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Abstract—We consider online convex optimization (OCO) with
multi-slot feedback delay, where an agent makes a sequence of
online decisions to minimize the accumulation of time-varying
convex loss functions, subject to short-term and long-term con-
straints that are possibly time-varying. The current convex loss
function and the long-term constraint function are revealed to the
agent only after the decision is made, and they may be delayed
for multiple time slots. Existing work on OCO under this general
setting has focused on the static regret, which measures the gap
of losses between the online decision sequence and an offline
benchmark that is fixed over time. In this work, we consider both
the static regret and the more practically meaningful dynamic
regret, where the benchmark is a time-varying sequence of
per-slot optimizers. We propose an efficient algorithm, termed
Delay-Tolerant Constrained-OCO (DTC-OCO), which uses a
novel constraint penalty with double regularization to tackle the
asynchrony between information feedback and decision updates.
We derive upper bounds on its dynamic regret, static regret, and
constraint violation, proving them to be sublinear under mild
conditions. We further apply DTC-OCO to a general network
resource allocation problem, which arises in many systems
such as data networks and cloud computing. Simulation results
demonstrate substantial performance gain of DTC-OCO over the
known best alternative.

I. INTRODUCTION

Online convex optimization (OCO) has emerged as a
promising solution to many machine learning, signal pro-
cessing, and resource allocation problems in the presence of
uncertainty [1], [2]. Under the standard OCO setup, at the
beginning of each time slot, an agent makes a decision from a
known convex set. At the end of each slot, the system reveals
information of the current convex loss function to the agent,
and then the agent’s loss is realized. Due to the lack of in-
time information of the current convex loss function, it is
impossible for an agent to make an optimal decision at each
slot. Instead, the agent aims at minimizing the regret, i.e., the
performance gap between the online decision sequence and
some performance benchmark.

Most of the early works on OCO studied the static regret,
which compares the online decision sequence with a static
offline benchmark that has apriori information of all the convex
loss functions. In the seminal work of OCO [3], an online
projected gradient descent algorithm was shown to achieve
O(T

1
2 ) static regret, where T is the time horizon. The static

regret was further reduced to O(log T ) in [4] for strongly
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convex loss functions. However, when the optimum of the
underlying system is time-varying, the static offline bench-
mark itself may perform poorly and achieving sublinear static
regret may not be meaningful anymore. In [3], a more useful
dynamic regret was also presented, where the benchmark was
a time-varying solution sequence. This dynamic benchmark
has been recognized as a more attractive but harder-to-track
performance benchmark for OCO [5], [6].

The above works all focused on OCO with short-term
constraints that must be strictly satisfied. Subsequently, OCO
with long-term constraints was considered in [7]. In this case,
a desired OCO algorithm should provide sublinear constraint
violation, so that the time-averaged violation of each long-term
constraint tends to zero as time approaches infinity. A trade-off
between the regret and constraint violation bounds was shown
in [8], and the constraint violation bound was further improved
in [9]. These works assumed that the long-term constraints are
time-invariant and known in advance, while recent works [10]-
[12] studied OCO with time-varying long-term constraints.

In practical systems, the decision maker often gains access
to the system information only after some delay. For example,
in wireless communications, data transmission relies on chan-
nel state information, which is usually delayed for multiple
transmission frames after channel estimation, quantization, and
feedback. In mobile computing, feedback delay can be caused
by offloading tasks from remote devices and communicating
through wireless channels. Under standard OCO, the decision
maker receives information on the current loss function (and
if applicable the long-term constraint functions) at the end
of each slot when the decision is made, i.e., the feedback
information is delayed for only one slot. This is the model used
in, e.g., [3]-[12], but it can be too restrictive for many practical
applications. Therefore, [13] initiated a study on OCO with
multi-slot feedback delay. Additional delay-adaptive OCO
algorithms were proposed in [14] and [15], while a static
regret bound was derived in recent work [16] for time-varying
constrained OCO with multi-slot feedback delay.

However, to the best of our knowledge, all existing works on
OCO with multi-slot feedback delay have focused on the static
regret, which may not be a meaningful performance metric for
some inherently time-varying systems. In fact, the gap between
the static and dynamic regrets can be as large as O(T ) [17]. In
the presence of multi-slot feedback delay, whether sublinear
dynamic regret is achievable for OCO is an open problem. The
need to consider (time-varying and time-invariant) long-term



TABLE I
SUMMARY OF RELATED WORKS ON OCO

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] DTC-OCO

Long-term time-invariant constraints Y Y Y Y
Long-term time-varying constraints Y Y Y Y Y

Multi-slot feedback delay Y Y Y Y Y
Static performance benchmark Y Y Y Y Y Y Y Y Y Y Y Y Y

Dynamic performance benchmark Y Y Y Y Y Y

constraints further adds to this challenge. In this context, the
main contributions of this paper are as follows:

• We propose an efficient algorithm, termed Delay-Tolerant
Constrained-OCO (DTC-OCO), for OCO with multi-
slot feedback delay and both short-term and long-term
constraints. While all existing OCO algorithms use either
no regularization or single regularization for decision
updates, in DTC-OCO, we propose a novel constraint
penalty with double regularization to tackle the asyn-
chrony between information feedback and decision up-
dates, which improves tolerance to multi-slot delay and
facilitates the performance bounding of DTC-OCO.

• We analyze the special structure of DTC-OCO
due to double regularization and establish that it
provides O(max{τ

1
2 T

1+δ
2 , T ν}) dynamic regret and

O(max{τ
1
2 T

1
2 , T ν}) static regret, where τ is the

feedback delay, and δ and ν respectively represent the
growth rates of the accumulated variation of a dynamic
benchmark and constraint functions.

• We derive O(max{T
1−δ
2 , τT κ}) constraint violation

bound for DTC-OCO, where κ represents the growth
rate of the accumulated squared variation of constraint
functions. In the special case of time-invariant constraints,
even with multi-slot feedback delay, DTC-OCO recovers
the known best constraint violation bound for constrained
OCO with one-slot feedback delay.

• We apply DTC-OCO to a general network resource
allocation problem, which arises in many systems such
as data networks and cloud computing. Simulation based
on an example cloud computing system demonstrates that
DTC-OCO is tolerant to feedback delay and substantially
outperforms the known best alternative from [16].

The rest of this paper is organized as follows. In Section II,
we present the related work. Section III describes the problem
formulation and performance metrics. We present DTC-OCO,
provide its performance bounds, and discuss its performance
merits in Section IV. The application of DTC-OCO to network
resource allocation is presented in Section V, followed by
concluding remarks in Section VI.

II. RELATED WORK

In this section, we survey existing works on OCO with
either long-term constraints or multi-slot feedback delay. The
differences between these works and our work are summarized
in Table. I.

Among existing works on OCO with long-term constraints,
a saddle-point-typed algorithm was proposed in [7] and
achieved O(T

1
2 ) static regret and O(T

3
4 ) constraint violation.

A follow-up work [8] provided O(Tmax{μ,1−μ}) static regret

and O(T 1−μ
2 ) constraint violation, where μ ∈ (0, 1) is

some trade-off parameter. A virtual-queue-based algorithm
was proposed in [9] and established the known best O(1) con-
straint violation. Another virtual-queue-based algorithm was
proposed in [10] for independent and identically distributed
(i.i.d.) constraints. The saddle-point-typed and virtual-queue-
based algorithms were respectively modified in [11] and [12]
to deal with time-varying constraints. However, the above
works were all confined to the standard OCO setting where
the feedback information is delayed for only one slot.

Most existing works on OCO with multi-slot feedback delay
focused on online problems with short-term constraints [13]-
[15]. The standard online gradient descent algorithm [3] was
extended in [13] to provide O(τ

1
2 T

1
2 ) static regret. Delay-

adaptive online gradient descent algorithms were proposed
in [14] and [15] to accommodate adversarial feedback delay.
The impact of multi-slot feedback delay on OCO with long-
term constraints was considered only in [16]. However, [16]
only studied the static regret, which may not be an attractive
performance metric for an inherently time-varying system.
Furthermore, the constraint violation bound provided in [16]
was no less than O(T

3
4 ) even for time-invariant constraints,

inherited from the saddle-point-typed algorithm [7]. Thus, the
impact of multi-slot feedback delay on constrained OCO is
still not well understood. Different from [16], we propose a
novel constraint penalty with double regularization to achieve
sublinear dynamic and static regret bounds, as well as a
stronger constraint violation bound.

Constrained OCO is related to Lyapunov optimization [18],
which makes use of the system state and queueing information
to implicitly learn and adapt to changes in the system with
unknown statistics. However, under this framework, the system
states are commonly assumed to be i.i.d. or Markovian, while
OCO solutions do not have such restriction. Furthermore,
standard Lyapunov optimization relies on the current and
accurate system state for decision updates. In the presence of
feedback delay on the system state, one can apply Lyapunov
optimization by leveraging historical information to predict the
current system state with some errors [19]. However, this way
of dealing with feedback delay is equivalent to extending the
standard Lyapunov optimization to inaccurate system states in
[20] and [21]. In this case, the optimality gap would be O(σT )
with σ being some measure of system inaccuracy, so that such
an approach cannot lead to the sublinear dynamic regret bound
that we seek.

In this work, we focus on centralized OCO. Distributed
OCO is beyond our scope, and we refer interested readers
to [22]-[26].



III. CONSTRAINED OCO WITH MULTI-SLOT DELAY

A. Problem Formulation

We consider a time-slotted system with time indexed by t.
Let {ft(x)}, where ft(x) : Rn → R, be a sequence of convex
loss functions. Let {gt(x)} be a sequence of convex long-term
constraint functions, where gt(x) = [g1

t (x), . . . , gC
t (x)]T :

Rn → RC with C being the number of constraints. Let
C = {1, . . . , C}. The loss function ft(x) and the constraint
function gt(x) can vary over time. We further consider short-
term constraints represented by a compact convex set X0 ⊆
Rn. The goal of constrained OCO is to select a sequence of
decisions {xt} from X0 that minimizes the accumulated loss
while ensuring that the long-term constraints are satisfied [11],
[12]. This leads to the following optimization problem:

P1 : min
{xt∈X0}

T∑

t=1

ft(xt)

s.t.
T∑

t=1

gt(xt) � 0. (1)

Note that if the constraint functions are time-invariant, i.e.,
gt(x) = g(x), ∀t, then P1 is simplified to the time-invariant
constrained OCO problem considered in [7]-[9].

Under the standard constrained OCO setting [7]-[12], feed-
back information on the loss function ft(x) and the long-
term constraint function gt(x) is assumed to be delayed for
only one slot, when it can be leveraged to make the new
decision xt+1.1 However, in many practical applications, e.g.,
wireless transmission and mobile computing mentioned in
Section I, this assumption is rarely satisfied since the feedback
information can be severely delayed. Therefore, in this work,
we consider a general scenario where the feedback information
of ft(x) and gt(x) is delayed for τ ≥ 1 slots, so that the
decision maker receives it at the end of slot t+τ−1 [13]-[16].
Different from similar works with only short-term constraints
[13]-[15], the additional long-term constraints in (1) of P1
lead to a more complicated online problem, especially since
the underlying system varies over time while the feedback
information is delayed.

B. Performance Metrics

Due to the lack of in-time information of the current
loss and constraint functions under the OCO setting, it is
impossible to obtain an optimal solution to P1.2 Instead, a
time-varying constrained OCO algorithm aims at selecting an
online solution sequence {xt} that is asymptotically no worse
than some performance benchmark.

One common offline benchmark is

x? ∈ arg min
x∈X0

{
T∑

t=1

ft(x)|gt(x) � 0, ∀t

}

(2)

1We note that, to have a well-posed problem, information on the short-
term constraints must be current. Furthermore, obviously delay is irrelevant
to time-invariant long-term constraints [7]-[9].

2In fact, even for the most basic OCO problem [3] (i.e., without long-term
constraints (1)), an optimal solution cannot be found [4].

which is computed assuming all information of {ft(x)} and
{gt(x)} is known in advance. The performance gap between
{xt} and x? is termed the static regret:

REs(T ) ,
T∑

t=1

[ft(xt) − ft(x
?)]. (3)

For example, this static regret was used in [16], while [7]-
[9] used a special case of it with time-invariant constraints.3

However, as a rather coarse performance metric, the static
regret may not be a strong indicator for the actual algorithm
performance especially when the underlying system is inher-
ently time-varying.

A more attractive performance benchmark for time-varying
constrained OCO is the dynamic benchmark {x?

t }, given by

x?
t ∈ arg min

x∈X0

{ft(x)|gt(x) � 0} (4)

which is computed using the in-time information of ft(x) and
gt(x) at each slot t. The dynamic benchmark was originally
proposed for OCO with short-term constraints [3] and was
modified in [11] and [12] to incorporate long-term constraints.
The corresponding dynamic regret is defined as

REd(T ) ,
T∑

t=1

[ft(xt) − ft(x
?
t )]. (5)

In some cases, the gap between REs(T ) and REd(T ) can be
as large as O(T ) [17]. In this paper, we provide upper bounds
on both REs(T ) and REd(T ) for a comprehensive performance
study.

To measure the accumulated violation of the long-term
constraints, the constraint violation4 is defined for any c ∈ C
as [12], [16]

VOc(T ) ,
T∑

t=1

gc
t (xt). (6)

Note that the constraint violation defined in [7]-[9] for time-
invariant constraint g(x) is a special case of (6). Our study ac-
commodates both time-varying and time-invariant constraints.

A constrained OCO algorithm is desired to provide both
sublinear regrets, i.e., REd(T ) = o(T ) and REs(T ) = o(T ),
and sublinear constraint violation, i.e., VOc(T ) = o(T ). Sub-
linearity is important since it implies that the online decision
is asymptotically no worse than the benchmark in terms of
its time-averaged performance, and the long-term constraints
are satisfied in the time-averaged sense. Unfortunately, with
multi-slot feedback delay, existing literature only achieves
sublinear static regret and O(T

3
4 ) constraint violation [16].

In this work, we propose an efficient algorithm DTC-OCO to
provide sublinear dynamic and static regrets and a stronger
constraint violation bound.

3Even with one-slot delay, [27] showed that it is impossible to achieve sub-
linear static regret w.r.t. x◦∈arg minx∈X0{

∑T
t=1 ft(x)|

∑T
t=1 gt(x)�0}

and sublinear constraint violations simultaneously.
4The constraint violation is referred to as dynamic fit Fit(T ) ,

‖[
∑T

t=1 gt(xt)]+‖2 in [11], where [x]+ , max{x,0} is the entry-wise
positive projection operator. One can easily verify that the sublinearity of
VOc(T ), ∀c ∈ C implies Fit(T ) being sublinear, and vice versa.



IV. DELAY-TOLERANT CONSTRAINED ONLINE CONVEX

OPTIMIZATION (DTC-OCO)

In this section, we present details of DTC-OCO and study
the impact of multi-slot feedback delay on the performance
guarantees of DTC-OCO to provide regret and constraint
violation bounds. We further give sufficient conditions un-
der which DTC-OCO yields sublinear regret and constraint
violation. Finally, the performance merits of DTC-OCO over
existing constrained OCO algorithms are discussed.

A. DTC-OCO Algorithm

DTC-OCO introduces a novel virtual queue vector Qt =
[Q1

t , . . . , Q
C
t ]T for the long-term constraints (1), with the

following updating rule for any c ∈ C:

Qc
t = max

{
−γgc

t−τ (xt), Q
c
t−1 + γgc

t−τ (xt)
}

(7)

where γ > 0 is a step-size parameter. The role of Qt is similar
to a Lagrangian multiplier vector for P1 or a backlog queue for
the constraint violation, which are concepts used in [9], [10],
and [12]. However, unique to our proposed approach, gc

t−τ (xt)
is the τ -slot delayed constraint violation caused by the current
decision, and it needs to be scaled by an appropriate γ factor.
We then convert P1 to solving a per-slot problem at each slot
t > τ with short-term constraints only, given by

P2 : min
x∈X0

[∇ft−τ (xt−τ )]T (x − xt−τ )

+ [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (x)]

+ α‖x − xt−τ‖
2
2 + η‖x − xt−1‖

2
2

where α, η > 0 are two step-size parameters.
DTC-OCO uses the τ -slot delayed gradient ∇ft−τ (xt−τ )

in P2 for accumulated loss minimization. Compared with
the original P1, the long-term constraints (1) are converted
to penalizing gt−τ (x) for queue stabilities as one part of
the objective in P2. Note that DTC-OCO uses a novel con-
straint penalty with double regularization α‖x − xt−τ‖2

2 and
η‖x−xt−1‖2

2 in the per-slot objective in P2 to handle the asyn-
chrony between information feedback and decision updates.
This will be shown, analytically in Sections IV-B and IV-C
and numerically in Section V, to give DTC-OCO substantial
performance advantage over existing works in terms of regret
bounds and average performance.

To summarize, DTC-OCO is comprised of three major
steps: 1) Initialize xt ∈ X0,Qt = 0, ∀t ∈ [1, τ ] and
g0(x) ≡ 0; 2) At the beginning of each slot t > τ , obtain
the current decision xt by solving P2; 3) At the end of each
slot t > τ , update the virtual queue Qt via (7).5 Note that
DTC-OCO has three step-size parameters α, η, γ > 0. Their
choice depends on our knowledge of the system and will
be discussed in Section IV-C, after we derive the regret and
constraint violation bounds in Section IV-B. We will clarify
the impact of these step-sizes on those bounds.

5If information feedback of ft(x) and gt(x) are respectively delayed for
τ1 and τ2 slots with τ1 6= τ2, DTC-OCO can still be applied by setting
τ = max{τ1, τ2}.

The main difference between DTC-OCO and the saddle-
point-typed OCO algorithms [7], [8], [11], [16] is that DTC-
OCO uses a virtual queue to track the constraint violation. The
virtual queue was also used in Lyapunov optimization [18],
and later extended to OCO in [9], [10], and [12]. Although
a small part of our performance bounding borrows some
techniques from Lyapunov drift analysis, as explained in
Section II, DTC-OCO is structurally different from Lyapunov
optimization. Furthermore, the virtual-queue-based OCO al-
gorithms in [9] and [10] were designed for time-invariant and
i.i.d. constraints, respectively, while obtaining only static regret
bounds. Compared with [12], DTC-OCO only uses the gradi-
ent of the loss functions at the past decision points, instead
of the complete information of the past loss functions. Fur-
thermore, [9], [10], and [12] are limited to one-slot feedback
delay. Therefore, the virtual queue construction, algorithm
design, and performance bound derivation for DTC-OCO are
all substantially different from those of [9], [10], and [12].

B. Regret and Constraint Violation Bounds

In this section, we present new techniques to derive the
performance bounds of DTC-OCO, particularly to account for
its constraint penalty with double regularization.

We make the following assumptions that are common in the
literature for constrained OCO [7]-[12], [16].

Assumption 1. The gradient ∇ft(x) is bounded: ∃D>0, s.t.,

‖∇ft(x)‖2 ≤ D, ∀x ∈ X0, ∀t. (8)

Assumption 2. For any t, gt(x) satisfies the following:
2.1) gt(x) is Lipschitz continuous on X0: ∃β > 0, s.t.,

‖gt(x) − gt(y)‖2 ≤ β‖x − y‖2, ∀x,y ∈ X0, ∀t. (9)

2.2) gt(x) is bounded: ∃G > 0, s.t.,

‖gt(x)‖2 ≤ G, ∀x ∈ X0, ∀t. (10)

2.3) Existence of an interior point: ∃ε>0 and x̃t ∈ X0, s.t.,

gt(x̃t) � −ε1, ∀t. (11)

Assumption 3. The radius of X0 is bounded: ∃R > 0, s.t.,

‖x − y‖2 ≤ R, ∀x,y ∈ X0. (12)

We first provide bounds on the virtual queue vector in the
following lemma. The proof follows from the virtual queue
definition in (7) and is omitted due to page limitation.

Lemma 1. The virtual queue vector generated by DTC-OCO
is bounded for any t > τ by the following inequalities:

Qt + γgt−τ (xt) � 0, (13)

‖Qt‖2 ≥ ‖γgt−τ (xt)‖2, (14)

‖Qt‖2 ≤ ‖Qt−1‖2 + ‖γgt−τ (xt)‖2. (15)

Define Lt , 1
2‖Qt‖2

2 as a quadratic Lyapunov function and
Δt , Lt+1 − Lt as the corresponding Lyapunov drift [18].
Leveraging results in Lemma 1, we provide an upper bound
on Δt in the following lemma.



Lemma 2. The Lyapunov drift is upper bounded for any t > τ
as follows:

Δt−1 ≤ γQT
t−1gt−τ (xt) + ‖γgt−τ (xt)‖2

2. (16)

Proof: (Proof outline due to page limitation) For any c ∈ C
and t > τ , we can verify that

1
2
(Qc

t)
2 −

1
2
(Qc

t−1)
2 ≤ γQc

t−1g
c
t−τ (xt) + [γgc

t−τ (xt)]
2

by considering the two cases from (7): 1) Qc
t−1+γgc

t−τ (xt) ≥
−γgc

t−τ (xt) and 2) −γgc
t−τ (xt) > Qc

t−1 + γgc
t−τ (xt). Sum-

ming the above inequalities over c ∈ C yields (16).
We also require the following lemma, which is reproduced

from Lemma 2.8 in [1].

Lemma 3. Let S ∈ Rn be a nonempty convex set. Let h(v) :
Rn → R be a %-strongly-convex function over S w.r.t. a norm
‖ ∙ ‖. Let w = arg minv∈S h(v). Then, for any u ∈ S , we
have h(w) ≤ h(u) − %

2‖u − w‖2.

A main goal of this paper is to examine the impact of
multi-slot feedback delay on the dynamic regret bound for
constrained OCO, which has not been addressed in the existing
literature. To this end, we need to quantify the accumulated
variations of the underlying time-varying system. We define
the accumulated variation of the dynamic benchmark {x?

t }
(commonly termed the path length [3]) as

Δx? ,
T∑

t=1

‖x?
t − x?

t−1‖2. (17)

Furthermore, we define the accumulated squared variation of
the constraint function sequence {gt(x)} as

Δg ,
T∑

t=1

max
x∈X0

{
‖gt(x) − gt−1(x)‖2

2

}
. (18)

Another related quantity regarding the accumulated variation
of {gt(x)} is defined as

Δ̃g ,
T∑

t=1

max
x∈X0

{‖gt(x) − gt−1(x)‖2} . (19)

In the order sense, Δg is usually smaller than Δ̃g for a con-
straint function sequence {gt(x)} that varies sublinearly [12].

Leveraging results in Lemmas 1 and 2, and the tuning
freedom brought by the double regularization for constructing
telescoping terms, the following theorem provides an upper
bound on the dynamic regret REd(T ) for DTC-OCO with τ -
slot feedback delay.

Theorem 4. For any α, γ > 0 and η ≥ γ2β2, the dynamic
regret of DTC-OCO is upper bounded by

REd(T ) ≤
D2

4α
T +

γ2G2

2
+ γ2Δg

+ (ατ + η)(R2 + 2RΔx?) + DRτ. (20)

Proof: The objective function of P2 is 2(α + η)-strongly-
convex over X0 w.r.t. Euclidean norm ‖ ∙ ‖2 due to the double

regularization. Since xt minimizes P2 over X0 for any t > τ ,
we have

[∇ft−τ (xt−τ )]T (xt − xt−τ ) + α‖xt − xt−τ‖2
2

+ [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (xt)]+η‖xt − xt−1‖

2
2

(a)

≤ [∇ft−τ (xt−τ )]T (x?
t−τ − xt−τ ) + α‖x?

t−τ − xt−τ‖
2
2

+ [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (x?

t−τ )]

+ η‖x?
t−τ − xt−1‖

2
2 − (α + η)‖xt − x?

t−τ‖
2
2 (21)

(b)

≤ [∇ft−τ (xt−τ )]T (x?
t−τ − xt−τ )

+ α(‖x?
t−τ − xt−τ‖

2
2 − ‖xt − x?

t−τ‖
2
2)

+ η(‖x?
t−τ − xt−1‖

2
2 − ‖xt − x?

t−τ‖
2
2), (22)

where (a) follows from Lemma 3; and (b) is because Qτ = 0,
g0(x) ≡ 0 by initialization, Qt + γgt−τ (xt) � 0, ∀t > τ , in
(13), γ > 0, and gt−τ (x?

t−τ ) � 0, ∀t > τ , in (4), such that
[Qt−1 + γgt−τ−1(xt−1)]T [γgt−τ (x?

t−τ )] ≤ 0, ∀t > τ .
Now, we bound the second and third terms in (22). From

‖a + b‖2
2 ≥ ‖a‖2

2 + ‖b‖2
2 − 2‖a‖2‖b‖2, we have

‖x?
t−τ − xt−τ‖

2
2 − ‖xt − x?

t−τ‖
2
2

≤ ‖x?
t−τ − xt−τ‖

2
2 − ‖x?

t − xt‖
2
2 − ‖x?

t−τ − x?
t ‖

2
2

+ 2‖x?
t − xt‖2‖x

?
t−τ − x?

t ‖2 ≤ Φt−τ + 2Rφt−τ , (23)

where Φt−τ , ‖x?
t−τ − xt−τ‖2

2 − ‖x?
t − xt‖2

2 and φt−τ ,
‖x?

t−τ − x?
t ‖2. Similarly, we can show that

‖x?
t−τ − xt−1‖

2
2 − ‖xt − x?

t−τ‖
2
2 ≤ Ψt−τ + 2Rψt−τ , (24)

where Ψt−τ , ‖x?
t−τ −xt−1‖2

2−‖x?
t−τ+1−xt‖2

2 and ψt−τ ,
‖x?

t−τ − x?
t−τ+1‖2.

Substituting (23) and (24) into (22), adding ft−τ (xt−τ ) on
both sides, applying the first-order condition of convexity

ft−τ (xt−τ ) + [∇ft−τ (xt−τ )]T (x?
t−τ − xt−τ ) ≤ ft−τ (x?

t−τ )

to its RHS, and rearranging terms, we have

ft−τ (xt−τ ) − ft−τ (x?
t−τ )

≤ −[∇ft−τ (xt−τ )]T (xt − xt−τ ) − α‖xt − xt−τ‖
2
2

− [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (xt)]−η‖xt − xt−1‖

2
2

+ α(Φt−τ + 2Rφt−τ ) + η(Ψt−τ + 2Rψt−τ ). (25)

We now bound the right-hand side of (25). Note that

− [Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (xt)]

(a)

≤ −Δt−1 + ‖γgt−τ (xt)‖
2
2 − γ2gT

t−τ−1(xt−1)gt−τ (xt)

(b)
= −Δt−1 +

γ2

2
(‖gt−τ (xt)‖

2
2 − ‖gt−τ−1(xt−1)‖

2
2)

+
γ2

2
‖gt−τ (xt) − gt−τ−1(xt−1)‖

2
2

(c)

≤ −Δt−1 + γ2

(
1
2
ϕt−τ + β2‖xt − xt−1‖

2
2 + $t−τ

)

,(26)

where ϕt−τ , ‖gt−τ (xt)‖2
2 − ‖gt−τ−1(xt−1)‖2

2 and
$t−τ , ‖gt−τ (xt−1) − gt−τ−1(xt−1)‖2

2. Here, (a) fol-
lows from rearranging terms of (16) in Lemma 2 such that



−γQT
t−1gt−τ (xt) ≤ −Δt−1 + ‖γgt−τ (xt)‖2

2, (b) is because
aT b = 1

2 (‖a‖2
2 + ‖b‖2

2 − ‖a − b‖2
2), and (c) follows from

gt(x) being Lipschitz continuous in (9) and the fact that
1
2‖a + b‖2

2 ≤ ‖a‖2
2 + ‖b‖2

2.
Substituting (26) into (25), we have

ft−τ (xt−τ ) − ft−τ (x?
t−τ )

≤ −[∇ft−τ (xt−τ )]T (xt − xt−τ ) − α‖xt − xt−τ‖
2
2

+ (γ2β2 − η)‖xt − xt−1‖
2
2 − Δt−1 +

γ2

2
ϕt−τ + γ2$t−τ

+ α(Φt−τ + 2Rφt−τ ) + η(Ψt−τ + 2Rψt−τ )
(a)

≤
D2

4α
− Δt−1 +

γ2

2
ϕt−τ + γ2$t−τ

+ α(Φt−τ + 2Rφt−τ ) + η(Ψt−τ + 2Rψt−τ ), (27)

where (a) follows from η ≥ γ2β2, the bound on ∇ft(x) in
(8), and completing the square such that

− [∇ft−τ (xt−τ )]T (xt − xt−τ ) − α‖xt − xt−τ‖
2
2

=−

∥
∥
∥
∥
∇ft−τ (xt−τ )

2
√

α
+
√

α(xt−xt−τ )

∥
∥
∥
∥

2

2

+
1
4α

‖∇ft−τ (xt−τ )‖2
2

≤
1
4α

‖∇ft−τ (xt−τ )‖2
2 ≤

D2

4α
.

Summing (27) over t ∈ [τ + 1, T ], we have

T∑

t=τ+1

ft−τ (xt−τ ) − ft−τ (x?
t−τ ) =

T−τ∑

t=1

ft(xt) − ft(x
?
t )

(a)

≤
D2

4α
T +

γ2G2

2
+ γ2Δg + (ατ + η)(R2 + 2RΔx?), (28)

where (a) follows from Δt−1, ϕt−τ , $t−τ , Φt−τ , φt−τ , Ψt−τ

and ψt−τ all being telescoping terms such that their sums over
t ∈ [τ + 1, T ] are upper bounded by 0, G2, Δg, τR2, τΔx? ,
R2, and Δx? , respectively.

Finally, adding
∑T

t=T−τ+1 ft(xt)−ft(x?
t ) on both sides of

(28), and noting that the convexity of ft(x) implies

ft(xt) − ft(x
?
t ) ≤ ‖∇ft(xt)‖2‖x

?
t − xt‖2 ≤ DR, (29)

we complete the proof.
Next, leveraging the proof techniques for the dynamic regret

REd(T ) in Theorem 4, we provide an upper bound on the static
regret REs(T ) yielded by DTC-OCO.

Theorem 5. For any α, γ > 0 and η ≥ γ2β2, the static regret
of DTC-OCO is upper bounded by

REs(T ) ≤
D2

4α
T +

γ2G2

2
+γ2Δg+(ατ +η)R2+DRτ. (30)

Proof : (Proof outline due to page limitation) Replacing all
the per-slot optimizers with the offline benchmark x? in the
proof of Theorem 4, we can show that (27) still holds by
redefining Φt−τ , ‖x? − xt−τ‖2

2 − ‖x? − xt‖2
2, φt−τ , 0,

Ψt−τ , ‖x?−xt−1‖2
2−‖x?−xt‖2

2, and ψt−τ , 0. Summing
the above version of (27) over t ∈ [τ + 1, T ], noting that
Φt−τ and Ψt−τ are still telescoping, and leveraging (29), we
complete the proof.

We now proceed to provide an upper bound on the constraint
violation VOc(T ) for DTC-OCO. We first relate the virtual
queue vector QT to VOc(T ) in the following lemma.

Lemma 6. The virtual queue vector produced by DTC-OCO
satisfies the following inequality for any c ∈ C:

VOc(T ) ≤
1
γ
‖QT ‖2 + τΔ̃g + Gτ. (31)

Proof: From (7), we have Qc
t ≥ Qc

t−1 +γgc
t−τ (xt), ∀t > τ .

Summing it over t ∈ [τ +1, T ] and rearranging terms, we have

T∑

t=τ+1

gc
t−τ (xt) ≤

1
γ

T∑

t=τ+1

Qc
t − Qc

t−1 =
1
γ

Qc
T .

From the above inequality and the definition of VOc(T ) in
(6), we have

VOc(T ) ≤
1
γ

Qc
T +

T−τ∑

t=1

[gc
t+τ (xt+τ )− gc

t (xt+τ )] +
τ∑

t=1

gc
t (xt).

Noting ‖a‖∞ ≤ ‖a‖2, the bound on gt(x) in (10), and the
definition of Δ̃g in (19), we complete the proof.

From Lemma 6, we see that one can bound the constraint
violation VOc(T ) through an upper bound on the virtual queue
vector QT . This is used to obtain an upper bound on the
constraint violation for DTC-OCO in the following theorem.

Theorem 7. For any α, η, γ > 0, the constraint violation of
DTC-OCO for any c ∈ C is upper bounded by

VOc(T ) ≤2G+
2γ2G2+DR+(α+η)R2

εγ2
+τΔ̃g+Gτ. (32)

Proof : From Lemma 3, we can show that inequality (21)
still holds for any t > τ after replacing the per-slot optimizer
x?

t−τ with the interior point x̃t−τ . We have

[Qt−1 + γgt−τ−1(xt−1)]
T [γgt−τ (x̃t−τ )]

(a)

≤ −εγ[Qt−1 + γgt−τ−1(xt−1)]
T 1

(b)

≤ −εγ‖Qt−1 + γgt−τ−1(xt−1)‖2

(c)

≤ −εγ(‖Qt−1‖2 − ‖γgt−τ−1(xt−1)‖2), (33)

where (a) follows from the existence of interior point in
(11) and the virtual queue bound in (13), (b) is because
‖a‖2 ≤ ‖a‖1, and (c) follows from |‖a‖2−‖b‖2| ≤ ‖a−b‖2.
Applying (33) to the aforementioned version of (21) with x̃t−τ

and rearranging terms, we have

γQT
t−1gt−τ (xt)

≤ −εγ(‖Qt−1‖2 − ‖γgt−τ−1(xt−1)‖2) − α‖xt − xt−τ‖
2
2

− [γgt−τ−1(xt−1)]
T [γgt−τ (xt)] − η‖xt − xt−1‖

2
2

+ [∇ft−τ (xt−τ )]T (x̃t−τ − xt) + α‖x̃t−τ − xt−τ‖
2
2

+ η‖x̃t−τ − xt−1‖
2
2 − (α + η)‖xt − x̃t−τ‖

2
2

(a)

≤ −εγ‖Qt−1‖2 + εγ2G + γ2G2 + DR + (α + η)R2, (34)



where (a) follows from the Cauchy-Schwartz inequality
|aT b| ≤ ‖a‖2‖b‖2, the bound on ∇ft(x) in (8), the bound
on gt(x) in (10), and the bound on X0 in (12). Substituting
(34) into (16) in Lemma 2 and noting that ‖gt−τ (xt)‖2

2 ≤ G2

from (10) yields

Δt−1 ≤ −εγ‖Qt−1‖2 + εγ2G + 2γ2G2 + DR + (α + η)R2.

Thus, a sufficient condition for Δt−1 < 0 is

‖Qt−1‖2 > γG +
2γ2G2 + DR + (α + η)R2

εγ
. (35)

If (35) holds, we have ‖Qt‖2 < ‖Qt−1‖2, i.e., the virtual
queue decreases; otherwise, from the virtual queue bound in
(15), there is a maximum increase from ‖Qt−1‖2 to ‖Qt‖2

since ‖Qt‖2 − ‖Qt−1‖2 ≤ ‖γgt−τ (xt)‖2 ≤ γG. Therefore,
the virtual queue is upper bounded for any t > τ by

‖Qt‖2 ≤ 2γG +
2γ2G2 + DR + (α + η)R2

εγ
. (36)

Substituting (36) into (31), we complete the proof.

C. Discussion on the Regret and Constraint Violation Bounds

In this section, we discuss the sufficient conditions for DTC-
OCO to yield sublinear regret and constraint violation, and
highlight several prominent advantages of DTC-OCO over
existing constrained OCO algorithms.

1) Sublinear Regret and Constraint Violation: From The-
orems 4, 5, and 7, we can derive the following corollaries
regarding the regret and constraint violation bounds. The
proofs are omitted for brevity. Here, we define parameters
δ, ν, κ ≥ 0 to represent the time variability of the per-slot
optimizers and constraint functions, such that Δx? = O(T δ),
Δg = O(T ν), and Δ̃g = O(T κ) [11], [12]. These corollaries
provide two sets of performance bounds depending on whether
the value of δ is known.

Corollary 8. Step-sizes with knowledge of δ: Let α =
τ− 1

2 T
1−δ
2 , η = β2γ2, and γ = 1 in DTC-OCO. We have

REd(T ) = O
(
max

{
τ

1
2 T

1+δ
2 , T ν

})
, (37)

REs(T ) = O
(
max

{
τ

1
2 T

1
2 , T ν

})
, (38)

VOc(T ) = O
(
max

{
T

1−δ
2 , τT κ

})
. (39)

In particular, if τ = O(1), δ < 1, ν < 1, and κ < 1, both
the dynamic and static regrets are sublinear, and the constraint
violation is sublinear.

Corollary 9. Step-sizes without knowledge of δ: Let α =
τ− 1

2 T
1
2 , η = β2γ2, and γ = 1 in DTC-OCO. We have

REd(T ) = O
(
max

{
τ

1
2 T

1
2+δ, T ν

})
, (40)

REs(T ) = O
(
max

{
τ

1
2 T

1
2 , T ν

})
, (41)

VOc(T ) = O
(
max

{
T

1
2 , τT κ

})
. (42)

From Corollaries 8 and 9, a sufficient condition for DTC-
OCO to yield sublinear dynamic and static regrets and sub-
linear constraint violation is that the accumulated variations
of the per-slot optimizers and constraints evolve sufficiently
slowly. Otherwise, if the system varies too drastically, no
online algorithm can track it due to the lack of in-time infor-
mation [11], [12], [17]. However, in many online applications,
the system tends to stabilize over time and sublinear regret and
constraint violation can be achieved by DTC-OCO.

Remark 1. If the feedback delay τ is unknown, by setting
α = T

1−δ
2 in DTC-OCO, we can show that REd(T ) =

O(max{τT
1+δ
2 , T ν}) and REs(T ) = O(max{τT

1
2 , T ν}),

both still being sublinear under the same conditions in
Corollary 8. If both τ and δ are unknown, by setting
α = T

1
2 in DTC-OCO, we can show that REd(T ) =

O(max{τT
1
2+δ, T ν}) and REs(T ) = O(max{τT

1
2 , T ν}).

Remark 2. With unknown time horizon T , the standard
doubling trick [1], [6], [28] can be applied to extend DTC-
OCO into one that has similar regret bounds.

Remark 3. The performance analysis in [16] assumes T

is large enough such that (1+C) max{D,β}2+2√
τT

+ [(5C +

1)max{D,β}2 + 2]
√

τ
T ≤

√
1
3 , and therefore it provides

no performance guarantee for a mid-range value of T . Fur-
thermore, only a static regret bound is provided in [16]. In
addition, the optimal step-sizes in [16] require knowing the
values of C and D, which we do not need for DTC-OCO.

2) Special Case of One-Slot Feedback Delay: Since no
other algorithm has provided a dynamic regret bound for
constrained OCO with multi-slot feedback delay, we next
consider the special case of one-slot feedback delay. In the
following two remarks, we compare DTC-OCO with [11] and
[12] under this setting.

Remark 4. The dynamic regret and constraint
violation bounds achieved by [11] rely on the
key assumption that the slack constant ε is larger
than the maximum variation of the constraints, i.e.,
ε > maxt∈[1,T ] {maxx∈X0 {‖gt(x) − gt−1(x)‖2}}, which
may be difficult to satisfy in general. In contrast, DTC-OCO
only assumes ε > 0 as indicated in (11). Furthermore, the
optimal step-sizes used in [11] require knowledge of the
accumulated variation of the constraint function sequence κ,
while DTC-OCO only needs an upper bound on its gradient
β, which is much easier to acquire than κ. When δ is
unknown, [11] achieves O(max{T

1
3+δ, T

1
3+κ, T

2
3 }) dynamic

regret and O(T
2
3 ) constraint violation, both being at least

O(T
2
3 ). In contrast, the performance bounds of DTC-OCO

decreases smoothly to O(T
1
2 ) if the system variation is

sufficiently small.

Remark 5. To achieve sublinear dynamic regret and con-
straint violation, [12] relies on additional assumptions that the
accumulated variation of the convex loss functions {ft(x)}
is sublinear regardless of the trajectory of the online deci-



sion sequence, i.e.,
∑T

t=1 maxx∈X0 {‖ft(x) − ft−1(x)‖2} =
o(T ), and the accumulated variation of the optimal dual
points {λ?

t } of the optimization problem P1 is sublinear,
i.e.,

∑T
t=1 ‖λ

?
t+1 − λ?

t ‖2 = o(T ). Neither assumption is
required for DTC-OCO. Furthermore, [12] requires complete
information feedback of the convex loss function ft(x), and
therefore has the gradient information at any point and can
even penalize the loss function directly. In contrast, DTC-
OCO requires only the gradient information of the convex loss
function at the online decision points ∇ft(xt).

3) Special Case of Time-invariant Constraints: When the
constraints are time-invariant, the following corollary suggests
that DTC-OCO recovers the known best O(τ

1
2 T

1
2 ) static

regret for unconstrained OCO with multi-slot delay [13], and
its O(τ) constraint violation recovers the known best O(1)
constraint violation under the standard OCO setting of one-
slot feedback delay [9] as a special case.

Corollary 10. Time-invariant constraints: Let α = γ2 =
τ− 1

2 T
1−δ
2 and η = β2γ2 in DTC-OCO. We have REd(T ) =

O(τ
1
2 T

1+δ
2 ), REs(T ) = O(τ

1
2 T

1
2 ), and VOc(T ) = O(τ).

In particular, if τ = O(1) and δ < 1, both the dynamic
and static regrets are sublinear, and the constraint violation is
upper bounded by a constant.

Remark 6. The constraint violation bounds in [11] and [16]
are no less than O(T

2
3 ) and O(T

3
4 ), respectively, even if the

constraint function is time-invariant. In contrast, when Δ̃g is
small, the constraint violation VOc(T ) yielded by DTC-OCO
decreases smoothly to O(T

1
2 ). Particularly, if the constraint

function is time-invariant, i.e., Δ̃g = 0, DTC-OCO provides
O(τ) constraint violation.

V. APPLICATION TO NETWORK RESOURCE ALLOCATION

We apply DTC-OCO to a general network resource alloca-
tion problem [11], [12], [18], [29], [30]. We present numerical
results to demonstrate the performance advantage of DTC-
OCO over the known best alternative from [16].

A. Online Network Resource Allocation

Fig. 1 shows a general network consisting of J scheduling
nodes and K processing nodes. For example, in a wired
or wireless network, the scheduling nodes may be relays,
and the processing nodes may be sink nodes. In a cloud
computing network, the scheduling nodes may be mappers,
and the processing nodes may be computing servers.

At each time slot t, the amount of data arriving at scheduling
node j is denoted by dj

t , and we define an extended data
arrival vector denoted by dt = [d1

t , . . . , d
J
t ,01×K ]T . A central

controller decides the transmission rate yjk
t of the link (j, k)

connecting scheduling node j and processing node k, and the
processing rate zk

t at processing node k. In compact form, the
decision vector at time t is xt = [y11

t , . . . , yJK
t , z1

t , . . . , zK
t ]T .

Denote the maximum data transmission rate of link (j, k) by
yjk

max, and the maximum data processing rate of processing
node k by zk

max. The data rate limits are compactly expressed

Fig. 1. An illustration of general online network resource allocation.

in the convex set as X0 , {x|0 � x � xmax}, where
xmax = [y11

max, . . . , y
JK
max , z1

max, . . . , z
K
max]

T is the maximum data
rate vector. Each scheduling node j and processing node k
has a local data queue backlog at time t denoted by qj

t

and qJ+k
t , respectively. The queue backlog vector is qt =

[q1
t , . . . qJ

t , qJ+1
t , . . . , qJ+K

t ]T , and we can express its update
as qt+1 = [qt + Cxt + dt]+, where C ∈ R(J+K)×(JK+K)

represents the network topology and is given by

C =

[
blkdiag{−11×K , . . . ,−11×K} 0J×K

IK×K , . . . , IK×K −IK×K

]

.

The goal for a network controller is to minimize the
network cost while controlling the long-term averaged data
outgoing rate to be no less than the incoming data rate for
queue stability. However, since the controller can receive only
delayed feedback on system parameters dt, qt, and ft(x) over
time, it must employ an online solution. This online network
resource allocation problem is a special case of the OCO
problem P1, with the convex set X0 define above, for any
convex loss function ft(x), and the convex constraint function
gt(x) , Cx + dt, which represents the difference between
incoming and outgoing data at time t. Note that achieving sub-
linear constraint violation, i.e., limT→∞

1
T

∑T
t=1 gt(xt) → 0,

is equivalent to queue stability.
A special case of this problem where there is no delay in

system information has been addressed with Lyapunov opti-
mization techniques [18], [29], [30]. Furthermore, solutions
under the standard OCO setting with one-slot feedback delay
are given in [11] and [12]. However, due to the intermittence
and crowdedness of the communication links between the
nodes and central controller, it is likely that the central
controller experiences multi-slot feedback delay of the system
parameters. The proposed DTC-OCO algorithm provides a
suitable online solution to this problem.

B. Numerical Performance Evaluation

When applying DTC-OCO to the above online network
resource allocation problem, the sublinear regret bounds de-
rived in Section IV imply that it will provide an efficient
solution. Furthermore, the sublinear constraint violation bound
guarantees queue stability. In this section, we further study the
numerical performance of DTC-OCO in a practical setting,
compare its performance with [16], and verify the benefit of
the proposed double regularization.

As a tangible example, we consider a mobile cloud com-
puting system consisting of J = 10 scheduling nodes, and



K = 10 processing nodes. Following the typical long-
term evolution (LTE) specifications [31], we set the noise
power spectral density N0 = −174 dBm/Hz, noise figure
NF = 10 dB, and channel bandwidth BW = 10 MHz as
default system parameters. We set the time slot duration to be
1 ms and assume dt kB of data arrive at each time t. The
maximum data transmission and processing rates, in MB/s,
are randomly uniformly distributed as yjk

max ∼ U(10, 100) and
zk

max ∼ U(100, 250), respectively. According to the Shannon
bound, we consider the transmission power of each link
(j, k) as exponential w.r.t. its transmission rate yjk given by
σ2

n

Ljk
t

(2
yjk

BW − 1), where σ2
n[dBm] = N0BW + NF is the noise

power and Ljk
t represents the integrated impact of path-loss,

interference, and capacity gap, and it is time-varying due to the
fluctuation of wireless channels. We assume each processing
node k follows a quadratic power-frequency relationship given
by θ(ξk

t zk)2, where θ = 120 W/(GHz)2 [32] and ξk
t , in

cycles per byte, depends on the computational complexity
of the computing tasks processed by node k at time t [33],
[34] and thus is time varying [35]. We consider both the data
transmission and processing power by defining the following
cost function at time t:

ft(x) ,
∑

j∈J

∑

k∈K

σ2
n

Ljk
t

(2
yjk

BW − 1) +
∑

k∈K

θ(ξk
t zk)2.

We remark here that our proposed OCO solution can be
applied to more general cost functions, as long as they are
convex w.r.t. the decision variables x.

For performance comparison, we consider the online al-
gorithm proposed in [16], which is the known best time-
varying constrained OCO algorithm that accommodates multi-
slot feedback delay. We also consider the dynamic benchmark
in (4). To verify the performance advantage brought by the
double regularization in DTC-OCO, we also study two sim-
plified versions of DTC-OCO with single regularization on
xt−τ and xt−1, respectively.

We assume both τ and δ are unknown, and thus set α = T
1
2 ,

η = ‖C‖2
2, and γ = 1 in DTC-OCO (see Remark 1).

Our performance metrics are the time-averaged network cost
f̄(T ) , 1

T

∑T
t=1 ft(xt) and the time-averaged constraint

violation ḡ(T ) , 1
T

∑T
t=1 1T gt(xt). For fair comparison

on f̄(T ), the step-sizes in [16] are selected such that the
algorithm has a similar steady state value of ḡ(T ) as DTC-
OCO. The time-varying system parameters {dj

t}, {Ljk
t }, {ξk

t }
are modeled by the following two cases.

1) I.i.d. parameters. The system parameters are i.i.d.: dj
t ∼

U(10, 100), Ljk
t [dB] ∼ U(−126,−120), and ξk

t ∼ U(1, 3).
2) Noisy periodic parameters. The system parameters vary

periodically with noise: dj
t = 30 sin

(
πt
20

)
+ nj,d

t , Ljk
t [dB] =

−120−3 sin
(

πt
20

)
−njk,L

t , and ξk
t = 0.5 sin(πt

20 )+nk,ξ
t , where

nj,d
t ∼ U(40, 70), njk,L

t ∼ U(6, 9), and nk,ξ
t ∼ U(1, 3).

Fig. 2 shows f̄(T ) and ḡ(T ) versus T with different
values of τ for the above two cases. We observe that the
network cost of DTC-OCO can approach that of the dynamic
benchmark in (4), indicating that sublinear dynamic regret

(a) I.i.d. parameters.

(b) Noisy periodic parameters.

Fig. 2. f̄(T ) and ḡ(T ) vs. T under different τ .

is achieved. Compared with [16], DTC-OCO achieves lower
network cost and is much more tolerant to the feedback
delay τ . The reason for this are two fold: first, DTC-OCO
penalizes the constraint function gt(x) directly instead of
its first-order approximation, which improves the control on
constraint violation; second, the double regularization in DTC-
OCO allows the online decision xt to be updated from xt−τ

and xt−1, which improves the efficacy of gradient descent for
loss minimization. Comparison with the xt−τ and xt−1 single-
regularization approaches further suggests that the proposed
method of double regularization is essential to the performance
advantage of DTC-OCO.

VI. CONCLUSIONS

This paper considers OCO with multi-slot feedback delay
and short-term and long-term constraints. We propose an
efficient algorithm DTC-OCO, which uses a novel constraint
penalty with double regularization to handle the asynchrony
between information feedback and decision updates. Our anal-
ysis considers the impact of multi-slot feedback delay and the
double regularization structure on the performance guarantees
of DTC-OCO, to show sublinear dynamic and static regrets
and sublinear constraint violation under mild conditions. We
apply DTC-OCO to a general online network resource alloca-
tion problem, using mobile cloud computing for numerical
example. Simulation results demonstrate the superior delay
tolerance and substantial performance advantage of DTC-OCO
over the known best alternative under different scenarios.
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