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Abstract—We consider online downlink precoding design for
multiple-input multiple-output (MIMO) wireless network virtu-
alization (WNV) in a fading environment with imperfect channel
state information (CSI). In our WNV framework, a base station
owned by an infrastructure provider (InP) is shared by several
service providers (SPs) that are oblivious to each other. The SPs
design their virtual MIMO transmission demands to serve their
own users, while the InP designs the actual downlink precoding
to meet the service demands from the SPs. Therefore, the impact
of imperfect CSI is two-fold, on both the InP and the SPs. We
aim to minimize the long-term time-averaged expected precoding
deviation, considering both long-term and short-term transmit
power limits. We propose a new online MIMO WNV algorithm
to provide a semi-closed-form precoding solution based only on
the current imperfect CSI. We derive a performance bound for
our proposed algorithm and show that it is within an O(δ) gap
from the optimum over any given time horizon, where δ is a
normalized measure of CSI inaccuracy. Simulation results with
two popular precoding techniques validate the performance of
our proposed algorithm under typical urban micro-cell Long-
Term Evolution network settings.

I. INTRODUCTION

Wireless network virtualization (WNV) aims at sharing
common network infrastructure among multiple virtual net-
works to reduce the capital and operational expenses of
wireless networks [1]. In WNV, the infrastructure provider
(InP) virtualizes the physical wireless infrastructure and radio
resources into virtual slices; the service providers (SPs) lease
these virtual slices and serve their subscribing users under their
own management and requirements [2]. Different from wired
network virtualization, WNV concerns the sharing of both the
wireless hardware and the radio spectrum. The random nature
of the wireless medium brings new challenges in guaranteeing
the isolation of virtual networks [3].

In this work, we focus on downlink WNV in a multiple-
input multiple-output (MIMO) system where one InP-owned
base station (BS) with multiple antennas is shared by multiple
SPs to serve their subscribing users. Most prior MIMO WNV
studies consider strict physical isolation, where the InP allo-
cates exclusive subsets of antennas or orthogonal sub-channels
to each SP [4]-[9]. This approach of physical isolation is
inherited from wired network virtualization [10]. It does not
fully utilize the benefit of spatial spectrum sharing enabled by
MIMO beamforming. In contrast, in [11], the SPs are allowed
to share all antennas and spectrum resources simultaneously.
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The SPs design their own virtual precoding matrices as vir-
tualization demands, based on their own users’ local channel
states and service demands. Since the SPs are oblivious of
each other, straightforward implementation of their demanded
precoding matrices would induce an unacceptable amount of
interference among them. Thus, the InP must intelligently
design the actual downlink precoding to mitigate the inter-SP
interference, while satisfying the SPs’ virtualization demands.
It has been demonstrated in [11] that, with an optimally de-
signed InP precoding matrix, such a spatial isolation approach
substantially outperforms the physical isolation approach. In
this work, we adopt the same virtualization method as in [11].

All of the above works on MIMO WNV have focused
on per-slot design optimization problems subject to a per-
slot transmit power constraint. Recognizing that the long-term
average transmit power is an important indicator of energy
usage [12], in this work, we further consider the optimal online
design of MIMO WNV with an additional constraint on the
long-term average transmit power. Our objective is to design
optimal global downlink precoding at the InP to serve all users
simultaneously, given the set of virtualization demands made
locally by each SP to serve its own users. The optimization
criterion is the long-term time-averaged expected deviation
between the received signals from the actual precoding and
those demanded by the SPs, with implicit elimination of
interference among the SPs.

In practical wireless systems, there are unavoidable channel
state information (CSI) errors induced by channel estima-
tion, quantization, and imperfect feedback. This challenge
is especially acute with MIMO fading channels, where the
channel state space is large and the channel state can fluctuate
quickly over time. Some existing MIMO WNV solutions can
accommodate imperfect CSI [5], [7], [8], [11], but they only
consider its impact on the InP. In contrast, in our problem,
imperfect CSI has a two-fold impact, on both the InP and the
SPs, since both of them rely on the channel state to design
the actual and virtual precoding matrices.

The main contributions of this paper are summarized below:
• We formulate the above downlink MIMO WNV as an on-

line precoding problem to share all antennas and wireless
spectrum resources among the SPs for efficient resource
allocation, accommodating both long-term and short-term
transmit power constraints. In each time slot, each SP is
allowed to locally demand its own precoder based on the
imperfect local CSI without the need to be aware of the



other SPs. The InP designs the global precoder based
on the imperfect global CSI to minimize the deviation
between the SPs’ demands and the actual received signals
at their users. This implies implicit elimination of the
inter-SP interference.

• We propose an online MIMO WNV algorithm, by ex-
tending the standard Lyapunov optimization to deal with
imperfect CSI. Our proposed algorithm determines down-
link precoding only based on the current imperfect CSI,
and the online precoding solution is in semi-closed form.
Our analysis shows that the performance of our proposed
algorithm achieved with only the current imperfect CSI
can be arbitrarily close to an O(δ) performance gap to
the optimum achieved with perfect CSI over any given
time horizon, where δ is a normalized measure of CSI
inaccuracy. To the best of our knowledge, this two-fold
impact of imperfect CSI on both the InP and the SPs has
not been studied in the literature of WNV.

• Our simulation results, under typical urban micro-cell
Long-Term Evolution (LTE) network settings, demon-
strate that the proposed algorithm has fast convergence
and is robust to imperfect CSI. We further demonstrate
the performance advantage of the virtualized network
enabled by the proposed algorithm over a non-virtualized
network.

The rest of the paper is organized as follows. In Section II,
we present the related work. Section III describes the system
model and problem formulation. In Section IV, we present our
online algorithm and precoding solution. Performance bounds
are provided in Section V. Simulation results are presented in
Section VI, followed by concluding remarks in Section VII.

II. RELATED WORK

Among existing works of MIMO WNV that enforce strict
physical isolation, [4] and [5] study the problems of through-
put maximization and energy minimization, respectively. Both
of them use the orthogonal frequency division multiplexing
massive MIMO setting. A two-level hierarchical auction ar-
chitecture is proposed in [6] to allocate exclusive sub-carriers
among the SPs. The uplink resource allocation problems are
investigated in [7] and [8], combining MIMO WNV with
the cloud radio networks and non-orthogonal multiple access
techniques, respectively. Antennas are allocated among the SPs
through pricing for virtualized massive MIMO systems in [9].
In this work, we adopt the spatial isolation approach of [11],
where virtualization is achieved by MIMO precoding design. It
has been demonstrated in [11] that this approach substantially
outperforms the strict physical isolation approach.

The general Lyapunov optimization technique [13] and
online convex optimization technique [14] have been applied
to solve various online problems in non-virtualized MIMO
systems. For example, online projected gradient descent and
matrix exponential learning are used in [15] and [16] for
MIMO uplink covariance matrix design. Online power control
for wireless transmission with energy harvesting and storage
has been studied for single-hop transmission [17] and two-hop

relaying [18]. Online downlink MIMO WNV with accurate
CSI is studied in [19]. Dynamic transmit covariance design for
point-to-point MIMO systems is studied in [20], by extending
standard Lyapunov optimization to deal with inaccurate system
state. Our online algorithm is inspired by [20], but our MIMO
WNV problem is challenging with several key differences:
1) this is a virtualization demand and response mechanism
between the InP and the SPs; 2) the SPs are oblivious to each
other and share all antennas and wireless spectrum resources
provided by the InP; 3) both the InP and the SPs design the
actual and virtual precoding matrices based on imperfect CSI.
These unique features of MIMO WNV bring new challenges to
the algorithm design and the performance analysis that cannot
be addressed by [20]. In particular, imperfect CSI has a two-
fold impact on both the InP and the SPs, which requires new
techniques to bound the virtualization performance in terms
of the difference between the SPs’ virtualization demand and
the InP’s actual precoding outcome.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a virtualized MIMO cellular network formed
by one InP and M SPs. In each cell, the InP owns the BS and
performs virtualization at the BS for data transmission. The
SPs are oblivious to each other and serve their own subscribing
users. Other functional structures of the network, including the
core network and computational resources, are assumed to be
already virtualized.

Consider downlink transmissions in a virtualized cell, where
the InP-owned BS is equipped with N antennas. The M SPs
share the N antennas at the BS and the spectrum resources
provided by the InP. Each SP m has Km users, for a total
of K =

∑
m∈M Km users in the cell. Let N = {1, . . . , N},

M = {1, . . . ,M}, Km = {1, . . . ,Km}, and K = {1, . . . ,K}.
We consider a time-slotted system with time indexed by t.

Let H(t) ∈ CK×N denote the MIMO channel state between
the BS and all K users at time t. We assume a block fading
channel model, where {H(t)} over time t is independent
and identically distributed (i.i.d.). The distribution of H(t) is
unknown and can be arbitrary. We assume that the channel
gain is bounded by a constant B ≥ 0 at any time t, given by

‖H(t)‖F ≤ B, ∀t (1)

where ‖ ∙ ‖F denotes the Frobenius norm.
We adopt the spatial virtualization approach first proposed

in [11], which is illustrated in Fig. 1. Let Hm(t) ∈ CKm×N

denote the channel state between the BS and Km users of
SP m. In the idealized case where the CSI is perfect, at
each time t, the InP shares the channel state Hm(t) with
SP m and allocates a transmission power Pm to the SP.
Using Hm(t), each SP m designs its own precoding matrix
Wm(t) ∈ CN×Km , subject to the transmission power limit
‖Wm(t)‖2

F ≤ Pm. The design of Wm(t) is solely based on
the service needs of SP m’s own users without considering
the existence of the other SPs sharing the same antennas and
spectrum resources. Each SP m then sends Wm(t) to the



Fig. 1. An illustration of MIMO virtualization in a cell with one InP and two
SPs each serving its own users in a virtual cell.

InP as a virtual precoding matrix by the SP. For SP m, with
Wm(t), the virtual received signal vector y′

m (at its Km users)
is given by y′

m(t) = r′m(t) + nm(t), where nm(t) is the
received additive noise vector, and

r′m(t) = Hm(t)Wm(t)xm(t)

is the desired received signal vector (noiseless), with
xm(t) being the transmitted signal vector. Define y′(t) ,
[y′H

1 (t), . . . ,y′H
M (t)]H as the virtual received signal vector at

all K users, we have y′(t) = r′(t) + n(t) where r′(t) =
D(t)x(t) is the desired received signal vector, with D(t) ,
blkdiag{H1(t)W1(t), . . . ,HM (t)WM (t)} ∈ CK×K be-
ing the virtualization demand made by all SPs, x(t) ,
[xH

1 (t), . . . ,xH
M (t)]H , and n(t) , [nH

1 (t), . . . ,nH
M (t)]H . The

transmitted signals to all K users are assumed independent to
each other, with zero-mean and unit power, i.e., E{x(t)} = 0
and E{x(t)xH(t)} = I, ∀t.

At each time t, the InP designs the actual downlink pre-
coding matrix V(t) , [V1(t), . . . ,VM (t)] ∈ CN×K , where
Vm(t) ∈ CN×Km is the actual downlink precoding matrix for
SP m. The actual received signal vector ym(t) at Km users
of SP m is given by ym(t) = rm(t) + nm(t), where rm(t) is
the actual received signal vector (noiseless), given by

rm(t) = Hm(t)Vm(t)xm(t) +
∑

i∈M,i 6=m

HmVi(t)xi(t).

The second term in the last equation is the inter-SP in-
terference from the other SPs to the users of SP m. The
actual received signal vector y(t) , [yH

1 (t), . . . ,yH
M (t)]H

at all K users is given by y(t) = r(t) + n(t) where
r(t) = H(t)V(t)x(t).

B. Problem Formulation

For downlink MIMO WNV, the InP designs precoding
matrix V(t) to perform MIMO virtualization. Note that while
each SP m designs its own virtual precoding matrix Wm(t)
without considering the inter-SP interference, the InP designs
the actual downlink precoding matrix V(t) to mitigate the
inter-SP interference, in order to meet the virtualization de-
mand D(t) received from the SPs.

With the InP’s actual precoding matrix V(t) and each SP
m’s virtual precoding matrix Wm(t), the expected deviation
of the actual received signal vector at all K users from the
desired one is given by

E{‖r(t) − r′(t)‖2
2} = E{‖H(t)V(t) − D(t)‖2

F }.

The goal at the InP is to optimize MIMO precoding to
minimize the long-term time-averaged expected precoding
deviation from the virtualization demand, subject to both long-
term and short-term transmit power constraints. The optimiza-
tion problem is formulated as follows:

P1 : min
{V(t)}

lim
T→∞

1
T

T−1∑

t=0

E{‖H(t)V(t) − D(t)‖2
F }

s.t. lim
T→∞

1
T

T−1∑

t=0

E{‖V(t)‖2
F } ≤ P̄ , (2)

‖V(t)‖2
F ≤ Pmax (3)

where P̄ is the average transmit power limit, and Pmax is the
maximum transmit power limit at the BS. Both power limits
are set by the InP, and we assume P̄ ≤ Pmax to avoid triviality.

Since channel state H(t) is random, P1 is a stochastic
optimization problem. It is challenging to solve, especially
when the distribution of H(t) is unknown due to the difficulty
of measuring it in MIMO systems with a large number of an-
tennas and users1. In addition, the instantaneous channel state
cannot be obtained accurately in practical systems. Typically,
the InP only has an inaccurate estimate of the channel state
Ĥ(t) at each time t. With given channel estimation quality,
we assume that the normalized CSI inaccuracy is bounded by
a constant δ ≥ 0 at any time t, given by

‖H̃m(t)‖F

‖Hm(t)‖F
≤ δ, ∀m ∈ M, ∀t (4)

where H̃m(t) , Hm(t) − Ĥm(t) is the channel estimation
error and Ĥm(t) is the estimated channel state of SP m’s
users. It follows that at each time t, the estimated channel
gain is bounded by

‖Ĥ(t)‖F ≤ ‖H(t)‖F + ‖H̃(t)‖F ≤ B(1 + δ), ∀t. (5)

Thus, at each time t, each SP m only has the estimated channel
state Ĥm(t) shared by the InP to design its own virtual precod-
ing matrix, denoted by Ŵm(t). As a result, the InP receives
an inaccurate virtualization demand from the SPs, defined
as D̂(t) , blkdiag{Ĥ1(t)Ŵ1(t), . . . , ĤM (t)ŴM (t)}. Based
on Ĥ(t) and D̂(t), the InP then designs the actual precoding
matrix, denoted by V̂(t).

In this work, with unknown channel distribution and an
inaccurate estimation of the instantaneous channel state at each
time t, we aim to develop an online MIMO WNV algorithm
based on Ĥ(t) and D̂(t) for a precoding solution {V̂(t)} to
P1.

1If the channel distribution is known, it is possible to solve P1 through
Dynamic Programming (DP) [21]. However, the DP method faces the curse
of dimensionality in computational complexity and is impractical for real
systems especially for large N and K.



IV. ONLINE MIMO WNV ALGORITHM

In this section, we present a new online MIMO WNV
algorithm that utilizes the Lyapunov optimization technique.
Different from standard Lyapunov optimization that relies on
accurate system state [13], we develop new techniques to
design our online algorithm to accommodate imperfect CSI
at both the InP and the SPs.

A. Online Optimization Formulation

To design an online algorithm for solving P1, we introduce
a virtual queue Z(t) for the long-term average transmit power
constraint (2) with the updating rule given by

Z(t + 1) = max{Z(t) + ‖V̂(t)‖2
F − P̄ , 0}. (6)

Define L(t) , 1
2Z2(t) as the quadratic Lyapunov function

and Δ(t) , L(t + 1) − L(t) as the corresponding Lyapunov
drift at time t. Solving P1 can be converted to minimizing
the objective function while stabilizing the virtual queue
through minimizing a drift-plus-penalty (DPP) metric [13],
defined as E{Δ(t)|Z(t)} + UE{ρ̂(t)|Z(t)}, where ρ̂(t) ,
‖Ĥ(t)V̂(t) − D̂(t)‖2

F and U > 0 is the relative weight. The
DPP metric is a weighted sum of the conditional expectation
on the Lyapunov drift Δ(t) and the penalty ρ̂(t) on precoding
deviation under the current inaccurate channel state Ĥ(t),
given the current virtual queue length Z(t). We first provide
an upper bound for the DPP metric in the following lemma.
The proof follows standard Lyapunov optimization techniques
[13] and is omitted.

Lemma 1. At each time t, for any precoding design of V̂(t),
the DPP metric has the following upper bound for all Z(t)
and U > 0

E{Δ(t)|Z(t)} + UE{ρ̂(t)|Z(t)}

≤ S + UE {ρ̂(t)|Z(t)} + Z(t)E{‖V̂(t)‖2
F − P̄ |Z(t)} (7)

where S , 1
2 max

{
(Pmax − P̄ )2, P̄ 2

}
.

Minimizing the DPP metric directly is still difficult due to
the dynamics involved in the Lyapunov drift Δ(t). Instead,
we minimize its upper bound given in Lemma 1, which is no
longer a function of Δ(t). Specifically, given Ĥ(t) at each
time t, we consider the per-slot version of the upper bound in
(7) by removing the conditional expectation and the constant
terms as objective. The resulting per-slot problem is given as
follows:

P2 : min
V̂(t)

U‖Ĥ(t)V̂(t) − D̂(t)‖2
F + Z(t)‖V̂(t)‖2

F

s.t. ‖V̂(t)‖2
F ≤ Pmax. (8)

Note that P2 is a per-slot precoding optimization problem
under the current inaccurate channel state Ĥ(t) and the virtual
queue length Z(t), subject to the short-term transmit power
constraint (8) only. Compared with the original P1, the long-
term time-averaged expected objective is modified to the per-
slot version of DPP metric in P2, where the long-term average
transmit power constraint (2) is converted to the queue stability

Algorithm 1 Outline of Online MIMO WNV Algorithm
1: Let U > 0 be a constant parameter and Z(0) = 0. At each time

t, observe Ĥ(t) and Z(t), and then do the following:
2: Solve the per-slot problem P2 for V̂?(t) (see Section IV-B).
3: Update Z(t + 1) = max{Z(t) + ‖V̂?(t)‖2

F − P̄ , 0}.

in Z(t) as part of the DPP metric. We solve P2 to obtain the
optimal precoding matrix V̂?(t) for P2 at each time t, and then
update the virtual queue Z(t) according to its queue dynamics
in (6). An outline of the proposed online algorithm is given
in Algorithm 1.

B. Online Precoding Solution to P2

Now we present a semi-closed-form solution to P2. We omit
the time index t in solving P2 for notation simplicity. Note
that P2 is essentially a constrained regularized least square
problem. Since P2 is a convex optimization problem satisfying
the Slater’s condition, the strong duality holds. We solve P2
using the Karush-Kuhn-Tucker (KKT) conditions [22]. The
Lagrange function for P2 is given by

L(V̂, λ) = U‖ĤV̂ − D̂‖2
F + Z‖V̂‖2

F + λ(‖V̂‖2
F − Pmax)

= U(tr{ĤHĤV̂V̂H} + tr{D̂D̂H} − tr{ĤHD̂V̂H}

− tr{ĤV̂D̂H}) + (Z + λ) tr{V̂V̂H} − λPmax

where λ is the Lagrangian multiplier associated with constraint
(8). The partial derivative of L(V̂, λ) to V̂∗ is given by

∇V̂∗L(V̂, λ) = U(ĤHĤV̂ − ĤHD̂) + (Z + λ)V̂. (9)

where the partial derivative expression follows from
∇B∗ tr{ABH} = A and ∇B∗ tr{AB} = 0 [23]. The KKT
conditions for (V̂?, λ?) being globally optimal are given by

(

ĤHĤ +
Z + λ?

U
I

)

V̂? = ĤHD̂, (10)

‖V̂?‖2
F − Pmax ≤ 0, (11)

λ? ≥ 0, (12)

λ?(‖V̂?‖2
F − Pmax) = 0 (13)

where (10) is derived by letting (9) equal to 0. We obtain
the optimal solution based on (10)-(13). Note that, by (6), the
virtual queue is nonnegative, i.e., Z ≥ 0. We derive the optimal
solution which is separately discussed in the following cases.

1) Z + λ? > 0: From (10), ĤHĤ + Z+λ?

U I � 0 which is
invertible, and we have

V̂? =

(

ĤHĤ +
Z + λ?

U
I

)−1

ĤHD̂. (14)

Depending on Z, V̂? in (14) can be further categorized in
two subcases: 1.i) If Z > 0: By (11) and (13), if ‖(ĤHĤ +
Z
U I)−1ĤHD̂‖2

F ≤ Pmax, then λ? = 0; Otherwise, we have
λ? > 0 such that ‖(ĤHĤ + Z+λ?

U I)−1ĤHD̂‖2
F = Pmax. 1.ii)

If Z = 0: It follows that λ? > 0. By (13), we have λ? > 0
such that ‖(ĤHĤ + λ?

U I)−1ĤHD̂‖2
F = Pmax.



2) Z = λ? = 0: From (10), the optimal solution must
satisfy

ĤHĤV̂? = ĤHD̂. (15)

We categorize (15) in two subcases: 2.i) If K < N : ĤHĤ ∈
CN×N is a rank deficient matrix, and there are infinitely many
solutions to V̂?. We choose V̂? that minimizes ‖V̂?‖2

F subject
to (15), which is an under-determined least square problem
with a closed-form solution:

V̂? = ĤH
(
ĤĤH

)−1

D̂. (16)

Substitute the above into (11). If ‖ĤH(ĤĤH)−1D̂‖2
F ≤ Pmax,

then V̂? in (16) is the optimal solution. 2.ii) If K ≥ N :
ĤHĤ ∈ CN×N is of full rank2, and we have a unique
solution:

V̂? =
(
ĤHĤ

)−1

ĤHD̂. (17)

Again, by (11), if ‖(ĤHĤ)−1ĤHD̂‖2
F ≤ Pmax, then V̂?

in (17) is the optimal solution. For both subcases 2.i) and
2.ii), V̂? in (16) or (17) cannot satisfy (11), which means the
condition in Case 2) does not hold at optimality, i.e., λ? > 0,
and the optimal solution is given by Case 1).

From the above discussion, if at optimality λ? = 0, we have
a closed-form solution for V̂? in (16) or (17). Otherwise, we
have a semi-closed-form solution for V̂? in (14), where λ? > 0
can be obtained by a bi-section search to ensure the transmit
power meets Pmax in (11). The computational complexity for
calculating V̂? is dominated by the matrix inversion, and thus
is in the order of O(N3).

V. PERFORMANCE BOUNDS

Different from existing works on non-virtualized wireless
networks such as [20], in our MIMO WNV system, the impact
of imperfect CSI is two-fold on both the InP and the SPs.
Therefore, in this section, we develop new techniques to derive
the performance bounds for our online algorithm.

We first show in the following lemma that in Algorithm 1,
the virtual queue Z(t) is upper bounded at each time t.

Lemma 2. By Algorithm 1, Z(t) satisfies

Z(t) ≤ UξB2(1 + δ)2 + Pmax − P̄ , ∀t (18)

where ξ ,
√

N
∑

m∈M Pm

P̄
.

Proof: We omit time index t for notation simplicity in the
proof. Let ĤHĤ = ÛΣ̂ÛH , where Û is an unitary matrix,
and Σ̂ = diag(σ̂1, . . . , σ̂N ). It follows that ĤHĤ+ Z+λ?

U I =

ÛΣ̂
′
ÛH , where Σ̂

′
= diag(σ̂′

1, . . . , σ̂
′
N ) and σ̂′

n = σ̂n +
Z+λ?

U , ∀n ∈ N . If Z > 0, V̂? is given in (14), and we have

‖V̂?‖F ≤
∥
∥
∥ÛΣ̂

′−1
ÛH

∥
∥
∥

F
‖Ĥ‖F ‖D̂‖F

(a)

≤
U

Z

√
N‖Ĥ‖F ‖D̂‖F

2Since the channels from BS to users are assumed independent, H(t) ∈
CK×N is of full rank at each time t. The independent channel assumption
is typically satisfied in practice for users at different locations.

(b)

≤
U

Z
B2(1 + δ)2

√
N
∑

m∈M

Pm (19)

where (a) follows from σ̂n ≥ 0, ∀n ∈ N and λ? ≥ 0, such
that ‖ÛΣ̂

′−1
ÛH‖2

F = tr
{
Σ̂

′−2
}

=
∑

n∈N σ̂′−2
n ≤ N U2

Z2 ,

and (b) follows from (5), ‖Ŵm‖2
F ≤ Pm, ∀m ∈ M, and

‖D̂‖2
F ≤

∑

m∈M

‖Ĥm‖2
F ‖Ŵm‖2

F . (20)

From (19), we have the sufficient condition for Z(t) to
ensure ‖V̂?(t)‖2

F ≤ P̄ for any time t:

Z(t) ≥ UξB2(1 + δ)2. (21)

If (21) holds, ‖V̂?(t)‖2
F ≤ P̄ , and by (6), the virtual queue

decreases, i.e., Z(t + 1) ≤ Z(t). Otherwise, the maximum
increase of the virtual queue is Pmax − P̄ , i.e., Z(t + 1) ≤
Z(t)+Pmax − P̄ . Thus, the virtual queue is upper bounded as
in (18) at any time t ≥ 0.

Note that Algorithm 1 and the upper bound on the virtual
queue in Lemma 2 are applicable to any precoding schemes
adopted by the SPs. In the following, we consider two common
precoding schemes, maximum ratio transmission (MRT) and
zero forcing (ZF) precoding. We assume M ′ SPs adopt MRT
precoding and the other SPs adopt ZF precoding. The analysis
can be extended to other precoding schemes as well.

Specifically, let M′ = {1, . . . ,M ′} be the set of SPs that
adopt MRT precoding. Each SP m ∈ M′ uses the following
MRT precoding matrix to maximize the received signal-to-
noise ratio (SNR) given by

ŴMRT
m (t) =

√
Pm

‖Ĥm(t)‖2
F

ĤH
m(t). (22)

Each SP m ∈ M\M′ adopts ZF precoding to null the inter-
user interference, where we assume Km ≤ N in order to
perform ZF precoding given by

ŴZF
m(t)=

√
Pm

tr{(Ĥm(t)ĤH
m(t))−1}

ĤH
m(t)

(
Ĥm(t)ĤH

m(t)
)−1

.(23)

Let Ĥm(t)ĤH
m(t) = Q̂m(t)Ω̂m(t)Q̂H

m(t) where Q̂m(t) is a
unitary matrix and Ω̂m(t) = diag{ω̂m,1(t), . . . , ω̂m,Km(t)}.
Let D(t) and D̂(t) be the corresponding virtualization de-
mands under accurate and inaccurate channel state, respec-
tively, according to each SP’s precoding scheme in (22) or
(23). Below we show that given the CSI inaccuracy δ in (4),
there is an upper bound O(δ) on the deviation between the ac-
curate and inaccurate virtualization demands ‖D(t)−D̂(t)‖F ,
for any time t. Note that the impact of inaccurate CSI on the
SPs’ virtualization demand under MIMO WNV has not been
studied in the literature.

Lemma 3. At each time t, the following hold:

‖D(t) − D̂(t)‖F ≤ ηBδ, (24)

‖D(t)‖F ≤ ζB, (25)

‖D̂(t)‖F ≤ ζB(1 + δ) (26)



where

η ,

√
∑

m∈M′

(
1+ (2+δ)B

B̂min
m

)2
Pm+

∑
m∈M\M′

(
B4(1+δ)2

Kmω̂min
m ωmin

m

)2
Pm,

B̂min
m , min{‖Ĥm(t)‖F : ∀t}, ω̂min

m , min{ω̂m,i(t) : ∀i ∈
Km, ∀t}, ωmin

m , min{ωm,i(t) :∀i ∈ Km, ∀t} in which ωm,i is
similarly defined as ω̂m,i for Hm(t), and ζ ,

√∑
m∈M Pm.

Proof: The proofs of (25) and (26) follow from (20). We
now prove (24) and omit time index t for notation simplicity.
The square of the left-hand side of (24) is given by

‖D − D̂‖2
F =

∑

m∈M

‖HmWm − ĤmŴm‖2
F . (27)

For SP m ∈ M′, by (22), we have

‖HmWMRT
m − ĤmŴMRT

m ‖F

=
√

Pm

∥
∥
∥
∥
∥
HmHH

m

‖Hm‖F
−

ĤmĤH
m

‖Ĥm‖F

∥
∥
∥
∥
∥

F

=
√

Pm

∥
∥
∥
∥
∥
HmHH

m

‖Hm‖F
−

(Hm − H̃m)(HH
m − H̃H

m)

‖Hm − H̃m‖F

∥
∥
∥
∥
∥

F

=
√

Pm

∥
∥
∥
∥

(
HmHH

m

‖Hm‖F
−

HmHH
m

‖Hm − H̃m‖F

)

−
H̃mH̃H

m − 2<{H̃mHH
m}

‖Hm − H̃m‖F

∥
∥
∥
∥
∥

F

≤
√

Pm

[
‖HmHH

m‖F

‖Hm‖F

(

1 −
‖Hm‖F

‖Hm − H̃m‖F

)

+
‖H̃mH̃H

m − 2<{H̃mHH
m}‖F

‖Hm − H̃m‖F

]

(a)

≤
√

Pm

(

Bδ +
‖H̃mH̃H

m − 2<{H̃mHH
m}‖F

‖Hm − H̃m‖F

)

(b)

≤
√

PmBδ

(

1+
(2+δ)B

‖Ĥm‖F

)

≤
√

PmBδ

(

1+
(2+δ)B

B̂min
m

)

(28)

where (a) is because

‖HmHH
m‖F

‖Hm‖F

(

1−
‖Hm‖F

‖Hm−H̃m‖F

)

≤ B

(

1−
1

1+δ

)

≤Bδ,

and (b) follows from

‖H̃mH̃H
m − 2<{H̃mHH

m}‖F ≤ ‖H̃mH̃H
m‖F + 2‖H̃mHH

m‖F

≤‖H̃m‖2
F +2‖H̃m‖F ‖Hm‖F ≤B2δ2+2B2δ ≤(2+δ)B2δ.

For SP m ∈ M\M′, by (23), we have

‖HmWZF
m − ĤmŴZF

m ‖F

=
√

Pm

∥
∥
∥
∥
∥
∥

IKm√
tr{(HmHH

m)−1}
−

IKm√
tr{(ĤmĤH

m)−1}

∥
∥
∥
∥
∥
∥

F

(a)

≤
√

PmKm

∣
∣
∣
∣

√
tr{Ω̂

−1

m } −
√

tr{Ω−1
m }

∣
∣
∣
∣

Km

B2(1+δ)

=

√
Pm

Km
B2(1 + δ)

∣
∣
∣tr{Ω̂

−1

m − Ω−1
m }
∣
∣
∣

√
tr{Ω̂

−1

m } +
√

tr{Ω−1
m }

(b)

≤

√
Pm

Km
B2(1+δ)

B2(2+δ)δ

ω̂min
m ωmin

m
(2+δ)

√
Km

B(1+δ)

≤

√
PmB5(1+ δ)2δ
Kmω̂min

m ωmin
m

(29)

where (a) follows from tr{(ĤmĤH
m)−1} = tr{Ω̂

−1

m } =
∑

i∈Km
ω̂−1

m,i ≥ Km

B2(1+δ)2 , (b) follows from
√

tr{Ω̂
−1

m } +
√

tr{Ω−1
m } ≥

√
Km

B2(1+δ)2 +
√

Km

B2 = (2+δ)
√

Km

B(1+δ) , and

∣
∣
∣tr{Ω̂

−1

m − Ω−1
m }
∣
∣
∣ =

∣
∣
∣
∣
∣

∑

i∈Km

ω̂−1
m,i − ω−1

m,i

∣
∣
∣
∣
∣

≤

∣
∣∑

i∈Km
ωm,i − ω̂m,i

∣
∣

ω̂min
m ωmin

m

=

∣
∣
∣‖Hm‖2

F − ‖Ĥm‖2
F

∣
∣
∣

ω̂min
m ωmin

m

=
(‖Hm‖F + ‖Ĥm‖F )

∣
∣
∣‖Hm‖F − ‖Ĥm‖F

∣
∣
∣

ω̂min
m ωmin

m

≤
B2(2 + δ)δ
ω̂min

m ωmin
m

.

Applying inequalities (28) and (29) to (27) yields (24).
For channel state H(t) being i.i.d. over time, there exists

a stationary randomized optimal precoding solution Vopt(t)
to P1, which depends only on the (unknown) distribution
of H(t), and achieves the minimum objective value of
P1, denoted by ρopt [13]. Define φ(H(t),V(t),D(t)) ,
U‖H(t)V(t) − D(t)‖2

F + Z(t)‖V(t)‖2
F , and note that

φ(Ĥ(t), V̂(t), D̂(t)) is the objective function in P2. Lever-
aging the results in Lemma 3, we now show in the following
lemma that, at each time t, for a given CSI inaccuracy δ in (4),
there exists an upper bound O(δ) on φ(H(t), V̂?(t),D(t))−
φ(H(t),Vopt(t),D(t)), which is the performance gap between
using the optimal solution V̂?(t) to P2 under the inaccurate
channel state Ĥ(t) and using the optimal solution Vopt(t) to
P1 under the accurate channel state H(t). We point out that,
different from [20], our proof explicitly considers the two-fold
impact of CSI inaccuracy on both InP and SPs under MIMO
WNV.

Lemma 4. At each time t, the following holds:

φ(H(t), V̂?(t),D(t)) − φ(H(t),Vopt(t),D(t)) ≤ Uϕ (30)

where

ϕ , 2
[
(2+δ)(Pmax+ζη)+2(ζ(1+δ)+η)

√
Pmax

]
B2δ=O(δ).

Proof: We omit time index t for notation simplicity. The
proof of (30) consists of five steps as follows.

Step 1: From the first order condition of real-valued scalar
convex function φ(H, V̂?,D) with respect to the complex-
valued matrix variable D [24], we have

φ(H, V̂?,D) − φ(H, V̂?, D̂)

≤ −2<{tr{∇D∗φ(H, V̂?,D)H(D̂ − D)}}
(a)
= 2U<{tr{(HV̂? − D)H(D̂ − D)}}



≤ 2U | tr{(HV̂? − D)H(D̂ − D)}|

≤ 2U‖HV̂? − D‖F ‖D̂ − D‖F

≤ 2U(‖H‖F ‖V̂?‖F + ‖D‖F )‖D̂ − D‖F

(b)

≤ 2U(
√

Pmax + ζ)ηB2δ (31)

where (a) follows from ∇D∗φ(H, V̂?,D)= −U(HV̂? −D),
and (b) follows from (1), (8), (24), and (25).

Step 2: From the first order condition of real-valued scalar
convex function φ(H, V̂?, D̂) with respect to the complex-
valued matrix variable H, we have

φ(H, V̂?, D̂) − φ(Ĥ, V̂?, D̂)

≤ −2<{tr{∇H∗φ(H, V̂?, D̂)H(Ĥ − H)}}
(a)
= 2U<{tr{(HV̂?V̂?H − D̂V̂?H)H(H − Ĥ)}}

≤ 2U(‖H‖F ‖V̂
?‖F + ‖D̂‖F )‖V̂?‖F ‖H − Ĥ‖F

(b)

≤ 2U
[
Pmax + ζ(1 + δ)

√
Pmax

]
B2δ (32)

where (a) follows from ∇H∗φ(H, V̂?, D̂) = U(HV̂?V̂?H −
D̂V̂?H), and (b) follows from (1), (4), (8), and (26).

Step 3: In Algorithm 1, V̂? is the optimal precoding matrix
that minimizes φ(Ĥ, V̂, D̂) as the objective in P2 over all the
precoding policies including Vopt, it follows that

φ(Ĥ, V̂?, D̂) − φ(Ĥ,Vopt, D̂) ≤ 0. (33)

Step 4: Similarly to Step 2, we have

φ(Ĥ,Vopt, D̂) − φ(H,Vopt, D̂)

≤ 2U(Pmax + ζ
√

Pmax)(1 + δ)B2δ. (34)

Step 5: Similarly to Step 1, we have

φ(H,Vopt, D̂) − φ(H,Vopt,D)

≤ 2U
[√

Pmax + ζ(1 + δ)
]
ηB2δ. (35)

Summing over (31)-(35) yields (30).
Leveraging the key results in Lemma 4, we show that

the expected DPP metric over the virtual queue Z(t) under
the accurate channel state H(t) using the optimal precoding
solution V̂?(t) to P2 is upper bounded at each time t. The
technique used in the proof is similar to Lemma 3 in [20] and
hence is omitted.

Lemma 5. At each time t, we have

E{Δ(t)} + UE{‖H(t)V̂?(t) − D(t)‖2
F }

≤ UE{‖H(t)Vopt(t) − D(t)‖2
F } + Uϕ + S (36)

where ϕ is given in Lemma 4 and S is defined below (7).

Leveraging the results in Lemma 2 and Lemma 5, the fol-
lowing theorem provides performance bounds for Algorithm 1
with imperfect CSI over any given time horizon T . The proof
utilizes the Lyapunov optimization techniques [13] and key
results in Lemma 2 and Lemma 5. Details are omitted due to
space constraint.

Theorem 6. Given any ε > 0, set U = S
ε in Algorithm 1. For

any T > 0, for V̂?(t) produced by Algorithm 1 with Ĥ(t),
the following hold regardless of the distribution of H(t):

1
T

T−1∑

t=0

E
{
‖H(t)V̂?(t) − D(t)‖2

F

}
≤ ρopt + ϕ + ε, (37)

1
T

T−1∑

t=0

‖V̂?(t)‖2
F ≤ P̄ +

SB2(1 + δ)2ξ + ε(Pmax − P̄ )
εT

(38)

where ρopt is the minimum objective value of P1 under H(t),
ϕ is defined below (30), and ξ is defined below (18).

Note that, different from the standard (ε, 1
ε ) trade-off in

Lyapunov optimization with accurate system state information
[13], Theorem 6 provides an upper bound on the objective
value of P1 in (37), i.e., the time-averaged expected deviation
of the actual precoding by the InP from the virtualization
demand under inaccurate channel state. It indicates that, for
any given T , the performance of Algorithm 1 using inaccurate
channel state Ĥ(t) can be arbitrarily close to the optimum
achieved with accurate channel state H(t) plus O(δ), where
the performance gap ε is a controllable parameter by our
design and can be set arbitrarily small. Furthermore, (38)
provides a bound on the time-averaged transmit power for any
given T . The bound indicates that for all T ≥ 1

ε2 , Algorithm
1 guarantees that the deviation from the long-term transmit
power limit P̄ is within O(ε). In particular, as T → ∞, (38)
becomes the long-term average transmit power constraint (2).

VI. SIMULATION RESULTS

In this section, we present extensive simulation results under
typical urban micro-cell LTE network settings. We study the
impact of various system parameters on algorithm convergence
and performance. For performance comparison, it has already
been demonstrated in [11] that the spatial isolation approach
used in this work substantially outperforms the physical isola-
tion approach used in other existing MIMO WNV studies [4]-
[9], in terms of throughput and energy consumption. Indeed,
the physical isolation approach, in exchange for achieving
network virtualization, suffers performance loss in comparison
with a non-virtualized system. Therefore, we will focus on
demonstrating that our spatial isolation approach compares
favorably against a non-virtualized system.

A. Simulation Setup

We consider an InP that owns a BS equipped with N = 30
antennas at the center of an urban hexagon micro-cell of
500 m radius. The InP serves M = 4 SPs. Each SP serves
2 to 5 users uniformly distributed in the cell. Following the
typical LTE specifications [25], we set Pmax = 16 dBm,
noise power spectral density N0 = −174 dBm/Hz, noise
figure NF = 10 dB, and we focus on the channel over
one subcarrier with bandwidth BW = 10 kHz as default
system parameters. The fading channel from the BS to user
k is modeled as hk =

√
βkgk, where gk ∼ CN (0, I),

βk[dB] = −31.54−33 log10(dk)−ψk represents the path-loss
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(a) All SPs adopt MRT precoding.
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(b) One half of the SPs adopt MRT precoding and the other half
of the SPs adopt ZF precoding. Channel distribution changes at
the 300th and 600th time slots.

Fig. 2. ρ̄V̂? (T ) and P̄V̂? (T ) vs. T under different θ.

and shadowing, with dk being the distance in kilometers from
the BS to user k and ψk ∼ CN (0, σ2

φ) being the shadowing
with σφ = 8 dB.

We assume the time-division duplex mode, where the chan-
nel estimation is performed over the uplink channel. The BS
estimates each channel through L pilot symbols with a given
power Ppilot. We set L = 1, Ppilot = 10 dBm as default, and
assume the minimum mean-square error channel estimation,
with error ek = hk−ĥk where ek is Gaussian distributed with
covariance Cek

= Chk
−Chk

TH(TChk
TH +σ2

nI)−1TChk
,

in which Chk
, E{hkhH

k }, T ,
√

Ppilot[I, . . . , I]H , and
σ2

n = N0BW + NF is the noise power [26]. We de-
fine the time-averaged normalized CSI inaccuracy as ēH ,
1
T

∑T−1
t=0

‖H̃(t)‖F

‖H(t)‖F
.

To study the performance of Algorithm 1, we define the
normalized time-averaged precoding deviation from the virtu-
alization demand as

ρ̄V̂?(T ) ,
1
T

∑T−1
t=0 ‖H(t)V̂?(t) − D(t)‖2

F

1
T

∑T−1
t=0 ‖D(t)‖2

F

(39)

and the time-averaged downlink transmit power as

P̄V̂?(T ) ,
1
T

T−1∑

t=0

‖V̂?(t)‖2
F .

We assume that the InP allocates the transmit power Pm =
Pmax
M to each SP m such that

∑
m∈M Pm = Pmax.

For ρ̄V̂?(T ) in (39), ‖D(t)‖2
F ≤ B2Pmax by (25), based

on the performance upper bound in (37), we set ε =
θB2Pmax where θ is used as a controllable parameter. We
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(b) All SPs adopt ZF precoding.

Fig. 3. ρ̄V̂? (T ) and P̄V̂? (T ) vs. T under different P̄ .

set B = 1.645
√

N
∑

k∈K βk, which gives a Chernoff upper
bound of 3.8 × 10−9 for the probability of bound violation
P{‖H(t)‖F > B}.

B. Effect of Weighting Factor U

We first study the effect of weighting factor U = S
ε on

the performance by varying ε through θ. Fig. 2(a) shows the
time trajectory of ρ̄V̂?(T ) and P̄V̂?(T ) under different values
of θ, for P̄ = 14 dBm and ēH = 5.7%, when all SPs adopt
MRT precoding. Fast convergence of the proposed algorithm
(within 100 time slots) is observed. As θ decreases, U becomes
larger, and more emphasis is on the precoding deviation ρ̂(t),
and less on the Lyapunov drift Δ(t) in the DPP metric. As a
result, it takes a longer time for the virtual queue to stabilize,
and thus the performance to reach the steady state. Further-
more, at convergence, ρ̄V̂?(T ) decreases as θ decreasing, and
P̄V̂?(T ) converges to P̄ . These are consistent with Theorems
6. Fig. 2(b) shows the algorithm performance under a practical
scenario where the SPs are free to adopt either MRT or ZF
precoding, and the channel distribution changes over time (e.g.,
due to mobility). Our proposed algorithm can track the change
of channel distribution while limiting ρ̄V̂?(T ) under 3% when
θ = 0.1%. As such, we set θ = 0.1% as the default value for
the rest of simulation.

C. Performance vs. Long-Term Transmit Power Limit P̄

Fig. 3 shows the time trajectory of ρ̄V̂?(T ) and P̄V̂?(T )
under different values of P̄ , when all SPs adopt either MRT
or ZF precoding. The case of P̄ = ∞ corresponds to removing
the long-term average transmit power constraint (2) from P1.
At steady state, ρ̄V̂?(T ) is under 1% when P̄ = ∞ for both the
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(b) All SPs adopt ZF precoding.

Fig. 4. ρ̄V̂? (T ) and P̄V̂? (T ) vs. T under different Ppilot.

MRT and ZF precoding cases. When P̄ = 14 dBm, the steady-
state value of ρ̄V̂?(T ) is only around 2% for both cases. Note
that there is a natural trade-off between P̄ and ρ̄V̂?(T ), which
allows the InP to balance the transmit power consumption
and the deviation of actual precoding from the virtualization
demand.

D. Performance vs. CSI Inaccuracy

In Fig. 4, we study the impact of CSI inaccuracy on the
performance by varying Ppilot. As Ppilot decreases from 10 dBm
to 4 dBm, ēH increases from 5.7% to 10.9%, while the steady-
state values of ρ̄V̂?(T ) is still under 3% for both precoding
schemes. We observe that ρ̄V̂?(T ) is more sensitive to ēH

when all SPs adopt ZF precoding, as compared to the MRT
precoding case. The reason is that ZF precoding nulls the inter-
user interference and thus its performance is sensitive to CSI
inaccuracy. The steady-state value of P̄V̂?(T ) is not sensitive
to the value of ēH.

E. Performance Comparison with Non-virtualized Network

We compare the performance between virtualized and non-
virtualized networks. For the non-virtualized network, all users
share the channel bandwidth BW . We assume the InP directly
serves all users and maximizes the long-term time-averaged
expected sum rate subject to both long-term and short-term
transmit power constraints through optimizing the transmit
power of MRT or ZF precoding as follows:

P3 : min
{α̂(t)}

lim
T→∞

1
T

T−1∑

t=0

E

{

−
∑

k∈K

R̂k(t)

}
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(b) ZF precoding.

Fig. 5. Comparison of R̄(T ) between virtualized and non-virtualized net-
works.

s.t. lim
T→∞

1
T

T−1∑

t=0

E{‖α̂(t)Ŵ(t)‖2
F } ≤ P̄ ,

‖α̂(t)Ŵ(t)‖2
F ≤ Pmax

where R̂k(t) = log2

(

1+ α̂2(t)|ĥT
k (t)ŵk(t)|2

α̂2(t)
∑

k′∈K,k′ 6=k |ĥT
k (t)ŵk′ (t)|2+σ2

n

)

,

Ŵ(t) = ĤH(t) if the InP adopts MRT precoding, and
Ŵ(t) = ĤH(t)(Ĥ(t)ĤH(t))−1 if the InP adopts ZF precod-
ing. The solution to P3 is omitted due to space constraints.

Fig. 5 shows the time-averaged per-user rate defined as
R̄(T ), 1

TK

∑T−1
t=0

∑
k∈Klog2

(
1+ |hT

k (t)v̂k(t)|2∑
k′∈K,k′6=k|h

T
k (t)v̂k′(t)|2+σ2

n

)

achieved by the virtualized network and non-virtualized
networks with P̄ = 15 dBm. We consider two cases
of MRT and ZF precoding. Note that the per-user rate
demand from the SPs at each time t is calculated by
1
K

∑
m∈M

∑
k∈Km

log2

(

1+
|ĥT

m,k(t)ŵm,k(t)|2
∑

k′∈Km,k′6=k|ĥ
T
m,k(t)ŵm,k′(t)|2+σ2

n

)

.

We observe that it is higher than the actual rate achieved,
since the SPs request maximum BS transmit power Pmax = 16
dBm without considering the inter-SP interference.

Compared with the non-virtualized network, a virtualized
network using the proposed algorithm achieves a higher
rate. This is because our downlink precoding minimizes the
precoding deviation, while implicitly reducing the inter-SP
interference. This indirectly increases the rates of all SPs.

VII. CONCLUSIONS

This paper considers online downlink precoding design for
WNV in MIMO fading systems with imperfect CSI. We
propose an online MIMO WNV algorithm to minimize the
long-term time-averaged expected deviation of the InP’s actual
precoding solution from the virtualization demand set by the
SPs, subject to both long-term and short-term transmit power
constraints. Our proposed algorithm only depends on the
current imperfect CSI, without knowledge of the channel dis-
tribution, and the online precoding solution is in semi-closed
form. Our analysis considers the two-fold impact of imperfect
CSI on both InP and SPs, to reveal an O(δ) optimality gap over
any given time horizon. Simulation results based on realistic
LTE network settings show that the algorithm converges fast
and is robust to imperfect CSI.
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