range
Bc(0, r0). Therefore, the conditional average interference can
be computed as

E[I(K)|RK = r0] = λ

∫
Bc(0,r0)

|x|−αdx (19)

= 2πλ

∫ ∞

r0

r1−αdr = 2πλ
r2−α
0

α− 2
. (20)

Then, through deconditioning on RK , and considering (20)
and (32), we have

E[I(K)] =

∫ ∞

0

2πλ
r2−α
0

α− 2

2(λπr20)
K

r0Γ(K)
exp(−λπr20)dr0 (21)

=
2π

α
2 λ

α
2 Γ(K + 1− α

2 )

(α− 2)Γ(K)
. (22)



Finally, the term log2(E[I(K)]) can be derived accordingly
from (22).

D. Optimal Cluster Size

In this subsection, we investigate the optimal cluster size
based on the handoff rate study in Section IV and the data
rate study in Sections V-B and V-C. Let K∗ denote the optimal
cluster size. K∗ is an integer greater than or equal to Kmin.

In order to quantify the tradeoff between user date rate and
handoff cost, we consider their weighted sum. Let W1 be the
utility value for one bit of data transmission, and W2 be the
cost for one handoff. Note that we assign the same cost value
to all handoffs because each of them is a soft handoff where
only one of the K connected BSs is changed with probability
1, as shown in Section IV-E. Consequently, the overall average
utility of a user being served by K BSs is

U(K) = W1R
′(K)−W2H(K)

=W1C0 −W1 log2(e) ln

(
2π

α
2 λ

α
2 Γ(K + 1− α

2 )

(α− 2)Γ(K)

)
−W2

8Γ
(
1
2 +K

)√
λ

Γ(K)π
√
π

v. (23)

We define L(K) , ln

(
2π

α
2 λ

α
2 Γ(K+1−α

2 )

(α−2)Γ(K)

)
and H(K) ,

8Γ( 1
2+K)

√
λ

Γ(K)π
√
π

v. K∗ is the integer that maximizes U(K), or
equivalently, minimizes W1 log2(e)L(K)+W2H(K). We also
define

∆H(K) ,H(K + 1)−H(K)

=W2

Γ(K + 1
2 )

Γ(K + 1)

1

2

8
√
λ

π
√
π
v, (24)

and

∆L(K) ,L(K + 1)− L(K)

=W1 log2(e) ln

(
K + 1− α

2

K

)
. (25)

It is straightforward to show that ∆H(K) is positive and
∆L(K) is negative, so that H(K) is an increasing function
and L(K) is a decreasing function. In the next step, in order
to derive the optimal K∗, we focus on the term −∆H(K)

∆L(K) .

We note that −∆H(K)
∆L(K) < 1 implies that H(K) + L(K) is

decreasing at K and −∆H(K)
∆L(K) > 1 implies that H(K)+L(K)

is increasing at K. Also, we have the following theorem:

Theorem 4. −∆H(K)
∆L(K) is an increasing function of K.

See Appendix D for the proof.
In addition to Theorem 4, we notice that −∆H(K)

∆L(K) → ∞
when K is sufficient large, and −∆H(K)

∆L(K) → 0 when K

approaches α
2 − 1. Let K̃∗ be the solution to −∆H(K)

∆L(K) = 1,
then we have the following conclusion:

• If −∆H(Kmin)
∆L(Kmin)

≥ 1, then H(K) +L(K) is an increasing
function and K∗ = Kmin.
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Fig. 3. Handoff rate under different K.

• Otherwise, H(K) + L(K) is firstly decreasing and then
increasing, and K∗ is equal to ⌊K̃∗⌋ or ⌈K̃∗⌉, whichever
that minimizes H(K) + L(K).

E. Asymptotic Value of K̃∗

From the previous subsection, we see that K̃∗ is the solution
to −∆H(K)

∆L(K) = 1, which can be derived through a simple
numerical search. However, it is not in closed form. For deeper
insights in characterizing K∗, We are interested in further
seeking an approximated expression of K̃∗ in closed form.

First, we observe the asymptotic values of ∆L(K) and
∆H(K), when K is large, are:

∆L(K) ≃ −W1 log2(e)

(
α
2 − 1

)
K

, (26)

and

∆H(K) ≃ W2√
K

4
√
λ

π
√
π
v. (27)

Then, by substituting the right-hand sides of (26) and (27) into
−∆H(K)

∆L(K) = 1, we derive the asymptotic value of K̃∗, denoted
by K̂∗, as follows:

K̂∗ =
W 2

1 (log2(e))
2 (α

2 − 1
)2

π3

16W 2
2 λv

2
. (28)

The expression (28) suggests that the optimal cluster size is
asymptotically inversely proportional to the square of the user
velocity v and inversely proportional to the BS intensity λ.
Note that in Section VI, we further show through numerical
study that even if K̃∗ is not large, the values of K̂∗ are still
close to those of K̃∗.

VI. SIMULATION STUDY

In this section, we present simulation studies to validate
the accuracy and usefulness of our proposed analysis. In
each round of simulation, BSs are generated on a 20 km
× 20 km square. Then, we randomly generate 5 waypoints
X1,X2, . . . ,X5 in the central 10 km × 10 km square.
The four line segments X1X2,X2X3, . . . ,X4X5 form the
trajectory of an active user in one round of simulation. By
tracking which set of BSs the user is connected to along its
trajectory, we can track handoffs of the user in this round of
simulation. Each data point is averaged over 2000 simulation
rounds.
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We first study the handoff rates under different K and λ
values in Fig. 3. The BS intensity is set to λ = 1, 2, 3, and 4
units/km2 respectively, and the user velocity is v = 20 km/h.
As discussed in Section III-A, we are also interested in testing
the scenario where BSs are non-PPP distributed. Thus in the
simulation, we also consider the case where BSs are distributed
as a Matérn hard core (MHC) point process.

The MHC point process has been regarded as an alternative
point process in the research literature to counter the drawback
of PPP modeling of wireless cellular networks [31], [32]. It
can additionally capture the reality that two BSs are unlikely
to be located very close to each other. In our simulation, BSs
are generated as an MHC point process as follows: First, we
generate a PPP with intensity λ′. Each point in the PPP is
associated with a “mark”, which is independently uniformly
distributed on [0, 1]. A point is retained in the point process if
its mark is the largest among all the points within a distance
D from it (or there are no other points within this range);
otherwise, the point is removed from the point process. The
remaining points form an MHC point process. Note that the
distance between any two points in the point process is no
less than D. The equivalent BS intensity is λ = 1−e−πD2λ′

πD2λ′ .
Under the MHC setting, we set D = 0.1 km, λ′ = 1.0160,
2.0656, 3.1509, and 4.2746 units/km2 respectively, in order
to maintain the equivalent BS intensity at λ = 1, 2, 3, and 4
units/km2 respectively.

Fig. 3 validates that the handoff rate is an increasing and
concave function of K, which matches the expression (13).
Also, when the BSs are PPP distributed, the handoff rates
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obtained from simulation match well with our proposed anal-
ysis, validating the correctness of our analytical derivations in
Section IV. Furthermore, even if the BSs are distributed as an
MHC point process, the simulated handoff rates are still very
close to those under the PPP assumption. Therefore, our pro-
posed analysis is still useful to provide close approximations
of handoff rates when BSs are more realistically distributed.

In Fig. 4, we show a comparison between the values of
E [log2(I(K))] through simulation and those of log2(E[I(K)])
derived in Sections V-B and V-C. Fig. 4 shows that the gap
between E [log2(I(K))] and log2(E[I(K)]) is small, so that
we can use E [log2(I(K))] to approximate log2(E[I(K)]) in
this work.

In Fig. 5, we present the simulated user utility W1R(K)−
W2H(K) under different values of the cluster size K. The
network parameters are as follows: α = 4, W1 = 1, W2 = 30,
v = 36 km/h, and P = 30 dBm. The simulated results are
plotted for λ = 2, 3, and 4 unit/km2 respectively. The results
validate that the simulated optimal solutions are close to K̃∗,
illustrating the effectiveness of our analysis in Section V. In
addition, the approximated solutions K̂∗ are also close to both
the simulated optimal solutions and K̃∗ values, illustrating the
usefulness of the simplified expression (28).

In Fig. 6, we study the optimal cluster size K under different
user velocity v, and in Fig. 7, we study the optimal K under
different BS intensity λ. In these figures, we set α = 4,
W1 = 1, and P = 30 dBm. In Fig. 6, we additionally set
λ = 3 unit/km2, and in Fig. 7, we additionally set v = 36
km/h. The figures validate that both the analytical values of



K̃∗ and K̂∗ are close to the simulated optimal K∗ under a
wide range of user velocities and BS intensities. In addition,
since the values of K̂∗ derived in (28) are close to the
simulated results, it suggests that the optimal cluster size is
approximately inversely proportional to the square of the user
velocity v and inversely proportional to the BS intensity λ
even if K is not large.

VII. CONCLUSIONS

In this work, we provide a theoretical framework to study
the handoffs in cooperative wireless networks. Through our
proposed stochastic geometric analysis, we capture the ir-
regularly shaped network topology introduced by randomly
distributed BSs and user-centric cooperation. The analytical
expression for the handoff rate experienced by an active user
with arbitrary movement trajectory is derived. Based on this
result, we also propose an optimal cluster size formulation
considering both the handoff rate and the data rate. We observe
that when the common NC-JT scheme is employed, the
optimal cluster size can be derived through solving a simple
equation in closed form, which is shown to be asymptotically
inversely proportional to the square of the user velocity and
inversely proportional to the BS intensity. Computer simula-
tion is conducted, validating the correctness and usefulness of
our analytical results.

APPENDIX

A. Proof of Theorem 1

Proof. For simplicity, we define T
(1)′

K as the right-hand side
of (3). We show that T

(1)′

K and T
(1)
K are equivalent through

the following two steps:
Step 1: y ∈ T

(1)′

K ⇒ y ∈ T
(1)
K .

Suppose y ∈ T
(1)′

K , then ∃{x1,x2, . . . ,xK−1,xK ,x′
K},

such that |z − y| ≤ |xK − y| = |x′
K − y| ≤

|x − y|, ∀z ∈ {x1,x2, . . . ,xK−1} and ∀x ∈
Φ\{x1, . . . ,xK−1,xK ,x′

K}. Let C1 = {x1, . . . ,xK−1,xK},
and C2 = {x1, . . . ,xK−1,x

′
K}. Following the definition in

(1), we have y ∈ V(C1) and y ∈ V(C2). Therefore, by the
definition of T

(1)
K in (2), y is at the boundary of V(C1) and

V(C2) and thus y ∈ T
(1)
K .

Step 2: y ∈ T
(1)
K ⇒ y ∈ T

(1)′

K .
Suppose y ∈ T

(1)
K . First, following the definition in

(2), ∃C′
1 and C′

2, such that y ∈ V(C′
1) and y ∈ V(C′

2).
Let C′

1 = {z1, z2, . . . , zn,un+1, . . . ,uK}, and C′
2 =

{z1, z2, . . . , zn,vn+1, . . . ,vK}, where z1, z2, . . . , zn are the
common elements in C′

1 and C′
2. Note that at least one element

in C′
1 is different from that in C′

2, thus n < K.
In the second step, we compare the distances between |ui−

y| and |vj−y|, ∀i, j ∈ {n+1, n+2, . . . ,K}. Since y ∈ V(C′
1),

ui ∈ C′
1 and vj /∈ C′

1, we have |ui−y| ≤ |vj−y| according to
the definition of V(C′

1) in (1). Similarly, since y ∈ V(C′
2), vj ∈

C′
2 and ui /∈ C′

2, we have |vj−y| ≤ |ui−y|. Therefore, we can
conclude that |vj−y| = |ui−y|, ∀i, j ∈ {n+1, n+2, . . . ,K}.
Finally, we have |zk − y| ≤ |vj − y| = |ui − y| ≤ |x − y|,

∀k ∈ {1, 2, . . . , n}, ∀i, j ∈ {n + 1, n + 2, . . . ,K}, and ∀x ∈
Φ\(C′

1

∪
C′
2).

Let x1 = z1,x2 = z2, . . . ,xn = zn,xn+1 =
un+1, . . . ,xK = uK ,x′

K = vK , then we have |z −
y| ≤ |xK − y| = |x′

K − y| ≤ |x − y|, ∀z ∈
{x1,x2, . . . ,xK−1} and ∀x ∈ Φ\{x1, . . . ,xK−1,xK ,x′

K}.
Therefore, we have proved that y ∈ T

(1)′

K .

B. Proof of Theorem 2

Proof. Without loss of generality, we assume the Kth closest
BS is located at xK = (r0, 0). Note that there are no BSs
other than the K BSs located within B(0, r0), where B(0, r0)
is defined at the beginning of Section IV.

Following Theorem 1, 0 ∈ T
(1)
K if and only if there is

some point x′
K , such that the perpendicular bisector of the

line segment xKx′
K passes 0. Since T

(2)
K (∆d) is the ∆d-

neighborhood of T
(1)
K , 0 ∈ T

(2)
K (∆d) if and only if the

distance between 0 to the perpendicular bisector of the line
segment xKx′

K is smaller than ∆d. Then, following Case 3
in the proof of Theorem 1 in [3], 0 ∈ T

(2)
K (∆d) if and only

if there is some x′
K located within the following ring region,

where (r, θ) denotes the polar coordinate in R2:

S(∆d) =

{
(r, θ)

∣∣∣∣r ≥ r0 and
∣∣r2 − r20

∣∣ <
2∆d

√
r20 + r2 − 2r0r cos θ

}
. (29)

The area of S(∆d) is

|S(∆d)|2 = 8∆dr0 +O(∆d2). (30)

Given the K closest BSs, the point process of the other
BSs, denoted as Φc

K , is a PPP with intensity 0 in B(0, r0)
and intensity λ in Bc(0, r0), due to the strong Markovian
property of a PPP. P

(
0 ∈ T

(2)
K (∆d)|RK = r0

)
is equal to the

probability that there is at least one point of Φc
K in S(∆d).

Thus we have

P
(
0 ∈ T

(2)
K (∆d)|RK = r0

)
=1− exp (−λ|S(∆d)|2)
=8λ∆dr0 +O(∆d2), (31)

which completes the proof.

C. Proof of Theorem 3

Proof. The probability density function of the distance be-
tween the reference user and its Kth closest BS RK is [33]

fK(r) =
2(λπr2)K

rΓ(K)
exp(−λπr2). (32)

Then, we have

P(0 ∈ T
(2)
K (∆d))

=

∫ ∞

0

P
(
0 ∈ T

(2)
K (∆d)|R = r0

)
fK(r0)dr0



=
8Γ
(
1
2 +K

)√
λ∆d

Γ(K)
√
π

+O(∆d2), (33)

which completes the proof.

D. Proof of Theorem 4

Proof. We aim to show that

−∆H(K + 1)

∆L(K + 1)
+

∆H(K)

∆L(K)
> 0, (34)

which is equivalent to

∆H(K)∆L(K + 1)−∆L(K)∆H(K + 1) > 0. (35)

Following the definitions in (24) and (25), (35) is equivalent
to

ln

(
K + 2− α

2

K + 1

)
−

K + 1
2

K + 1
ln

(
K + 1− α

2

K

)
> 0. (36)

Through Taylor expansion, we have

ln

(
K + 2− α

2

K + 1

)
= −

∞∑
n=1

(
α
2 − 1

)n
n(K + 1)n

, (37)

and

K + 1
2

K + 1
ln

(
K + 1− α

2

K

)
= −

K + 1
2

K + 1

( ∞∑
n=1

(
α
2 − 1

)n
nKn

)
.

(38)

Since α
2 − 1 > 0 (i.e., α > 2), ∀n ≥ 1, we have

−
(
α
2 − 1

)n
n(K + 1)n

+
K + 1

2

K + 1

((
α
2 − 1

)n
nKn

)
> 0. (39)

Therefore, (36) is verified, which completes the proof.
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