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Abstract—We consider federated learning in a wireless edge
network, where multiple power-limited mobile devices collabo-
ratively train a global model, using their local data with the
assistance of an edge server. Exploiting over-the-air computation,
the edge server updates the global model via analog aggregation
of the local models over noisy wireless fading channels. Unlike
existing works that separately optimize computation and com-
munication at each step of the learning algorithm, in this work,
we jointly optimize the training of the global model and the
analog aggregation of local models over time. Our objective is
to minimize the accumulated training loss at the edge server,
subject to individual long-term transmit power constraints at
the mobile devices. We propose an efficient algorithm, termed
Online Model Updating with Analog Aggregation (OMUAA), to
adaptively update the local and global models based on the
time-varying communication environment. The trained model
of OMUAA is channel- and power-aware, and it is in closed
form with low computational complexity. We study the mutual
impact between model training and analog aggregation over
time, to derive performance bounds on the computation and
communication performance metrics. Simulation results based on
real-world image classification datasets and typical Long-Term
Evolution network settings demonstrate substantial performance
gain of OMUAA over the known best alternatives.

I. INTRODUCTION

In wireless edge networks, mobile devices collect an enor-
mous amount of data that can be used to train machine learning
models. This motivates new machine leaning technologies at
the edge servers and devices, collectively call edge learning
[1]-[4]. However, the migration of learning from central cloud
servers to the edge can lead to an explosion of information ex-
change between edge servers and devices. Thus, the scarcity of
communication resources can become a bottleneck for training
an accurate machine learning model at the edge. This calls for
communication-efficient distributed learning algorithms that
integrate techniques from two different areas, i.e., machine
learning and communications [5].

As a nascent distributed learning scheme, federated learning
(FL) allows multiple local devices to collaboratively learn a
global model without sending their local data to a central
server [6], [7]. In FL, a key operation is to aggregate the
local models sent from the local devices into a global model
at the server. Toward reducing the communication overhead,
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the machine learning literature mainly focuses on quantiza-
tion [8]-[10], sparsification [11]-[13], and local updates [14]-
[16]. These approaches assume error-free transmission and
ignore the physical wired or wireless communication layer.
More recently, with the observation that the global model
at the server can be expressed as a weighted sum of the
local models, analog aggregation of the local models has
been proposed, allowing simultaneous wireless transmission
by the local devices over a multiple access channel [17]-
[26]. Such over-the-air computation [27]-[30] reduces latency
and bandwidth requirement compared with the conventional
orthogonal multiple access.

All existing works on FL with analog aggregation separately
optimize model training and wireless transmission [17]-[26].
In contrast, a joint optimization approach would take into
fuller account the impact of wireless transmission in the
model training process, and vice versa. Furthermore, prior
works have focused on offline optimization, by solving one-
shot optimization problems, which do not fully account for
the changes in the environment over time or any long-term
constraints. However, due to the dynamic fluctuation in the
wireless channels, both model training and analog aggregation
should be channel-aware and online, i.e., adaptive to the
unpredictable channel fluctuation over time.

In this work, we aim to develop an online algorithm that
jointly optimizes model training and analog aggregation for
FL over noisy wireless fading channels. To achieve this goal,
we must address several challenges on multiple fronts. First,
noisy wireless channels lead to errors in the analog aggregation
of the learning models, and these errors are accumulated
and amplified in the iterative steps of model training over
time. Second, since the effectiveness of analog communication
depends on the transmitted message, when designing the inter-
mediate output models of each iterative step in model training,
we must consider both their improvement in learning and their
suitability for transmission. Third, the aforementioned tight
coupling between model training and analog aggregation must
be properly formulated and addressed in a dynamic online
setting, where the future wireless communication environment
is unpredictable. Finally, we must account for the energy
budgets for device communication over time, expressed as
long-term transmit power constraints.

Different from the standard offline model training for FL
that does not consider the wireless communication layer, our
trained models are adaptive to the time-varying channel states.



Furthermore, we analyze the mutual impact between compu-
tation and communication over time to derive performance
bounds for our proposed algorithm. Specifically, the main
contributions of this paper are as follows:

• We formulate the above system of FL with analog aggre-
gation over noisy wireless fading channels as an online
optimization problem. Our optimization objective is the
accumulated training loss at the edge server, subject to
individual long-term transmit power constraints at the
mobile devices. Thus, we consider both the computation
and communication metrics. To the best of our knowl-
edge, joint online optimization of model training and
analog aggregation has not been studied in the literature.

• We propose an efficient online algorithm, termed Online
Model Updating with Analog Aggregation (OMUAA),
which dynamically integrates FL, over-the-air compu-
tation, and transmit power allocation over time. The
local models yielded by OMUAA are adaptive to the
dynamic fluctuation of channel states while accounting
for the transmit power budget of the mobile devices.
Furthermore, they are in closed forms and thus have low
computational complexity.

• We analyze the mutual impact between model training
and analog aggregation, and their effect on the perfor-
mance of OMUAA over time. Our analysis shows that
OMUAA achieves O((1 + ρ2 + ΠT ρ)ε) optimality gap
with O( 1

ε2 ) convergence time for any approximation level
ε, and O((1+ρ2)ε) long-term power constraint violation
with O( 1

ε3 ) convergence time, where ρ is a measure
of channel noise and ΠT represents the accumulated
variation of the optimal global models in T iterations
over noiseless channels.

• We study the impact of system parameters on the per-
formance of OMUAA, by experimenting with real-world
image classification datasets, under typical Long-Term
Evolution (LTE) network settings. We demonstrate sub-
stantial performance advantage of OMUAA over the
known best alternatives under different scenarios.

The rest of this paper is organized as follows. In Section II,
we present the related work. Section III describes the system
model and problem formulation. In Section IV, we present
OMUAA. Performance bounds are provided in Section V.
Simulation results are presented in Section VI, followed by
concluding remarks in Section VII.

II. RELATED WORK

In this section, we survey existing works on FL in wireless
edge networks.

A. FL with Error-Free Wireless Communication

Early works on FL at the edge assume error-free, i.e.,
digital error-control coded transmission (see [31] and refer-
ences therein). For example, [32] proposed adaptive global
model aggregation under resource constraints for FL. The
performance trade-offs between computation and communi-
cation were investigated in [33] and [34], using conventional

orthogonal multiple access. Differential privacy in federated
learning was considered in [35]. None of these solutions are
applicable to FL with analog aggregation.

B. FL with Analog Aggregation

To further reduce the communication latency and improve
bandwidth efficiency, [17]-[19] exploited the superposition
property of a multiple access channel to perform analog model
aggregation in FL. In [17], truncated local model parameters
were scheduled for aggregation based on the channel con-
dition. Receiver beamforming design was studied in [18] to
maximize the number of mobile devices for model aggregation
at each iteration. In [19], the convergence of an analog model
aggregation algorithm was studied for strongly convex loss
functions. Other recent works focused on analog gradient
aggregation in FL [20]-[26]. Gradient quantization and sparsi-
fication were exploited for compressed analog aggregation in
[20] and [21] over static and fading multiple access channels,
respectively. The convergence of iterative analog gradient
aggregation was studied in [22] and [23] with sparsified and
full gradients, respectively. Power allocation was investigated
in [24] to achieve differential privacy. Gradient statistics aware
power control was proposed in [25] for aggregation error
minimization. In [26], the aggregation error caused by noisy
channel and gradient compression was minimized through
power allocation at each iteration.

The above works all separately optimize model training
and analog aggregation at each iteration. In contrast, in this
work we propose OMUAA to jointly optimize model training
and analog aggregation. Furthermore, we consider an online
optimization framework that is adaptive to the unpredictable
channel fluctuation over time.

C. Online Convex Optimization and Lyapunov Optimization

Because of the dynamic nature of iterative model training
and analog aggregation over time-varying channels, a part of
our solution resembles existing concepts of online convex
optimization (OCO) [36] and Lyapunov optimization [37].
These techniques have been applied to solve various online
problems in wireless systems. The standard OCO framework
mainly concerns delayed information feedback, which is inher-
ently different from the joint online optimization framework
of this work. In particular, [38] proved that no OCO algorithm
can simultaneously provide O(ε) optimality gap and O(ε)
long-term time-varying constraint violation, which OMUAA
can achieve (see Section V). Under the standard iterative
Lyapunov optimization framework, an upper bound of the
weighted sum of loss and constraint functions is minimized
at each iteration. However, for machine learning tasks, this
often means finding the optimal model, which is difficult
in general. Furthermore, the standard Lyapunov optimization
requires centralized implementation, which does not apply to
FL based on local data.



Fig. 1. An illustration of federated learning at wireless edge.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Learning Objective

We consider a wireless edge network comprising N mobile
devices and an edge server as shown in Fig. 1. Each mobile
device n collects its local training dataset denoted by Dn. The
i-th data sample in Dn is represented by (un,i, vn,i), where
un,i is a data feature vector and vn,i is the true label for this
data sample. Based on the local training datasets {Dn}, the
objective of learning is to train a global model x ∈ Rd, which
predicts the true labels of data feature vectors.

We define a sample-wise convex and differentiable training
loss function l(x;un,i, vn,i) : Rd → R associated with every
data sample. The training loss function is generally defined
to represent the training error. For example, it can be defined
as the logistic regression to measure the prediction accuracy
on data feature vector un,i with respect to (w.r.t.) its true
label vn,i.

The local training loss function fn(x) : Rd → R for
each mobile device n is defined as the averaged training loss
incurred by the local dataset Dn, given by

fn(x) =
1

|Dn|

|Dn|∑

i=1

l(x;un,i, vn,i) (1)

where |Dn| is the cardinality of Dn. Let D =
⋃N

n=1{D
n}

denote the global dataset with |D| =
∑N

n=1 |D
n|. The global

training loss function f(x) : Rd → R is defined as

f(x) =
N∑

n=1

wnfn(x) (2)

where wn = |Dn|
|D| is the weight on mobile device n, and we

have
∑M

n=1 wn = 1. This is equivalent to the averaged training
loss incurred by the global dataset D. The learning objective
is to find an optimal global model x? that solves the following
optimization problem

min
x

f(x). (3)

In traditional centralized machine learning, the edge server
would compute x? after collecting all the local training
datasets {Dn}. However, such a centralized approach is unde-
sirable, as it incurs a large amount of communication overhead,
and it can cause privacy issues.

B. Federated Learning with Over-the-Air Analog Aggregation

The standard FL scheme can be seen as an iterative dis-
tributed learning process with an aim to approach x? [6],
[7]. It alternates between local and global model updates.
At the t-th iteration, each mobile device n updates its local
model, denoted by xn

t ∈ Rd. The edge server computes
the weighted sum of the local models to update its global
model. The original FL does not consider the physical wired
or wireless communication layer. Thus, under the idealized
noiseless scenario, the global model would be computed at
the edge server as

xt =
N∑

n=1

wnxn
t . (4)

In the wireless environment, (4) may be efficiently com-
puted over the air, i.e., through analog aggregation over a
multiple access channel [27]-[30]. Such analog aggregation
scheme exploits the superposition property of a multiple access
channel to compute the target function over the air through
concurrent transmission of distributed data. It was originally
proposed for analog network coding [27] and was recently
extended to FL [17]-[26] assuming perfect synchronization.
We make the same assumption in this work. Further studies
on relaxing the synchronization requirement in analog aggre-
gation can be found in [29] and [30], which are outside the
scope of this work.

Note that the local model xn
t cannot be directly transmitted

to the edge server, since its values can be too large or too
small, resulting in very high transmit power or severe noise
pollution. Furthermore, due to the noisy and fading nature of
wireless channels, the local models {xn

t } need to be carefully
pre-processed at the mobile devices in order to recover the
desired global model xt in (4) at the edge server. Let sn

t ∈ Cd

be the transmitted signal vector generated by mobile device n
at the t-th iteration, which carries the information of xn

t . Each
entry of sn

t is sent using one orthogonal channel that is created
through division by frequency or time.1

We model the channel between the N mobile devices and
the edge server as a noisy wireless fading multiple access
channel. Let hn

t = [hn,1
t , . . . , hn,d

t ]T ∈ Cd be the channel
state vector between mobile device n and the edge server
at the t-th iteration. As in [17], [20]-[22], [25], we assume
a block fading channel model, where hn

t over iteration t is
independent and identically distributed (i.i.d.). The distribution
of hn

t is unknown and can be arbitrary. We assume the local
channel state information (CSI) is available at each mobile
device [17]-[26]. We note that this channel model is suitable
for either single-antenna or multi-antenna communication.

The received signal vector yt ∈ Cd at the edge server is
given by

yt =
N∑

n=1

hn
t ◦ sn

t + zt =
1
λt

N∑

n=1

wnxn
t + zt. (5)

1The proposed method and analysis in this work can be easily extended to
any form of orthogonal channels. Later in Section VI, we divide the system
bandwidth over both frequency and time under typical LTE settings.



where a◦b represents entry-wise product, zt ∈ Cd is the noise
vector, and

sn
t =

1
λt

wnbn
t ◦ xn

t (6)

is the transmitted signal vector with λt being a power-scaling

factor and bn
t = [ hn,1

t

|hn,1
t |2

, . . . ,
hn,d

t

|hn,d
t |2

]T ∈ Cd being the entry-
wise channel inversion vector w.r.t. hn

t . The design of a
common λt among the N mobile devices at each iteration t
was studied in [17], [18], [20], [21], [23]-[26], and is outside
the scope of this paper. An important special case is when
λt is fixed over all iterations t. This can save a large amount
of communication overhead, between the mobile devices and
the edge server, that is required to agree on a common λt at
each iteration t before the signal transmission. We assume λt

depends on the underlying system states.
The edge server scales yt and recovers a noisy version of

the global model xt in (4), given by

x̂t = <{λtyt} = xt + λtnt (7)

where <{a} denotes the real part of complex vector a and
nt , <{zt}.2 The edge server then broadcasts x̂t to all the
N mobile devices. As in [17]-[26], we assume that the edge
server uses coded digital communication in a separate down-
link channel, such that x̂t can be received by all the mobile
devices in an error-free fashion, before the next iteration.

In the standard error-free FL, the local model xn
t is updated

via local gradient descent, given by

xn
t = xt−1 − α∇fn(xt−1) (8)

where α > 0 is a step-size parameter. This is equivalent to
solving the following optimization problem:

min
x

〈∇fn(xt−1),x − xt−1〉 +
1
2α

‖x − xt−1‖
2 (9)

where 〈a,b〉 represents the inner product of vectors a and
b. All existing works on FL with analog aggregation [17]-
[26] adopt the above local model updating scheme by simply
replacing xt−1 with the received noisy version x̂t−1, and
then they separately optimize the analog aggregation at each
iteration t. In this work, we consider a joint optimization
approach to account for the impacts of analog aggregation,
including communication error, channel fading, and power
allocation, on model training.

Remark 1. One may implement stochastic gradient descent by
sampling a batch dataset Bn

t ⊆ Dn at each iteration t [8]-[16].
In this work, we focus on the aggregation error caused by the
noisy wireless fading channels, and therefore we will initially
assume as an example full gradient descent using a fixed local
dataset Dn at each iteration t. This is commonly adopted in
prior works [17]-[25]. Our performance analysis can be easily
extended to the case of batch gradient descent. Furthermore,

2We use the real part of the channels to transmit the real vector xt. The
derivations can be easily extended to utilize both the real and imaginary parts
of the channels by separating xt into half as in [21], without major technical
alternation.

in Section VI, we numerically evaluate the proposed algorithm
with batch datasets.

C. Problem Formulation

We aim to jointly optimize model training and analog
aggregation over time. Due to the time-varying channel states,
our objective is to minimize the time-averaged global loss, i.e.,

lim
T→∞

1
T

T∑

t=1

E{f(x̂t)} (10)

where T is the total number of iterations and the expectation
is taken over the randomness of the channel states. In steady
state, the accumulated training loss 1

T

∑T
t=1 E{f(x̂t)} over T

iterations approaches the training loss E{f(x̂T )} at the T -th
iteration.

We assume the following long-term transmit power con-
straint at each mobile device n:

lim
T→∞

1
T

T∑

t=1

E
{
‖sn

t ‖
2
}
≤ P̄n, ∀n (11)

where P̄n is the average transmit power limit. We also
consider possible short-term constraints on the local models,
given by X = {x : −xmax � x � xmax} ⊆ Rd, where �
represents entry-wise inequality and xmax = xmax1 with xmax

being the maximum model value and 1 being a vector of all
1’s.

We aim at selecting a sequence of local models {xn
t } from

X to minimize the accumulated training loss yielded by the
noisy global model {x̂t} after analog aggregation at the edge
server, while ensuring that the individual long-term transmit
power constraints at the mobile devices are satisfied. This leads
to the following stochastic optimization problem:

P1 : min
{xn

t ∈X}
lim

T→∞

1
T

T∑

t=1

E{f(x̂t)}

s.t. lim
T→∞

1
T

T∑

t=1

E{gn
t (xn

t )} ≤ 0, ∀n (12)

where

gn
t (x) =

(wn)2

λ2
t

‖bn
t ◦ x‖2 − P̄n, (13)

the expectation is taken over the randomness of the channel
states. From (6) and (13), it is easy to see that (12) is equivalent
to (11).

Note that P1 is a stochastic optimization problem due to
the random channel states. In P1, the training loss f(x̂t) is
determined by the noisy global model x̂t aggregated over
the air from the local models {xn

t }. The long-term transmit
power violation gn

t (xn
t ) depends on both the local channel

state hn
t and the local model xn

t . Because of the need for signal
amplification at the receiver, as shown in (7), a small transmit
power amplifies the channel noise in analog aggregation,
which in turn deteriorates the model training. Due to such
coupling of model training and analog aggregation caused by



Algorithm 1 OMUAA: Mobile device n’s algorithm
1: Initialize xn

1 = x̂1 = 0 and the virtual queue Qn
1 = 0.

For each t, do the following:
2: Update local model xn

t by solving P2n via (17).
3: Update local virtual queue Qn

t via (14).
4: Transmit signals sn

t in (6) to the edge server.

wireless fading channels, solving P1 requires simultaneous
consideration for computation and communication. Further-
more, compared with the one-shot optimization problem (3)
considered in standard FL, the additional long-term transmit
power constraints in (12) of P1 require a more complicated
online algorithm, especially since the channel state varies over
time. In this work, without needing to know the channel
distribution, we aim to develop an online algorithm based on
the local channel state hn

t at each mobile device n, to compute
a solution {xn

t } to P1.

IV. ONLINE MODEL UPDATING WITH

ANALOG AGGREGATION (OMUAA)

In this section, we present the design details of OMUAA.
Existing algorithms for FL in wireless networks alternatingly
optimize model training and wireless transmission at each
iteration. In contrast, OMUAA jointly optimize model train-
ing and analog aggregation, while considering the mutual
impact between them over time. The local models yielded
by OMUAA are adaptive to the time-varying channel states.
Furthermore, the local models can be obtained in closed-
forms with low computational complexity. In the following,
we present OMUAA algorithms at the mobile devices and the
edge server.

We first introduce a virtual queue Qn
t at each mobile

device n to account for the long-term transmit power constraint
(12) in P1. It has the following updating rule:

Qn
t = max{Qn

t−1 + gn
t (xn

t ), 0}, ∀n, ∀t. (14)

The role of Qn
t is similar to a Lagrangian multiplier for P1 or a

backlog queue for the long-term constraint violation, which is
a technique used in Lyapunov optimization [37]. However, we
note that, although a part of our performance bound analysis
for OMUAA borrows techniques from Lyapunov drift analysis,
as explained in Section II, OMUAA is structurally different
from Lyapunov optimization.

Using the virtual queue in (14), we convert P1 into solving
a per-iteration optimization problem at each mobile device n,
given by

P2n : min
x∈X

〈∇fn(x̂t−1),x − x̂t−1〉 +
1
2α

‖x − x̂t−1‖
2

+ γQn
t−1g

n
t (x)

where α, γ > 0 are step-size parameters. Note that P2n is a
per-device per-iteration optimization problem using the current
local CSI hn

t and the virtual queue length Qn
t−1 and is subject

to the short-term constraints only. Compared with the original
P1, the long-term transmit power constraint is converted to
the third term of the objective function in P2n, which is a

Algorithm 2 OMUAA: Edge server’s algorithm
1: Initialize and broadcast step-size parameters α, γ > 0.

For each t, do the following:
2: Receive signals yt in (5) over the air.
3: Update noisy global model x̂t in (7)
4: Broadcast x̂t to all mobile devices.

penalization term on gn
t (x). Note that different from problem

(9), which does not consider the communication noise, the
local gradient ∇fn(x̂t−1) in P2n is evaluated using the noisy
global model x̂t−1.

In OMUAA, we perform local model updates on {xn
t } by

solving P2n. Note that the long-term transmit power constraint
function gn

t (x) is convex and the feasible set X is affine. Fur-
thermore, due to the regularization term 1

2α‖x− x̂t−1‖2, P2n

is a strongly convex optimization problem. In the following,
we present a closed-form solution to P2n.

We observe that the gradient of the objective function of
P2n w.r.t. x is

∇fn(x̂t−1) +
1
α

(x − x̂t−1) + θn
t ◦ x (15)

where θn
t ∈ Rd with the i-th entry given by

θn,i
t =

2γQn
t−1(w

n)2

λ2
t |h

n,i
t |2

. (16)

The optimal solution to P2n can be obtained by setting the
gradient in (15) to zero to solve for x and then projecting it
onto the affine set X . Thus, the local model update xn

t can be
computed in a closed form, given by

xn
t =

[
(1 + θn

t )−1 ◦ (x̂t−1 − α∇fn(x̂t−1))
]xmax

−xmax
(17)

where a−1 is the entry-wise inverse operator and [x]ba =
min{b, max{x, a}} is the entry-wise projection operator.
Note that the minimization in P2n is entry-wise in xn

t .
Compared with the standard local gradient descent update

for error-free FL in (8), the local model update in (17) is
scaled entry-wise by a factor 1

1+θn,i
t

that depends on the ratio
of the long-term transmit power constraint violation measured
by Qn

t−1 and the individual channel power |hn,i
t |2. The local

model xn
t is updated roughly the same as the error-free case

(i.e., model update is scaled close to 1) when the channels are
strong, but its values decrease when the queue length Qn

t−1 is
relatively large compared with the channel gain. Therefore, the
local model update by OMUAA is both channel- and power-
aware. In Section V, we will show that the update sequence
{xn

t } further satisfies the long-term transmit power constraint.
To summarize, in OMUAA, each mobile device n first

initializes the local models xn
1 = x̂1 = 0 and the local virtual

queue Qn
1 = 0. At each iteration t, after obtaining its own local

CSI hn
t , each mobile device n updates xn

t by solving P2n via
(17) and then updates Qn

t via (14). The mobile device then
transmits signals sn

t in (6) to the edge server. We summarize
the mobile device n’s algorithm in Algorithm 1.

At each iteration t, the edge server receives signals yt in
(5) through analog aggregation of the signals {sn

t } transmitted



by the N mobile devices. The edge server recovers a noisy
global model x̂t in (7), which is then broadcasted to all
mobile devices. We summarize the edge server’s algorithm in
Algorithm 2. The choice of step-size parameters α, γ will be
discussed in Section V, after deriving the performance bounds.

Remark 2. The computational complexity of calculating the
local gradient ∇fn(x̂t−1) in (17) depends on the machine
learning task. Compared with the local model update for FL
in (8), the additional computational complexity in (17) is in
computing the virtual queue Qn

t−1 and the factor θn
t , both are

in the order of O(d). Therefore, the local model update in (17)
has low computational complexity.

V. PERFORMANCE BOUNDS

In this section, we derive the performance bounds of
OMUAA. We develop new techniques, particularly to account
for the mutual impact of model training and analog aggre-
gation over time. We first state the following assumptions,
which are required for our mathematical analysis but are easily
satisfied in practical systems.

Assumption 1. The loss function fn(x) has bounded gradient
∇fn(x): ∃ D > 0 s.t.,

‖∇fn(x)‖ ≤ D, ∀x ∈ Rd, ∀n. (18)

Assumption 2. The constraint function gn
t (x) is bounded:

∃ G > 0, s.t.,

|gn
t (x)| ≤ G, ∀x ∈ X , ∀n, ∀t. (19)

Assumption 3. The communication noise nt is bounded:
∃ ρ > 0, s.t.,

‖nt‖ ≤ ρ, ∀t. (20)

A. Bound for the Accumulated Training Loss

Define Ln
t ,

1
2 (Qn

t )2 as a quadratic Lyapunov function and
Δn

t , Ln
t −Ln

t−1 as the corresponding Lyapunov drift for each
mobile device n. We first provide an upper bound on Δn

t in
the following lemma. The proof follows from the virtual queue
dynamics in (14) and is omitted for brevity.

Lemma 1. The Lyapunov drift is upper bounded as follows:

Δn
t ≤

1
2
G2 + Qn

t−1g
n
t (xn

t ), ∀n. (21)

We also require the following lemma from [36, Lemma 2.8].

Lemma 2. (Lemma 2.8, [36]) Let X ∈ Rd be a nonempty
convex set. Let f(x) : Rd → R be a 1

α -strongly convex func-
tion over X w.r.t. a norm ‖ ∙ ‖. Let z = arg minx∈X {f(x)}.
Then, for any y ∈ X , we have f(z) ≤ f(y) − 1

2α‖y − z‖2.

For i.i.d. channel state ht, there exists a stationary random-
ized optimal global solution x?

t to P1 over noiseless channels,
which depends only on the (unknown) distribution of hn

t ,
and achieves the minimum objective value (i.e., the minimum
accumulated training loss) of P1, denoted by f? [37]. Using
the results in Lemmas 1 and 2, the following theorem provides

an upper bound on the accumulated training loss by OMUAA
over noisy channels.

Theorem 3. For any α, γ > 0, regardless of the channel
distribution, the accumulated training loss yielded by OMUAA
is upper bounded by

1
T

T∑

t=1

E{f(x̂t)}≤f?+
D2α

2
+

G2γ

2
+

R2+ρ2Λ2,T +2RρΛT

2αT

+
2R+λmaxρ

T

(

D+
ΠT

α

)

(22)

where R =
√

dxmax, λmax = max{λt, ∀t}, ΛT =
∑T

t=1 E{λt},
Λ2,T =

∑T
t=1 E{λ

2
t}, and ΠT =

∑T
t=1 E{‖x

?
t − x?

t+1‖}.3

Proof: The objective function in P2n is 1
α -strongly convex

over X w.r.t. Euclidean norm ‖ ∙ ‖ due to the regularization
term 1

2α‖x − x̂t−1‖2. Since xn
t minimizes P2n over X for

any t, from Lemma 2, we have

〈∇fn(x̂t−1),x
n
t − x̂t−1〉+

1
2α

‖xn
t − x̂t−1‖

2+ γQn
t−1g

n
t (xn

t )

≤ 〈∇fn(x̂t−1),x
?
t − x̂t−1〉 + γQn

t−1g
n
t (x?

t )

+
1
2α

(
‖x?

t − x̂t−1‖
2 − ‖x?

t − xn
t ‖

2
)
. (23)

Now, we bound the third term on the right-hand side (RHS)
of (23). We have

‖x?
t − x̂t−1‖

2 − ‖x?
t − xn

t ‖
2

(a)

≤ ‖x?
t − x̂t−1‖

2 − ‖x?
t+1 − x̂t‖

2 − ‖x?
t − x?

t+1‖
2

+ 2‖x?
t+1 − x̂t‖‖x

?
t − x?

t+1‖ + ‖x?
t − x̂t‖

2 − ‖x?
t − xn

t ‖
2

(b)

≤ ψt + 2‖x?
t+1 − x̂t‖πt + φn

t (24)

where (a) is because ‖a+b‖2 ≥ ‖a‖2+‖b‖2−2‖a‖‖b‖; and
(b) follows from defining ψt , ‖x?

t − x̂t−1‖2−‖x?
t+1− x̂t‖2,

πt , ‖x?
t − x?

t+1‖, and φn
t , ‖x?

t − x̂t‖2 − ‖x?
t − xn

t ‖
2.

Substituting (24) into (23), adding fn(x̂t−1) on both sides,
applying the first order condition of convexity

fn(x̂t−1) + 〈∇fn(x̂t−1),x
?
t − x̂t−1〉 ≤ fn(x?

t )

to its RHS, and rearranging terms, we have

fn(x̂t−1) − fn(x?
t )

≤ −〈∇fn(x̂t−1),x
n
t − x̂t−1〉 −

1
2α

‖xn
t − x̂t−1‖

2

+ γQn
t−1g

n
t (x?

t ) − γQn
t−1g

n
t (xn

t )

+
1
2α

(ψt + 2‖x?
t+1 − x̂t‖πt + φn

t ). (25)

We now bound the RHS of (25). Completing the square and
noting that ∇f(x) is bounded in (18), we have

− 〈∇fn(x̂t−1),x
n
t − x̂t−1〉 −

1
2α

‖xn
t − x̂t−1‖

2

≤
α

2
‖∇fn(x̂t−1)‖

2 ≤
D2α

2
. (26)

3Note that ΠT is the accumulated variation of the optimal global model
over noiseless channels.



From ‖a + b‖ ≤ ‖a‖ + ‖b‖, the definition of x̂t in (7), X
being bounded, i.e.,

‖x‖ ≤ R, ∀x ∈ X , (27)

where R =
√

dxmax, and nt being bounded in (20), we have

‖x?
t+1 − x̂t‖ ≤ ‖x?

t+1‖ + ‖xt‖ + ‖λtnt‖ ≤ 2R + λmaxρ. (28)

Substituting (21), (26), and (28) into (25), multiplying both
sides by wn, summing over n, and taking expectation, we have

E{f(x̂t−1)} − E{f(x?
t )}

≤
D2α

2
+γ

( N∑

n=1

wnE{Qn
t−1g

n
t (x?

t )}+
1
2
G2−

N∑

n=1

wnE{Δn
t }

)

+
1
2α

(

E{ψt}+2(2R+λmaxρ)E{πt}+
N∑

n=1

wnE{φn
t }

)

.(29)

From x?
t being independent of Qn

t−1 ≥ 0, and E{gn
t (x?

t )} ≤
0, we have E{Qn

t−1g
n
t (x?

t )|Q
n
t−1} = Qn

t−1E{g
n
t (x?

t )} ≤ 0.
It then follows from the iterated law of expectation that
E{Qn

t−1g
n
t (x?

t )} = E{E{Qn
t−1g

n
t (x?

t )|Q
n
t−1}} ≤ 0. Substi-

tuting it into (29) and summing from t = 2, we have

T−1∑

t=1

E{f(x̂t)} −
T∑

t=2

E{f(x?
t )}

≤
D2α

2
T +

G2γ

2
T − γ

T∑

t=2

N∑

n=1

wnE{Δn
t } +

1
2α

T∑

t=2

E{ψt}

+
2R +λmaxρ

α

T∑

t=2

E{πt} +
1
2α

T∑

t=2

N∑

n=1

wnE{φn
t }. (30)

We now bound the RHS of (30). From the definition of Δt,
Qn

1 = 0, and Qn
t ≥ 0, ∀t, we have

−
T∑

t=2

E{Δn
t } =

1
2
E{(Qn

1 )2} −
1
2
E{(Qn

T )2} ≤ 0. (31)

Noting that ψt is a telescoping term, x̂1 = 0 by initialization,
and ‖x?

t ‖ ≤ R, ∀t, we have

T∑

t=2

E{ψt}=E{‖x?
2 − x̂1‖

2}−E‖x?
T+1 − x̂T ‖

2} ≤ R2. (32)

For the last term on the RHS of (30), we have
T∑

t=2

N∑

n=1

wnE{φn
t } =

T∑

t=2

N∑

n=1

wnE{‖x?
t −x̂t‖

2 − ‖x?
t −xn

t ‖
2}

(a)

≤
T∑

t=2

N∑

n=1

wn(E{‖x?
t − xt‖

2} − E{‖x?
t − xn

t ‖
2})

+
T∑

t=2

E{‖λtnt‖
2} + 2

T∑

t=2

E{‖x?
t − xt‖‖λtnt‖}

(b)

≤
T∑

t=2

E{‖λtnt‖
2} + 2

T∑

t=2

E{‖x?
t − xt‖‖λtnt‖}

(c)

≤ ρ2Λ2,T + 2RρΛT (33)

where (a) follows form ‖a+b‖2 ≤ ‖a‖2 + ‖b‖2 +2‖a‖‖b‖,
(b) is because of the separate convexity of Euclidean norm
and the definition of xt in (4) such that for any t

N∑

n=1

wn(E{‖x?
t − xt‖

2} − E{‖x?
t − xn

t ‖
2})

≤
N∑

n=1

wn

( N∑

j=1

(wjE{‖x?
t −xj

t‖
2})−E{‖x?

t −xn
t ‖

2

)

= 0,

and (c) follows from nt and X being bounded in (20) and
(27), respectively, and the definitions of Λ2,T and ΛT .

Substituting (31)-(33) into (30), noting that f(x̂T )−f(x?
1)≤∑N

n=1 wn〈∇f(x̂T ), x̂T − x?
1〉 ≤ D (2R + λmaxρ), and from

the definition of ΠT and f?, we have (22).
Theorem 3 provides a general bound for the accumulated

training loss by OMUAA, for any values of step-size pa-
rameters α, γ, and power-scaling factors {λt}. The following
corollary provides the accumulated training loss by OMUAA
when α, γ, and {λt} take specific values. It follows by
substituting the corresponding α, γ, and {λt} into the general
bound in (22).

Corollary 4. For any ε > 0, set α = γ = ε and λt = ε2, ∀t.
The accumulated training loss yielded by OMUAA is upper
bounded by

1
T

T∑

t=1

E{f(x̂t)} ≤ f?+ O((1+ρ2+ΠT ρ)ε), ∀T ≥
1
ε2

. (34)

Corollary 4 provides an upper bound on the objective value
of P1 in (34), i.e., the accumulated training loss yielded by
the noisy global model. It indicates that for all T ≥ 1

ε2 , the
accumulate training loss produced by OMUAA over noisy
channels is within O((1+ρ2+ΠT ρ)ε) to the optimum achieved
over noiseless channels. Note that ΠT can be small when
the channel state does not vary too drastically over time. In
particular, when the channel is static, we have ΠT = 0.

B. Bound for the Long-Term Transmit Power

We now proceed to provide a performance bound on the
individual long-term transmit power constraint violation at
each mobile device by OMUAA.

Theorem 5. For any α, γ > 0, the violation of each individual
long-term transmit power constraint is upper bounded by

1
T

T∑

t=1

gn
t (xn

t )≤
G

T
+

αγG2+2αDR+(R+λmaxρ)2

2αγP̄nT
, ∀n. (35)

Proof: Since xn
t minimizes the objective function of P2n

over X for any n, we have

〈∇fn(x̂t−1),x
n
t − x̂t−1〉 +

1
2α

‖xn
t − x̂t−1‖

2+ γQn
t−1g

n
t (xn

t )

(a)

≤ 〈∇fn(x̂t−1),−x̂t−1〉 +
1
2α

‖x̂t−1‖
2 − γQn

t−1P̄
n (36)



where (a) follows from gn
t (0) = −P̄n. Rearranging terms of

(36), we have

γQn
t−1g

n
t (xn

t )≤−γQn
t−1P̄

n− 〈∇fn(x̂t−1),x
n
t 〉+

1
2α

‖x̂t−1‖
2

(a)

≤−γQn
t−1P̄

n + DR +
(R + λmaxρ)2

2α
(37)

where (a) follows from ∇f(x), nt, and X being bounded in
(18), (20), and (27), respectively.

Substituting (37) into (21), we have

Δn
t ≤ −Qn

t−1P̄
n +

G2

2
+

DR

γ
+

(R + λmaxρ)2

2αγ
.

Therefore, a sufficient condition for Δn
t < 0 is

Qn
t−1 >

αγG2 + 2αDR + (R + λmaxρ)2

2αγP̄n
. (38)

If (38) holds, we have Qn
t < Qn

t−1, i.e., the virtual queue
decreases; otherwise, there is a maximum increase from Qn

t−1

to Qn
t since Qn

t −Qn
t−1 ≤ gn

t (xn
t ) ≤ G. Therefore, the virtual

queue is bounded for all t by

Qn
t ≤ G +

αγG2 + 2αDR + (R + λmaxρ)2

2αγP̄n
. (39)

From the virtual queue dynamics in (14), we have Qn
t ≥

Qn
t−1 + gn

t (xn
t ), ∀t. Summing it from t = 2, we have

∑T
t=2 gn

t (xn
t ) =

∑T
t=2 Qn

t −Qn
t−1 = Qn

T −Qn
1 = Qn

T . Noting
that gn

1 (xn
1 ) = −P̄n < 0, we have 1

T

∑T
t=1 gn

t (xn
t ) ≤ Qn

T

T .
Substituting the virtual queue bound in (39) into this inequal-
ity, we have (35).

From the general bound on the violation of individual long-
term transmit power constraint provided in Theorem 5, which
is for any step-size parameters α, γ, and power-scaling factors
{λt}, we can derive the following corollary for some specific
values of α, γ, and {λt}.

Corollary 6. For any ε > 0, set α = γ = ε and λt = ε2, ∀t.
The individual long-term transmit power constraint violations
yielded by OMUAA is upper bounded by

1
T

T∑

t=1

gn
t (xn

t ) ≤ O((1 + ρ2)ε), ∀n, ∀T ≥
1
ε3

. (40)

In addition to the upper bound on the accumulated training
loss in (34), Corollary 6 shows that for each mobile device n,
OMUAA guarantees that the deviation from its average trans-
mit power limit P̄n is within O((1+ρ2)ε) if T ≥ 1

ε3 . Finally,
we point out that the i.i.d. condition of the channel state
can be relaxed to Markovian evolution over time, and similar
performance bounds can be obtained by using the extension
method discussed in [37].

VI. SIMULATION RESULTS

To complement the theoretical performance guarantees of
OMUAA provided in Section V, we evaluate the performance
of OMUAA in edge learning based on real-world image
classification datasets, under typical LTE network settings.

A. Simulation Setup

We consider a wireless edge network with one edge server
and N = 10 mobile devices. Following typical LTE specifi-
cations [39], we set noise power spectral density N0 = −174
dBm/Hz and noise figure NF = 10 dB. We consider an orthog-
onal frequency-division multiplexing system with S = 500
subcarriers, each with bandwidth BW = 15 kHz. The fading
channel from mobile device n to the edge server at the t-th
iteration is modeled as hn

t ∼ N (0, βnI), with βn representing
the large-scale fading variation consisting of the path-loss and
shadowing. We model βn[dB] = −31.54 − 33 log10(r) − ϕn

[39], where r = 100 m is the distance to the edge server,
and ϕn ∼ N (0, σ2

φ) is the shadowing with σ2
φ = 8 dB. We

assume each channel is i.i.d. over iteration t. We use a fixed
power-scaling factor λt = λ in all simulations.

We use the MNIST dataset [40] for model training and
testing. The training dataset D consists of |D| = 6 × 104

data samples and the test dataset E has |E| = 1 × 104 data
samples. Each data sample (u, v) represents a labeled image
of size 28 × 28 pixels, i.e., u∈R784, with J = 10 different
labels, i.e., v ∈ {1, . . . , J}. We consider the cross-entropy loss
for multinomial logistic regression

l(x;u, v) = −
J∑

j=1

1{v = j} log
exp(〈x[j],u〉)

∑J
k=1 exp(〈x[k],u〉)

(41)

where x = [x[1]T , . . . ,x[J ]T ]T with x[j] ∈ R784 being the
model for label j. The entire model x is thus of dimension
d = 7840 and is transmitted over M = d d

S e = 16 transmission
frames over time at each iteration t. We assume the same
average transmit power limit at the mobile devices, i.e.,
P̄n = MP̄, ∀n. We consider non-i.i.d. data distribution, where
the local dataset Dn at each mobile device n only contains
data samples of label n. Therefore, the mobile devices do
not share data samples of the same labels. We assume each
mobile device n samples a batch dataset Bn

t ⊂ Dn consisting
of |Bn

t | = 20 data samples at each iteration t. Therefore, the
weight of each mobile device n is wn = 1

N .
Our performance metrics are the time-averaged test accu-

racy over E

Ā(T )=
1

T |E|

T∑

t=1

|E|∑

i=1

1

{

argmax
j

{
exp(〈x̂t[j],ui〉)

∑J
k=1exp(〈x̂t[k],ui〉)

}

=vi

}

,

and the time-averaged training loss over {Bn
t }

f̄(T ) =
1
T

T∑

t=1

N∑

n=1

1
|Bn

t |

|Bn
t |∑

i=1

wnl(x̂t;u
n,i
t , vn,i

t ).

B. Performance Comparison

We compare OMUAA with the following schemes.4

• Error-free FL: We run the FL scheme that alternates local
model update in (8) and global model aggregation in (4)
over noiseless channels with batch datasets. This scheme
provides a performance upper bound for OMUAA.

4We use the same step-size parameters in these schemes as OMUAA.
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Fig. 2. Test accuracy Ā(T ) and training loss f̄(T ) vs. iterations T .

• OTA FL: We adopt the transmit power control scheme
in [20], [21], which are the best existing alternatives that
consider over-the-air (OTA) FL with long-term transmit
power constraints.5 In [20] and [21], a time-varying
power-scaling factor λt is used in (6) to set the transmit
power at each mobile device n around a predefined
transmit power limit Pt at each iteration t. Since different
strategies to set Pt achieve nearly the same performance
as shown in [20], we set Pt = MP̄, ∀t as in [21].

• R-OTA FL: Based on OTA FL, we add a regularization
term κ‖x‖2 to l(x;u, v) in (41), where κ is a tunable
parameter. This regularization scheme was adopted in
[22]-[24]. We have optimized κ in the presented results.

Fig. 2 shows Ā(T ) and f̄(T ) versus T with P̄ = 16 dBm.
Despite the presence of communication noise, OMUAA con-
verges quickly and achieves better classification performance
compared with OTA FL and R-OTA FL. We observe that the
performance of OTA FL deteriorates as T increases. This is
because OTA FL uses the power-scaling factor λt for transmit
power control, which magnifies the communication error λtnt

in the global model x̂t in (7) when λt is large. Since x̂t

is further used in the training process at the next iteration,
there will be severe communication error propagation in the
learning process. Adding a regularization term as in R-OTA FL
helps minimize ‖xt‖2 and thus prevents λt from being too
large. We observe that, with properly tuned κ, R-OTA FL
substantially outperforms OTA FL. In comparison, the virtual
queue in OMUAA serves as automatically-tuned regularization
on minimizing ‖xt‖2 in the model training process over time.
This leads to better performance than OTA FL and R-OTA FL.

In Fig 3, we compare the steady-state test accuracy Ā and
training loss f̄ among OMUAA, OTA FL, and R-OTA FL with
different values of the average transmit power limit P̄ . The
test accuracy Ā yielded by OTA FL and R-OTA FL decreases
drastically as P̄ decreases. The training loss f̄ for OTA FL is
not plotted in Fig. 3, as it is much larger than those plotted.
Over a wide range of P̄ , OMUAA significantly outperforms

5The gradient sparsification and quantization techniques considered in [20]
and [21] are orthogonal to the OMUAA design. Therefore, in our simulation,
we assume the full gradient is sent to the edge server.
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Fig. 3. The impact of average transmit power limit P̄ . The f̄ plot for OTA
FL is not included as its value of f̄ is much larger than those of OMUAA
and R-OTA FL.
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Fig. 4. The impact of distance to edge server r.

the other two schemes. Fig. 4 shows the impact of r, the
distance of mobile devices to the edge server, on Ā and f̄ .
The test accuracy of OMUAA is more robust to r than that of
R-OTA FL. Furthermore, the performance gain of OMUAA
over R-OTA FL becomes more substantial as r increases.

VII. CONCLUSIONS

We consider FL in wireless edge networks with analog
aggregation over noisy wireless fading multiple access chan-
nels. We propose an efficient OMUAA algorithm to minimize
the accumulated training loss over time at the edge server,
subject to individual long-term transmit power constraints at
the mobile devices. OMUAA depends only on the current
local CSI, without needing to know the channel distribution.
The local models yielded by OMUAA are channel- and
power-aware, and are in closed forms with low computa-
tional complexity. Our analysis considers the mutual impact
between model training and analog aggregation over time
to provide performance guarantees on both the computation
and communication performance metrics. Simulation results
based on realistic LTE network settings and real-word image
classification datasets show substantial performance advantage
of OMUAA over the known best alternatives under different
scenarios.
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