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Abstract—We consider a general multi-user mobile cloud com-
puting system with a computing access point (CAP), where each
mobile user has multiple independent tasks that may be processed
locally, at the CAP, or at a remote cloud server. The CAP serves
both as the network access gateway and a computation service

provider to the mobile users. We aim to jointly optimize the
offloading decisions of all users’ tasks as well as the allocation
of computation and communication resources, to minimize the
overall cost of energy, computation, and delay for all users. This
problem is NP-hard in general. We propose an efficient three-step
algorithm comprising of semidefinite relaxation (SDR), alternat-
ing optimization (AO), and sequential tuning (ST). It is shown
to always compute a locally optimal solution, and give nearly
optimal performance under a wide range of parameter settings.
Through evaluating the performance of different combinations of
the three components of this SDR-AO-ST algorithm, we provide
insights into their roles and contributions in the overall solution.
We further compare the performance of SDR-AO-ST against a
lower bound to the minimum cost, purely local processing, purely
cloud processing, and hybrid local-cloud processing without using
the CAP. Our numerical results demonstrate the effectiveness of
the proposed algorithm in the joint management of computation
and communication resources in mobile cloud computing systems
with a CAP.

I. INTRODUCTION

Mobile Cloud Computing (MCC) brings abundant cloud

resources to extend the capabilities of resource-limited mobiles

devices to improve the user experience [1]. With the help of

cloud resources, mobile devices can potentially reduce their

energy consumption or processing delay by offloading tasks to

the cloud for data gathering, processing, and storage. However,

integration between mobile devices and the cloud may affect

the quality of service of those offloaded tasks and overall

mobile device energy usage due to additional communication

and computation delays and transceiver energy consumption

[1].

For a single user offloading its entire application to the

cloud, the tradeoff between energy saving and computing

performance was studied in [2]–[5]. The authors of [6]–[10]

considered multi-user scenarios with a single application or

task per user, where the entire application is offloaded to the
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cloud. Different from such whole-application offloading, the

authors of [11]–[15] considered partitioning an application into

multiple tasks. In all these cases, the partitioning problem

results in integer programming that is NP-hard in general.

Instead of conventional MCC where only mobile devices

and the remote cloud server can process tasks, Mobile Edge

Computing (MEC), as defined by the European Telecom-

munications Standards Institute (ETSI), refers to an MCC

system where additional computing resources are installed

locally at the base station of a cellular network, in part to

reduce the communication delay for those offloaded tasks

[16], [17]. MEC shares similarities with micro cloud centers

[18], cloudlets [19], and fog computing [20], but the MEC

computing hosts are managed by the network service provider.

Generalizing the concept of MEC, the computing access point

(CAP) is a wireless access point or a cellular base station with

built-in computation capability. The mobile users’ computing

tasks may be processed locally at the mobile devices, sent

to the CAP, or further forwarded to a remote cloud server.

In our previous works, we had studied the scheduling of

computation and communication resources in a CAP for a

single mobile user [21] and multiple mobile users each with

a single task only [22] [23], showing substantial system

performance improvement.

In this work, we consider a general cloud access network

consisting of one remote cloud server, one CAP, and multiple

mobile users, each having multiple independent tasks. This

multi-user multi-task scenario adds substantial challenge to

system design, since we need to jointly consider both the

offloading decisions of all tasks for each user and the sharing

of computation and communication resources among all users

as they compete to offload tasks through a wireless link

with limited capacity, and compete to have some of their

tasks processed at a CAP with limited computation resource.

Furthermore, since each user has multiple tasks, it is difficult

to characterize the overall delay for each user to finish the

processing of all tasks, since the transmission of some tasks

and the processing of other tasks at multiple locations may

overlap in time in complicated patterns.

We aim to conserve energy and reduce the cost and delay

for all users. In particular, the transmission and processing

delays of the offloaded tasks of a user are affected by their



assigned computation and communication resources. Further-

more, optimal offloading decision and resource allocation must

take into consideration the computation and communication

energies, CAP and cloud usage costs, and communication and

processing delays at local user devices, the CAP, and the

remote cloud server.

Therefore, we focus on jointly optimizing the offloading

decision and the allocation of computation and communication

resources of all tasks, to minimize a weighted sum of the costs

of energy, cost of computation, and the delay for all users. The

resultant mixed integer programming problem can be refor-

mulated as a non-convex quadratically constrained quadratic

program (QCQP) [24], which is NP-hard in general. To solve

this challenging problem, we propose an efficient three-step

algorithm that utilizes semidefinite relaxation (SDR) [25],

alternating optimization (AO), and sequential tuning (ST). We

show that it always computes a locally optimal solution, which

contains the binary offloading decision and subsequent optimal

allocation of the computation and communication resources.

We also develop a lower bound of the minimum cost as

the benchmark for performance evaluation. Simulation results

show that the obtained local minimum solution gives nearly

optimal performance under various parameter settings. Fur-

thermore, we conduct simulation experiment on alternative

combinations of the three components of the SDR-AO-ST

algorithm, clarifying their roles and contributions to the overall

system performance. Finally, we compare the performance of

SDR-AO-ST against that of purely local processing, purely

cloud processing, and hybrid local-cloud processing without

the CAP, which demonstrates the effectiveness of the proposed

algorithm in joint management of the computation and com-

munication resources in the three-tier computing system of

local devices, CAP, and remote cloud server.

The rest of this paper is organized as follows. In Section

II, we describe the system model and present the problem

formulation. In Section III, we provide details of three compo-

nents of the proposed algorithm. For performance comparison,

the lower bound of the minimum system cost is discussed in

Section IV. We present numerical results in Section V and

conclude in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Mobile Cloud Offloading with Multiple Users and Tasks

Consider a general cloud access network consisting of one

cloud server, one CAP, and N mobile users, each having M
independent tasks, as shown in Fig. 11. Each mobile user

can process its tasks locally or offload some of them. Those

offloaded tasks may be processed at the CAP or be further

forwarded to the remote cloud. Denote the offloading decisions

for user i’s task j by xl
ij , x

a
ij , x

c
ij ∈ {0, 1}, indicating whether

user i’s task j is processed locally, at the CAP, or at the cloud,

1We assume the same M for all users only to simplify mathematical
notation. Our system model can be easily extended to the case where each
mobile user has a different number of tasks.
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Fig. 1. System model

respectively. The offloading decisions are constrained by

xl
ij + xa

ij + xc
ij = 1. (1)

Notice that only one of xl
ij , x

a
ij , and xc

ij for user i’s task j
could be 1.

B. Cost of Local Processing

The input data size, output data size, and processing cycles

of user i’s task j are denoted by Din(ij), Dout(ij), and Y (ij),
respectively. For task j being locally processed by user i, the
corresponding energy consumed for processing is denoted by

El
ij and the processing time is denoted by T l

ij .

C. Cost of CAP Processing

Since there are multiple tasks offloaded to the CAP and

some of them are processed by the CAP, we need to allocate

the computation and communication resources available at the

CAP. If user i’s task j is offloaded to the CAP, we denote by
Et

ij and Er
ij , respectively, the energy consumed for wireless

transmission and reception by the user.

We further denote the uplink and downlink transmission

times between user i and the CAP by T t
ij = Din(ij)/(η

u
i c

u
i )

and T r
ij = Dout(ij)/(η

d
i c

d
i ), where cui and cdi are the uplink

and downlink bandwith allocated to user i, and ηui and ηdi are

the spectral efficiency of uplink and downlink transmission

between user i and the CAP, respectively2. Furthermore, cui
and cdi are limited by the uplink bandwidth CUL and downlink

bandwidth CDL as follows

N
∑

i=1

cui ≤ CUL, (2)

and

N
∑

i=1

cdi ≤ CDL. (3)

We may consider also a total bandwidth constraint

N
∑

i=1

(cui + cdi ) ≤ CTotal. (4)

If user i’s task j is processed by the CAP (i.e., instead of

further forwarded to the remote cloud), denote its processing

time by T a
ij = Y (ij)/fa

i , where f
a
i is the assigned processing

2The spectral efficiency can be approximated by log(1+SNR) where SNR
is the link quality between user i and the CAP.



rate, which is limited by the total processing rate fA at the

CAP:

N
∑

i=1

fa
i ≤ fA. (5)

We denote the CAP usage cost of processing user i’s task j at
the CAP by Ca

ij . The usage cost may depend on the data size

and processing cycles of a task and the hardware and energy

cost to maintain the CAP, but such detail is outside the scope

of this work. Here we simply assume that Ca
ij is given for all

i and j.

D. Cost of Cloud Processing

If the task is further offloaded to the cloud from the

CAP, besides the communication energy (i.e., Et
ij and Er

ij )

and delay (i.e., T t
ij and T r

ij) mentioned above, there is the

additional transmission time between the CAP and the cloud

denoted by T ac
ij = (Din(ij) + Dout(ij))/r

ac, and the cloud

processing time denoted by T c
ij = Y (ij)/f c, where rac is the

transmission rate between the CAP and the cloud and f c is the

cloud processing rate for each user. The rate rac is assumed

to be a pre-determined value regardless of the number of

users, since the CAP-cloud link is likely to be a high-capacity

wired connection in comparison with the limited wireless links

between the mobile users and the CAP, so that there is no need

to consider bandwidth sharing among the users. Similarly,

f c is also assumed to be a pre-determined value because of

the high computational capacity and dedicated service of the

remote cloud server. Thus, T ac
ij and T c

ij only depend on user

i’s task j itself. Finally, the cloud usage cost of processing

user i’s task j at the cloud is denoted by Cc
ij , which is given

for all i and j.

E. Problem Formulation

We define the total system cost as the weighted sum of total

energy consumption, the costs to offload and process all tasks,

and the transmission and processing delays for all users. Our

objective is to minimize the total system cost by jointly opti-

mizing the task offloading decisions xij = [xl
ij , x

a
ij , x

c
ij ]

T and

the communication and CAP processing resource allocation

ri = [cui , c
d
i , f

a
i ]

T . This optimization problem is formulated as

follows:

min
{xij},{ri}

N
∑

i=1

[ M
∑

j=1

(El
ijx

l
ij + EA

ijx
a
ij + EC

ijx
c
ij)

+ ρi max{TL
i , TA

i , TC
i }

]

(6)

s.t. (1), (2), (3), (4), (5),

cui , c
d
i , f

a
i ,≥ 0, ∀i, (7)

xl
ij , x

a
ij , x

c
ij ∈ {0, 1}, ∀i, j, (8)

where EA
ij , (Et

ij+Er
ij+αCa

ij) and E
C
ij , (Et

ij+Er
ij+βCc

ij)
are the weighted transmission energy and processing costs of

offloading and processing task j of user i to the CAP and the

cloud, respectively, with α and β being their relative weights;

in addition, TL
i ,

∑M

j=1 T
l
ijx

l
ij is the processing delay of

tasks processed by the mobile user i itself, TA
i and TC

i are the

overall transmission and remote-processing delays for the tasks

of mobile user i processed at the CAP and cloud, respectively,

and ρi is the weight on the task processing delay relative to

energy consumption in the total system cost. Depending on the

performance requirement, the value of ρi can be adjusted to

impose different emphasis on delay and energy consumption.

For simplicity, we normalize the weighted sum cost to have the

unit of energy. Problem (6) can be solved by any controller

in the network after collecting all required information. For

example, it may be the wireless access point or the cellular

base station.

The above mixed-integer programming problem is difficult

to solve in general. Moreover, we note that the overall delay

for CAP processing, TA
i , and cloud processing, TC

i , are

challenging to calculate exactly. This is because, when there

are multiple tasks offloaded by a users, the transmission

times and processing times of these tasks may overlap in

an unpredictable manner, which depends on the offloading

decision, computation and communication resource allocation,

and task scheduling order. In fact, since TA
i and TC

i consist

of the uplink transmission time, remote-processing time, and

downlink transmission time of all offloaded tasks, it may be

viewed as the output of a multi-machine flowshop schedule,

which remains an open research problem [26]. Since both TA
i

and TC
i are not precisely tractable, we will use both upper

and lower bounds of TA
i and TC

i in our proposed solution

and performance benchmarking. We will show later that, with

the SDR-AO-ST algorithm, the upper and lower bounds give

estimates to the total system cost that are close to each other.

III. MULTI-USER MULTI-TASK OFFLOADING SOLUTION

The joint optimization problem (6) is a mixed-integer non-

convex programming problem. To find an efficient solution to

problem (6), in the following, we first present upper-bound and

lower-bound formulations of both TA
i and TC

i , then transform

the optimization problem (6) into a separable QCQP, and

finally propose a three-step SDR-AO-ST algorithm containing

a separable SDR approach, alternating optimization (AO), and

sequential tuning (ST), to obtain the binary offloading deci-

sions {xij} and the communication and processing resource

allocation {ri}.

A. Bounds of CAP-Processing and Cloud-Processing Delays

When a mobile user offloads more than one task to the CAP

or the cloud, there will be overlaps in the communication and

processing times as mentioned above, making it difficult to

exactly characterize the overall delays TA
i and TC

i . However,

we have the following upper bounds, i.e., the worst-case

delays:

T
A(U)

i ,

M
∑

j=1

((T t
ij + T r

ij)(x
a
ij + xc

ij) + T a
ijx

a
ij), (9)



T
C(U)

i ,

M
∑

j=1

((T t
ij + T r

ij)(x
a
ij + xc

ij) + (T ac
ij + T c

ij)x
c
ij). (10)

In the above expressions, T
A(U)

i and T
C(U)

i represent the

direct summing of the transmission delays and processing

delays without any overlap. They are always greater than the

actual delay given the same offloading decision and resource

allocation.

Later, for performance benchmarking, we will also need

the best-case delays. We separate the offloading delays of all

mobile users into several components and only consider the

largest one among them as the lower bounds of TA
i and TC

i :

T
A(L)

i , max{T u
i , T

d
i , T

a′

i }, (11)

T
C(L)

i , max{T u′

i , T d′

i , T uac
i , T dac

i , T c′

i }, (12)

where T u
i ,

∑M

j=1 T
t
ijx

a
ij and T d

i ,
∑M

j=1 T
r
ijx

a
ij are the

total uplink and downlink transmission times between the

user and the CAP for user i’s tasks processed at the CAP,

respectively, T u′

i ,
∑M

j=1 T
t
ijx

c
ij and T d′

i ,
∑M

j=1 T
r
ijx

c
ij

are the total uplink and downlink transmission times between

the user and the CAP for user i’s tasks processed at the

cloud, respectively, T uac
i ,

∑M

j=1 Din(ij)x
c
ij/r

ac and T dac
i ,

∑M
j=1 Dout(ij)x

c
ij/r

ac are the total uplink and downlink trans-

mission times between the CAP and the cloud for user i,
respectively, and T a′

i ,
∑M

j=1 T
a
ijx

a
ij T c′

i ,
∑M

j=1 T
c
ijx

c
ij

are the total CAP and cloud processing times for user i,
respectively.

In the proposed SDR-AO-ST algorithm, we use the worst-

case delays T
A(U)

i and T
C(U)

i in optimization problem (6) to

obtain an approximate solution, which gives an upper bound

to the actual total system cost. We then use T
A(L)

i and T
C(L)

i

similarly, to obtain a lower bound of the total system cost, for

performance benchmarking. We will show in Section V that,

despite using the worst-case delays as parametric input to the

proposed SDR-AO-ST algorithm, we achieve actual system

cost that is close to the lower bound of the system cost, and

hence is also close to the optimal system cost.

In the next three subsections, we describe the details of the

proposed three-step algorithm and show the local optimum

property of the obtained binary offloading decisions {xij} and
communication and processing resource allocation {ri}.

B. Step 1: QCQP Transformation and Semidefinite Relaxation

In order to obtain the eventual SDR formulation, we first

transform the optimization problem (6), with T
A(U)

i and T
C(U)

i

substituting for TA
i and TC

i , respectively, into a separable

QCQP. We first rewrite the integer constraint (8) as

xs
ij(x

s
ij − 1) = 0, ∀i, j, (13)

for s ∈ {l, a, c}. Furthermore, we introduce additional

auxiliary variables ti = max{TLi
, T

A(U)

i , T
C(U)

i }, Du
i =

∑M
j=1 Din(ij)(x

a
ij + xc

ij)/η
u
i c

u
i , D

d
i =

∑M
j=1 Dout(ij)(x

a
ij +

xc
ij)/η

d
i c

d
i , and Da

i =
∑M

j=1 Y (ij)xa
ij/f

a
i . Let di =

(Du
i , D

d
i , D

a
i ). The problem (6) is now transformed into the

following form:

min
{xij},{ri,di,ti}

N
∑

i=1

[ M
∑

j=1

(El
ijx

l
ij+EA

ijx
a
ij+EC

ijx
c
ij)+ρiti

]

(14)

s.t.

M
∑

j=1

T l
ijx

l
ij ≤ ti, ∀i,

Du
i +Dd

i +Da
i ≤ ti, ∀i,

Du
i +Dd

i +
M
∑

j=1

(T ac
ij + T c

ij)x
c
ij ≤ ti, ∀i,

M
∑

j=1

Din(ij)(x
a
ij + xc

ij)− ηui c
u
i D

u
i ≤ 0, ∀i,

M
∑

j=1

Dout(ij)(x
a
ij + xc

ij)− ηdi c
d
iD

d
i ≤ 0, ∀i,

M
∑

j=1

Y (ij)xa
ij − fa

i D
a
i ≤ 0, ∀i,

(1)− (5), (7), and (13).

Define wi , [xT
i1, . . . ,x

T
iM , cui , D

u
i , c

d
i , D

d
i , f

a
i , D

a
i , ti]

T ,

for all i, and ei as the (3M +7)× 1 standard unit vector with
the ith entry being 1. The optimization problem (14) can now

be further transformed into the following equivalent QCQP

formulation:

min
{wi}

N
∑

i=1

bi
Twi (15)

s.t. (bl
i)

Twi ≤ 0, (bA
i )

Twi ≤ 0, (bC
i )

Twi ≤ 0, ∀i,

wi
TAk

iwi + (bk
i )

Twi ≤ 0, k ∈ {u, d, a}, ∀i,

(bP
ij)

Twi = 0, ∀i, j,

N
∑

i=1

(bU
i )

Twi ≤ CUL,

N
∑

i=1

(bD
i )Twi ≤ CDL,

N
∑

i=1

(bS
i )

Twi ≤ CTotal,

N
∑

i=1

(bf
i )

Twi ≤ fA,

wi
T diag(ep)wi − ep

Twi = 0, p ∈ {1, ..., 3M}, ∀i,

wi ≥ 0, ∀i,

where

Au′

i , −0.5

[

0 ηui
ηui 0

]

, Ad′

i , −0.5

[

0 ηdi
ηdi 0

]

,

Au
i ,





03M×3M 03M×2 03M×5

02×3M Au′

i 02×5

05×3M 05×2 05×5



 ,

Ad
i ,





0(3M+2)×(3M+2) 0(3M+2)×2 0(3M+2)×3

02×(3M+2) Ad′

i 02×3

03×(3M+2) 03×2 03×3



 ,

Aa′

i , −0.5

[

0 1
1 0

]

,



Aa
i ,





0(3M+4)×(3M+4) 0(3M+4)×2 0(3M+4)×1

02×(3M+4) Aa′

i 02×1

01×(3M+4) 01×2 0



 ,

bi , [El
i1, E

A
i1, E

C
i1, . . . , E

l
iM , EA

iM , EC
iM ,01×6, ρi]

T ,

bl
i , [T l

i1, 0, 0, . . . , T
l
iM , 0, 0,01×6,−1]T ,

bA
i , [01×3M , 0, 1, 0, 1, 0, 1,−1]T ,

bC
i , [0, 0, (T ac

i1 + T c
i1), . . . , 0, 0, (T

ac
iM + T c

iM ),bC′

i ]T ,

bC′

i , [0, 1, 0, 1, 0, 0,−1],

bu
i , [0, Din(i1), Din(i1), . . . , 0, Din(iM), Din(iM),0′]T ,

bd
i , [0, Dout(i1), Dout(i1), . . . , 0, Dout(iM), Dout(iM),0′]T ,

ba
i , [0, Y (i1), 0, . . . , 0, Y (iM), 0,0′]T , 0′ , 01×7,

bP
ij , e3(j−1)+1 + e3(j−1)+2 + e3(j−1)+3,

bU
i , [01×3M , 1,01×6]

T , bD
i , [01×(3M+2), 1,01×4]

T ,

bS
i , [01×3M , 1, 0, 1,01×4]

T , b
f
i , [01×(3M+4), 1, 0, 0]

T .

Comparing the optimization problems (14) and (15), we note

that all constraints have one-to-one correspondence. However,

we omit the derivation details due to page limitation.

Note that the optimization problem (15) is a non-convex

separable QCQP problem [24], which is NP-hard in general.

To find an approximate solution, we apply the separable SDR

approach [25], where we relax the problem into a separable

semidefinite programming (SDP) problem. Specifically, define

Zi , [wi
T , 1]T [wi

T , 1]. By dropping the rank constraint

rank(Zi) = 1, we have the following separable SDP problem:

min
{Zi}

N
∑

i=1

Tr(GiZi) (16)

s.t. Tr(Gr
iZi) ≤ 0, r ∈ {l, A, C, u, d, a}, ∀i,

Tr(GP
ijZi) = 0, ∀i, j,

N
∑

i=1

Tr(GU
i Zi) ≤ CUL,

N
∑

i=1

Tr(GD
i Zi) ≤ CDL,

N
∑

i=1

Tr(GS
i Zi) ≤ CTotal,

N
∑

i=1

Tr(Gf
i Zi) ≤ fA,

Tr(GI
pZi) = 0, p ∈ {1, ..., 3M}, ∀i,

Zi(3M + 8, 3M + 8) = 1, ∀i, Zi � 0, ∀i,

where

Gi ,

[

0 1
2bi

1
2b

T
i 0

]

,

Gk
i ,

[

Ak
i

1
2b

k
i

1
2 (b

k
i )

T 0

]

, k ∈ {u, d, a},

G
q
i ,

[

0 1
2b

q
i

1
2 (b

q
i )

T 0

]

, q ∈ {l, A, C, U,D, S, f},

GP
ij ,

[

0 1
2b

P
ij

1
2 (b

P
ij)

T 0

]

, GI
p ,

[

diag(ep) − 1
2ep

− 1
2e

T
p 0

]

.

The optimal solution {Z∗
i } to the above separable SDP

problem can be obtained efficiently in polynomial time using

standard SDP software, such as SeDuMi [27]. However, since

problem (16) is a ralaxation of the problem (14), the optimal

objective of the problem (16) is only a lower bound of the

optimal solution of the problem (14) if {Z∗
i } does not have

rank 1. Therefore, once {Z∗
i } is obtained, we still need to

recover a rank-1 solution from {Z∗
i } for the original problem

(14).

Define x , [xT
1 , . . . ,x

T
N ]T , where xi , [xT

i1, . . . ,x
T
iM ]T ,

for all i. Note that, first, only the upper-left 3M × 3M sub-

matrix of Z∗
i , denote by Z′∗

i , for all i, is needed to recover

the offloading decision x; second, each diagonal entry in Z′∗
i

is always between 0 and 1. That is, take the diagonal entries
of Z′∗

i as pi = [pT
i1, . . . ,p

T
iM ]T , where pij = [plij , p

a
ij , p

c
ij ]

T ;

we have each element in pij in the interval [0, 1], for all i, j.
We recover the feasible decisions xsdri using pi, where

xsdrij =











[1, 0, 0]T, if max
s∈{l,a,c}

psij =plij (local processing),

[0, 1, 0]T, if max
s∈{l,a,c}

psij =paij (CAP processing),

[0, 0, 1]T, if max
s∈{l,a,c}

psij =pcij (cloud processing),

(17)

and obtain the overall offloading decision as xsdr =
[(xsdr1 )T , . . . , (xsdrN )T ]T .
After obtaining the offloading decision xsdr, the optimization

problem (14) is reduced to the optimization of computation

and communication resource allocation {ri}, which is given

by

min
{ri}

(

E +

N
∑

i=1

ρimax{TL
i , T

A(U)

i , T
C(U)

i }

)

(18)

s.t. (2)− (5), and (7),

where E ,
∑N

i=1

∑M

j=1(E
l
ijx

l
ij + EA

ijx
a
ij + EC

ijx
c
ij) is a

constant value once {xij} are given. This resource allocation

problem (18) is convex, which can be solved optimally using

standard convex optimization solvers.

C. Step 2: Improvement to SDR by Alternating Optimization

After obtaining a feasible solution (xsdr, {rsdr
∗

i }) from the

SDR step above, to further reduce the overall system cost, in

the following we introduce an iterative alternating optimization

method to further improve the offloading decision by using

(xsdr, {rsdr
∗

i }) as the starting point of iteration.

As mentioned above, given any offloading decision, the

optimization problem (14) is reduced to the resource allocation

problem (18), which is convex and optimal resource allocation

can be obtained. On the other hand, if the resource allocation

{ri} is given, the optimization problem (14) is reduced to the

optimization of offloading decisions {xij} as follows:

min
{xij}

N
∑

i=1

[ M
∑

j=1

(El
ijx

l
ij + EA

ijx
a
ij + EC

ijx
c
ij)

+ ρimax{TL
i , T

A(U)

i , T
C(U)

i }

]

(19)

s.t. (1) and (13).

The offloading decision problem (19) is an integer program-

ming problem. However, it can be separated into N indepen-

dent sub-problems, where each sub-problem only considers



the offloading decision of one user. As shown in [21], this can

be solved near-optimally by either using an SDR approach or

relaxing the integer constraints to interval constraints. Since

the optimization problem (14) can be separated into two sub-

problems (18) and (19), we propose the following alternating

optimization procedure to further reduce the total system cost.

Set (xao
∗

, {rao
∗

i }) = (xsdr, {rsdr
∗

i }) as the initial point. At

each iteration:

i Solve problem (19) based on {rao
∗

i } to find the corre-

sponding offloading decision xao
′

.

ii Solve problem (18) based on xao
′

to find the minimum

system cost and the corresponding resource allocation

{rao
′

i }. If this provides a lower total system cost, update

(xao
∗

, {rao
∗

i }) = (xao
′

, {rao
′

i }).

Repeat steps i and ii until the the total system cost cannot be

further decreased. Then output the solution of the alternating

optimization procedure as (xao
∗

, {rao
∗

i }).
Note that, despite the approximation in solving (19), since

we only accept a better solution in each iteration, and the

system cost is lower bounded, AO always converges. Further-

more, by design, the solution (xao
∗

, {rao
∗

i }) is better than or

at least as good as (xsdr, {rsdr
∗

i }).

D. Step 3: Sequential Tuning to Reach Local Optimum

In this step, we propose an iterative procedure starting from

(xao
∗

, {rao
∗

i }), termed sequential tuning, to further reduce the
system cost and eventually achieve a local optimum for (6).

Set (xst
∗

, {rst
∗

i }) = (xao
∗

, {rao
∗

i }) as the initial point. At

each iteration:

i Randomly order the lists of all users and their tasks.

ii Go through the user list one by one. For each examined

user, sequentially check each of its tasks for the three

possible offloading decisions, while the offloading deci-

sions of all other tasks of all users remain unchanged.

For each offloading decision, find the total system cost

by solving problem (18). As soon as some user i is found
to admit a lower total system cost by changing the of-

floading decision of one of its tasks, update (xst
∗

, {rst
∗

i })
to the new offloading decision and resource allocation

that give the lower cost, and exit the iteration.

Repeat steps i and ii until xst
∗

converges, i.e., no change for

xst
∗

can be made. Then output the solution of the sequential

turning procedure as (xst
∗

, {rst
∗

i }).
The above procedure is guaranteed to converge. This is

because there is a finite number of possible values for xsti .

The iteration eventually will reach some (xst
∗

, {rst
∗

i }), where
the total system cost cannot be further reduced by modifying

any user’s offloading decision (and corresponding resource

allocation). It is straightforward to show that (xst
∗

, {rst
∗

i })
is a local optimum of problem (6), since it gives the lowest

system cost in the joint binary-valued neighborhood of x and

neighborhood of {ri}. This result is stated in the following

theorem.

Theorem 1: (xst∗ , {rst
∗

i }) obtained from the sequential tun-

ing procedure is a locally optimal solution to the original non-

convex optimization problem (6).

Algorithm 1 SDR-AO-ST Algorithm

Step 1: Initial offloading solution via SDR
1: Obtain optimal solution {Z∗

i } of problem (16). Extract the upper-
left 3M × 3M sub-matrices {Z′∗

i } from {Z
∗

i }.
2: Record the values of diagonal terms in Z′∗

i by pi =
[pT

i1, . . . ,p
T
iM ]T , where pij = [plij , p

a
ij , p

c
ij ]

T .

3: Set xsdr = [(xsdr
1 )T , . . . , (xsdr

N )T ]T , where xsdr
i is given by (17),

and solve the resource allocation problem (18) based on xsdr.
Step 2: Alternating optimization

4: Set (xao∗ , {rao
∗

i }) = (xsdr, {rsdr
∗

i }), and record the corresponding
total system cost as J ao∗ .

5: Set AO = False.
6: while AO == False do
7: Solve problem (19) based on {rao

∗

i } to find the

corresponding offloading decision xao′ ;

8: Solve problem (18) based on xao′ to find the minimum system

cost J ao′ and {rao
′

i };

9: if J ao′ < J ao∗ then
10: Set (xao∗ , {rao

∗

i }) = (xao′ , {rao
′

i }), J
ao∗ = J ao′ ;

11: else
12: Set AO = True; ⊲ Exit while loop
13: end if
14: end while

Step 3: Sequential tuning

15: Set (xst∗ , {rst
∗

i }) = (xao∗ , {rao
∗

i }), and record the corresponding
total system cost as J st∗ .

16: Set ST = False.
17: while ST == False do
18: Randomly order the lists of all users and their tasks;
19: Set user index n = 1; set task index m = 1;
20: while n ≤ N and m ≤M do
21: While keeping xst∗

n′m′ unchanged for all (n′,m′) except
(n′,m′) = (n,m), inspect the three possible offloading
choices of xst∗

nm; find their respective total system costs

by solving problem (18); set Jst
′

as the minimum cost
among these three choices, and record the

corresponding solution as (xst
′

, {rst
′

i });

22: if J st′ < J st∗ then
23: Set (xst∗ , {rst

∗

i }) = (xst′ , {rst
′

i }), J
st∗ = J st′ ;

24: n← N + 1;
25: else if n = N and m = M then
26: n← N + 1; ST = True; ⊲ No change of xst∗

can be found; exit
27: else if n < N and m = M then
28: n← n+ 1; m← 1;
29: else
30: m← m+ 1;
31: end if
32: end while
33: end while
34: Output: The offloading decision xst∗ and the corresponding

resource allocation {rst
∗

i }.

E. Overall SDR-AO-ST Algorithm

We summarize the above three-step SDR-AO-ST algorithm

in Algorithm 1.

Even though each of the SDR, AO, and ST steps above

can be used separately to provide a feasible solution to the

original optimization problem (6), when combined together in

the proposed manner, they each serves an important role in the

overall algorithm design. First, SDR provides a suitable start-



ing point for AO. Without it, i.e., if we start the AO iteration

from some randomly chosen point in the solution space, as

shown in Section V-B, AO can converge to some highly sub-

optimal solution. Second, with an appropriate starting point,

AO pushes the solution to one that is closer to the optimum.

This provide a suitable starting point for ST, which helps

reduce the number of iterations in ST. This is an important

step, since each of the ST iterations can be computationally

expensive, as it potentially may require searching over a large

number of tasks. Finally, ST further improves the solution,

and more importantly, it guarantees that the final solution is a

local optimum.

Further numerical evaluation of the roles and contributions

of each of these steps is given in Section V-B.

IV. LOWER BOUND ON THE OPTIMAL SOLUTION

Previously, the cost function in our original optimiza-

tion problem (14) considers the worst-case transmission-plus-

processing delays (9) and (10) for all users. Once the offload-

ing decision is made, we may schedule the multiple tasks to

be offloaded in any arbitrary order. The resultant TA
i and TC

i

will be less than T
A(U)

i and T
C(U)

i , respectively. Therefore,

the actual cost based on SDR-AO-ST will be lower than the

worst-case cost.

However, we are still interested in the performance of SDR-

AO-ST compared with an optimal solution. Therefore, we

introduce a lower bound of the optimal solution to the original

problem (6). We first introduce a new optimization problem,

where T
A(L)

i and T
C(L)

i are used instead of TA
i and TC

i and the

objective function is replaced by its lower bound, as follows:

min
{xij},{ri}

N
∑

i=1

[ M
∑

j=1

(El
ijx

l
ij + EA

ijx
a
ij + EC

ijx
c
ij)

+ ρimax{T u
i , T

d
i , T

u′

i , T d′

i , T a′

i , T uac
i , T dac

i , T c′

i }

]

(20)

s.t. (1)− (5), (7), and (13).

Notice that under the same offloading decisions and resource

allocation, the objective function in (20) is always lower than

the actual cost.

Since the above optimization problem (20) is still non-

convex, we formulate a separable SDR problem similar to

(16), whose details are omitted due to page limitation. We

note that, due to the SDP relaxation that enlarges the feasible

set, the optimal objective of this SDR problem is smaller than

the optimal objective of (20). Hence, it can serve as a lower

bound to the minimum total system cost defined by the original

optimization problem (6).

In Section V, we show that the proposed SDR-AO-ST

method provides not only a local optimum solution but also

nearly optimal performance compared with the lower bound.

V. PERFORMANCE EVALUATION

We evaluate the performance of SDR-AO-ST through Mat-

lab simulation under different parameter settings.

A. Simulation Setup

The following default parameter values are used unless

specified otherwise later. We adopt the mobile device char-

acteristics from [28], which is based on a Nokia smart device,

and set the number of mobile users as N = 5. Each user

has M = 4 independent tasks. According to Tables 1 and 3

in [28], the mobile device has CPU rate 500 × 106 cycles/s

and unit processing energy consumption 1
730×106 J/cycle. The

local computation time per bit is 4.75 × 10−7 s and local

processing energy consumption per bit is 3.25× 10−7 J. We

consider the x264 CBR encode application, which requires

1900 cycles/byte [28], i.e., Y (ij) = 1900Din(ij). The input
and output data sizes of each task are assumed to be uniformly

distributed from 10 to 30MB and from 1 to 3MB, respectively.

The total transmission bandwidth between the mobile users

and the CAP is set to 40 MHz, with no additional limit on

the uplink or downlink, and the transmission and receiving

energy consumptions of the mobile user are both 1.42× 10−7

J/bit as indicated in Table 2 in [28]. For simplicity, we set

ηui = ηdi = 3.5 b/s/Hz for all i. The CPU rate assigned to

each user at the remote cloud is 10×109 cycle/s, and the total
CAP processing rate fA is 10 × 109 cycle/s. When tasks are

sent from the CAP to the cloud, the transmission rate Rac is 15
Mpbs. The CAP usage cost and cloud usage cost are assumed

to be Ca
ij = Din(ij)+λ1/fA +λ2/CUL +λ3/CDL and Cc

ij =
Din(ij)+λ1/fC+λ2/CUL+λ3/CDL, respectively, where λ1 =
1018 bits×cycles/s and λ2 = λ3 = 1016 bits×Mbps, which

accounts for the input data size, processing rate, and uplink and

downlink capacities. Also, α = 1.5×10−7 J/bit, β = 3×10−7

J/bit, and ρi = 1 J/s for all i. Finally, all simulation results are
obtained by averaging over 100 realizations of the input and

output data sizes of each task.

B. Contribution of the Algorithm Components

To demonstrate the role and contribution of each step in the

SDR-AO-ST algorithm, we first compare it with the following

methods: 1) the SDR method where only the first step of SDR-

AO-ST is applied, 2) the SDR-ST method where the AO step

is skipped, 3) the AO-ST method where only the last two

steps of SDR-AO-ST are applied by using random offloading

decisions for all tasks as the starting point for the iterations

of AO, 4) the ST method where only the last step of SDR-

AO-ST is applied by using random offloading decisions for all

tasks as the starting point for the iterations of ST, and 5) the

lower bound of optimum, which is obtained from the optimal

objective value of the SDR lower bound of problem (20).

We show the system cost and the run time ratio vs. α in Figs.

2 and 3, respectively. Since α is the weight on the CAP usage

cost, more tasks compete at the CAP when α is smaller. We

observe that SDR-AO-ST can reduce the system cost by up to

20% compared with purely applying SDR and is much closer

to the lower bound of optimum. Furthermore, though SDR-ST,

AO-ST, and ST can provide similarly low cost as SDR-AO-ST,

which can be attributed to the sequential searching of ST, they

require much longer run time to obtain their solutions. This

demonstrates that we require both the SDR and AO steps in
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Fig. 3. Run time ratio versus α.

the proposed algorithm to provide an effective starting point

for the ST step to reach a local minimum solution quickly.

Similar observations can be made in Figs. 4 and 5, where

we show the system cost and the run time ratio vs. the weight

β on the cloud usage cost, and in Figs. 6 and 7, where we

show the system cost and the run time ratio vs.M , the number

of tasks per user. When β is large, all tasks are more likely

to be processed by either the mobile users or the CAP. More

importantly, SDR-AO-ST is shown to be more scalable, since

the run-time ratios are nearly linearly increasing with the

number of tasks per user.

C. Comparison with Further Alternatives

For further performance evaluation, we also consider the

following schemes: 1) the local processing only scheme where

all tasks are processed locally by mobile users, 2) the cloud

processing only scheme where all tasks are offloaded to the

cloud and the cost is obtained based on T
C(L)

i , 3) the lower

bound of local-cloud where the same approximation procedure

as the lower bound of optimum is applied, except that the

CAP is not used for computation, and 4) the random mapping

scheme where each task is processed at different locations with

equal probability. As shown in Figs. 8 and 9, the lower bound

of optimum converges to the lower bound of local-cloud as α
becomes large and the lower bound of local-cloud converges

to the local only method as β becomes large. In both figures,

SDR-AO-ST is near-optimal and substantially outperforms all

alternatives especially when the cost of using the CAP is small

or the cost of using the cloud is large.
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VI. CONCLUSION

We consider a general mobile cloud computing system

consisting of multiple users, one CAP, and one remote cloud

server, where each user has multiple independent tasks. To

minimize a weighted total cost of energy, computation, and

the delay of all users, we aim to find the overall optimal

decision on task offloading and allocation of computation and

communication resources. The proposed SDR-AO-ST algo-

rithm uses a three-step approach to obtain a local optimum.

By comparison with a lower bound of the minimum cost,

we show that SDR-AO-ST substantially out performs several

alternatives and often gives nearly optimal performance for a

wide range of parameter settings.
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