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Abstract—We consider cooperative multiple-input multiple-
output (MIMO) precoding design with multiple access points
(APs) assisted by a central controller (CC) in a fading environ-
ment. Even though each AP may have its own local channel
state information (CSI), due to the communication delay in
the backhaul, neither the APs nor the CC has timely global
CSI. Under this semi-online setting, our goal is to minimize
the accumulated precoding deviation between the actual local
precoders executed by the APs and an ideal cooperative precoder
based on the global CSI, subject to per-AP transmit power
limits. We propose an efficient algorithm, termed Semi-Online
Precoding with Information Parsing (SOPIP), which accounts
for the network heterogeneity in information timeliness and
computational capacity. SOPIP does not require the CC to send
the full global CSI to each AP. Instead, it takes advantage of
the precoder structure to substantially lower the communication
overhead, while allowing each AP to effectively combine its own
timely local CSI with the delayed global CSI to enable adaptive
precoder updates. We analyze the performance of SOPIP in the
presence of both multi-slot communication delay and gradient
estimation error, showing that it has a bounded performance gap
from an offline optimal solution. Simulation results under typical
Long-Term Evolution network settings further demonstrate the
substantial performance gain of SOPIP over other centralized
and distributed schemes.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) and cooperative
transmission have been recognized as two enabling techniques
to meet the ever-increasing service demand of mobile devices
[1]. In MIMO networks, each access point (AP) is equipped
with multiple antennas and serves multiple mobile devices
simultaneously via MIMO precoding [2]. Meanwhile, cooper-
ative transmission enables multiple APs to jointly transmit sig-
nals to the mobile devices to mitigate interference and improve
the received signal strength [3]. Different cooperation schemes
have been proposed under various system architectures, e.g.,
coordinated multi-point transmission in cellular networks [4],
cloud-radio access network [5], and cell-free massive MIMO
[6]. In a cooperative wireless network, it is commonly assumed
that the APs are connected to a central controller (CC) via
ideal backhaul. However, cooperative transmission over non-
ideal backhaul with communication delay and limited capacity
is a practical concern.

This work has been funded in part by Ericsson Canada and by
the Natural Sciences and Engineering Research Council (NSERC) of
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https://github.com/juncheng-wang/INFOCOM2022-SOPIP.

Cooperative precoding design intrinsically requires the
knowledge of global channel state information (CSI) due
to the coupling between the channels and precoders of the
APs. Therefore, most prior works adopted a global processing
approach to design cooperative precoding at the CC, assuming
the global CSI is readily available [7]-[14]. Some other works
considered distributed cooperative precoding design at the APs
based only on the local CSI [15]-[17]. However, due to the
lack of global CSI, such local processing approach cannot
fully utilize the degrees of freedom to effectively mitigate
interference. In contrast, the joint (global and local) processing
approach utilizes the computational capacity at both the CC
and the APs via information exchange between them over the
backhaul, to achieve full degrees of freedom [18]-[22]. In this
work, we adopt the joint processing approach.

All of the existing works that adopt the joint process-
ing approach have focused on offline cooperative precoding
problems assuming the CSI is known apriori. However, in
practical cooperative wireless networks, non-ideal backhaul
can cause severe communication delay between the CC and
the APs. Online precoding design was considered for global
processing in [23]-[25] based on delayed CSI. However, these
works focused on single-cell systems and did not consider
cooperative transmission. There is no existing work on online
cooperative precoding design.

It is challenging to tackle the semi-online cooperative pre-
coding problem. First, the design of cooperative precoding
is intrinsically non-separable among the APs and therefore
requires the knowledge of global CSI. Second, due to the non-
ideal backhaul, neither the CC nor the APs has the timely
global CSI to design the cooperative precoder. Third, the APs
need to implement real-time local precoders while cooperating
with each other to mitigate interference. Finally, we should
take full advantage of both the timely local CSI at the APs
and the delayed global CSI at the CC, and this calls for a
semi-online cooperative precoding design for joint processing.

In this work, we aim at developing a semi-online algo-
rithm to fully utilize the timely local CSI at the APs for a
CC-assisted cooperative precoding solution. We formulate a
precoding optimization problem to minimize the accumulated
deviation between the received signals from the actual local
precoders executed by the APs and any desired cooperative
precoder assuming non-delayed perfect global CSI. The main
contributions of this paper are as follows:



• We formulate the above problem of cooperative MIMO
precoding over non-ideal backhaul as a semi-online opti-
mization problem, where the APs have timely local CSI
but require the assistance of a CC that has additional
computational resource and delayed global CSI. At each
time slot, each AP computes and executes its own local
precoder, but all APs cooperatively minimize the accumu-
lated deviation between the actual cooperative precoding
and some idealized desired cooperative precoding, subject
to the APs’ transmit power limits. We note that the
precoding deviation is not separable among the APs, and
the communication delay between the CC and the APs
may span multiple time slots.

• We propose an efficient algorithm, termed Semi-Online
Precoding with Information Parsing (SOPIP), to fully
account for the heterogeneity in information timeliness
and computational capacity in the cooperative network.
SOPIP integrates both the timely local CSI and the de-
layed global CSI to perform precoder updates at both the
APs and the CC. In particular, it does not require the CC
to send the full global CSI to each AP. Instead, through
efficient parsing of the channel and precoder information,
SOPIP greatly reduces the amount of communication
load on the backhaul. Furthermore, due to its semi-online
nature, SOPIP allows adaptive precoder updates at both
the CC and the APs through multi-step gradient descent,
based on their available computational capacities.

• We analyze the mathematical structure of SOPIP, in the
presence of both multi-slot communication delay and
gradient estimation error. We show that SOPIP yields
O(max{τΠT , ΔT }) optimality gap in the case of one-
step gradient descent at either the CC or the APs, where T
is the total time horizon, τ is the round-trip communica-
tion delay, ΠT represents the accumulated variation of the
desired cooperative precoder in T slots, and ΔT measures
the level of variation in the gradient estimation error in
T slots. We further provide an improved performance
bound, which shows how the optimality gap decreases
as the number of gradient descent steps increases.

• Our simulation results, under typical cellular system
settings, show that SOPIP has fast convergence and is
tolerant to communication delay. We further demonstrate
the performance advantage of SOPIP over other central-
ized and distributed schemes.

The rest of this paper is organized as follows. In Section II,
we present the related work. Section III describes the system
model and problem formulation. We present SOPIP and its
precoder updates in Section IV. Performance bounds are
provided in Section V. Simulation results are presented in
Section VI, followed by concluding remarks in Section VII.

II. RELATED WORK

In this section, we survey relevant existing works on coop-
erative precoding in offline and online scenarios.

1) One-sided Global or Local Cooperative Precoding:
Most existing works on cooperative precoding design are

based on global processing at the CC (or some equivalent
entity). A cooperative zero-forcing (ZF) precoding scheme was
studied in [7]. In [8], the impact of synchronization on the
cooperative system performance was investigated. Cooperative
precoding based on the multi-cell block diagonalization tech-
nique was proposed in [9] with per-AP transmit power limits.
Compression techniques were used in [10], [11] to reduce the
amount of information exchange over the backhaul. In [12], the
trade-off between the backhaul cost and power consumption
was investigated. Cell-free massive MIMO was proposed in
[13], [14], where distributed single-antenna APs are deployed
to cooperatively transmit data to the users. The distributed APs
rely on the CC for global processing. All of the above works
assume the CC has the knowledge of the global CSI without
delay, which is restrictive in practical cooperative networks.

Distributed cooperative precoding schemes based only on
the local CSI was proposed in [15], [16]. Linear precoding
was proposed in [17] for each AP based on the local CSI and
the large-scale fading coefficients of the other APs. However,
due to the lack of global CSI, the local processing approach
may be highly suboptimal.

2) Joint Global and Local Cooperative Precoding: All
prior works that adopt the joint global and local processing ap-
proach perform one-shot or offline optimization. Cooperative
precoding design with AP clustering was considered in [18].
Cooperative transmission in a cognitive network was studied
in [19]. An user mobility cooperation approach was proposed
in [20] to utilize the moving users for interference mitigation.
In [21], the local precoders were optimized through forward
and backward training between the CC and APs. Different
levels of cooperations between the CC and APs for cell-free
massive MIMO was studied in [22]. None of these works
considered the impact of backhaul communication delay on
the cooperative precoding design over time.

3) Online Convex Optimization for Precoding: The general
online convex optimization (OCO) technique [26] accounts
for the delayed information in system design. It has been
applied to online precoding design problems with delayed
CSI in MIMO systems. For example, online projected gradient
descent was used in [23] for MIMO uplink precoding design.
Dynamic precoding design for point-to-point MIMO systems
was studied in [24]. Periodic precoding updates for MIMO
network virtualization was considered in [25]. However, these
works focused on single-cell MIMO systems and thus cannot
be applied to cooperative precoding design.

4) Other Related Works: A part of our proposed algorithm
uses the common gradient descent method. However, different
from the standard distributed online gradient descent schemes,
which assume separable objective functions [27]-[29], our
objective function is non-separable among the APs. Therefore,
distributed OCO algorithms based only on local information,
such as those in [27]-[29], are not applicable to our problem.
The need to consider non-ideal backhaul further adds to this
challenge.

Decentralized coordinated precoding was considered in
[30]-[32], where the APs do not directly cooperate but only



focus on interference mitigation via coordination. In contrast,
we focus on the scenario of cooperative communication.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cooperative wireless MIMO network in a
time-slotted system with time index t. As shown in Fig. 1, a
total of C APs jointly serve K users with the assistance of
a CC over non-ideal backhaul.1 Each AP c has N c antennas,
so there are N =

∑C
c=1 N c antennas in the network. Let

Hc
t ∈ CK×Nc

be the local channel state between the K users
and AP c. Denote Ht = [H1

t , . . . ,H
C
t ] ∈ CK×N as the global

channel state between the K users and all the APs.
At each time slot t, each AP observes the current local CSI

Hc
t and determines its own local precoder Vc

t ∈ CNc×K to
form cooperative MIMO transmission with the other APs to
serve the K users. We impose a maximum transmit power
limit P c

max on Vc
t via the following local feasible set

Vc , {Vc : ‖Vc‖2
F ≤ P c

max} (1)

where ‖ ∙ ‖F denotes the Frobenius norm. Let Vt =
[V1

t
H

, . . . ,VC
t

H
]H ∈ CN×K denote the cooperative precoder

executed by all the APs at time slot t and V = ∪C
c=1{V

c} be
its feasible set. The actual received signal vector yt (excluding
noise) at the K users is given by

yt = HtVtxt (2)

where xt ∈ CK×1 is the transmitted signal vector to the
K users.2 Without loss of generality, we assume the sig-
nals among users are independent with unit power, i.e.,
E{xtxH

t } = I, ∀t.
The APs aim to cooperatively design Vt to achieve some

joint performance objective, e.g., cooperative ZF precoding
from all the APs to eliminate inter-user interference and
maximize per-user signal gain [7]. However, that would require
each AP to have the global CSI, which would be prohibitively
expensive to accomplish. Therefore, a common solution is to
use a CC to collect the global CSI to centrally design Vt.

Ideally, each AP c communicates Hc
t to the CC without

delay. The CC then has the global CSI Ht at time slot t and
can design a desired cooperative precoder Wt ∈ CN×K in V .
Note that the design of Wt can be based on the service needs
of the K users and is not limited to any specific precoding
scheme. The desired received signal vector (noiseless) ỹt is
given by

ỹt = HtWtxt. (3)

Again, ideally the CC communicates Wt to the APs without
delay, and we have Vt = Wt and yt = ỹt.

1Alternatively, the AP can represent a base station, a transmission and
reception point, or a remote radio unit. The CC can be referred to as central
processor, central processing unit, or base-band unit pool.

2The signal model in (2) implicitly makes the common assumption that the
cooperative network is synchronized in time. There exists over-the-air and
broadcasting schemes that can be used to synchronize the clocks at the APs
[33], [34]. Also, for cooperative precoding, the user messages are available
at the APs.

Fig. 1. An illustration of cooperative MIMO wireless network with non-ideal
backhaul communication links.

However, in practice, there is delay in both the uplink and
downlink. In this case, the expected deviation of the actual
received signal vector at the K users from the desired one is
given by E{‖yt − ỹt‖2

F } = ‖HtVt − HtWt‖2
F . Therefore,

we define the precoding deviation of the APs’ precoder from
the CC’s precoder as follows:

ft(Vt) , ‖HtVt − HtWt‖
2
F , ∀t. (4)

Note that ft(Vt) quantifies the difference between the actual
local precoders and the idealized cooperative precoder. Fur-
thermore, ft(Vt) is strongly convex in Vt.

A. Problem Formulation

Since the wireless channels dynamically change over time,
the goal of our cooperative precoding design is to minimize
the accumulated precoding deviation over T time slots, subject
to per-AP transmit power limits. The optimization problem is
formulated as follows:

P1: min
{Vt∈V}T

t=1

T∑

t=1

ft(Vt).

Note that the precoding deviation ft(Vt) is non-separable
among the APs due to the coupling of local channel states
{Hc

t}
C
c=1 and local precoders {Vc

t}
C
c=1 via inter-AP interfer-

ence. Therefore, each AP c cannot locally solve P1 without
information exchange with the other APs.

For non-ideal backhaul communication links, at each time
slot t, assume the uplink delay in sending the timely local CSI
Hc

t from each AP c to the CC is u slots and the downlink delay
for the CC to send information back to the APs is d slots. We
assume the messages to the users are buffered, so that the APs
can transmit them at the same time. We consider there is at
least one-slot uplink delay, i.e., u ≥ 1. If the communication
overhead is a concern, instead of sending Hc

t , each AP c can
send a compressed version of Hc

t , denoted by Lc
t , to the CC.3

In this case, the CC recovers a delayed global CSI Ĥt−u

containing some compression errors.

3We can readily implement different compression techniques such as those
in [10], [11], without major technical changes. Their choice depends on
specific requirements on the backhaul and are beyond the scope of this paper.



Since each AP c has its own timely local CSI Hc
t while

the global CSI at the CC is delayed, our optimization setting
is semi-online. Note that with delayed global CSI, one cannot
obtain an optimal solution to P1.4 A widely adopted perfor-
mance measure in the online optimization literature [35]-[41]
is the dynamic regret given by

REd
T ,

T∑

t=1

(ft(Vt) − ft(V
?
t )) (5)

where {V?
t }

T
t=1 is an offline optimal solution to P1 assuming

the accurate global CSI {Ht}T
t=1 is known apriori. In our case,

it is clear that V?
t = Wt for all t, so

∑T
t=1 ft(V?

t ) = 0. Note
that minimizing REd

T is equivalent to solving P1.

Remark 1. The globally optimal solution to P1 is Wt at
each time slot t. However, with non-ideal backhaul, the APs
cannot receive Wt from the CC in time. A naive solution is
to directly use the delayed optimal solution Wt−u−d at the
APs. In Section VI, we will show that directly using Wt−u−d

at the APs leads to inferior performance compared with our
proposed algorithm, which utilizes both the more timely local
CSI as well as the available computational resource at the APs.

IV. SEMI-ONLINE PRECODING WITH

INFORMATION PARSING (SOPIP)

In this section, we present the details of SOPIP. We combine
the semi-online setting with the gradient descent approach
commonly used in the online optimization literature in order
to accommodate the delayed global CSI. However, existing
online gradient descent algorithms for distributed networks,
e.g., [27]-[29], are not applicable to P1, since they implicitly
assume the gradient can be computed based only on the local
information. For our non-separable global objective function
ft(Vt) in (4), even discounting the CSI delay, the current and
accurate local gradient at each AP c would be given by

∇f c
t (Vc

t ) ,
∂ft(Vt)
∂Vc

t
∗ = HcH

t

( C∑

l=1

(Hl
tV

l
t) − HtWt

)

(6)

where due to inter-AP interference in the received signal,
∇f c

t (Vc
t ) depends on its local CSI Hc

t , local precoder Vc
t ,

and the CSI Hl
t and precoder Vl

t at any other AP l 6= c.
Therefore, to compute its own gradient ∇f c

t (Vc
t ), each AP c

needs information from the other APs. In SOPIP, we design
joint processing algorithms at the APs and the CC to enable
local gradient updates at each AP.

Different from existing joint processing approaches, which
do not consider the timeliness of CSI or computational capac-
ity at the CC or the APs, SOPIP integrates the timely local and
delayed global information to enable precoder updates at both
the CC and the APs. Furthermore, the number of precoder
updates at both the CC and the APs can be adjustable based
on the available computational resource. In the following, we
describe the algorithm details of SOPIP at the CC and the APs.

4In fact, even for the most basic centralized online problem with one-slot
delayed information [35], an optimal solution cannot be found [36].

A. CC’s Algorithm

In practical cooperative networks, the CC often has a
rich amount of computational resource that can be used for
cooperative precoder design. At each time slot t, each AP c
sends either its accurate or compressed local CSI Lc

t to the CC.
Furthermore, each AP c determines its current local precoder
Vc

t and then sends it together with Lc
t to the CC. Due to

the uplink delay, the CC has the u-slot-delayed local precoder
Vc

t−u and CSI Lc
t−u at time slot t. The CC then recovers an

approximated version of the local CSI, denoted by Ĥt−u, from
Lc

t−u, which is then used to generate new precoders to assist
the local precoder updates at the APs.

Note that the CC needs to accommodate the downlink delay
and design the precoders d slots ahead for the APs based
on the u-slot-delayed information. To compute the precoder
for AP c, the CC initializes an intermediate precoder value
V̂c,0

t+d = Vc
t−u for each AP c, and performs JCC-step gradient

descent to generate V̂c,j
t+d, j = 1, . . . , JCC.5 Due to the uplink

delay and CSI compression, the CC only has the delayed and
inaccurate global CSI Ĥt−u and computes the delayed and
inaccurate desired cooperative precoder Ŵt−u. Given Ĥt−u,
Ŵt−u, and V̂c,j−1

t+d , the CC generates an estimate of the local
gradient at V̂c,j−1

t+d as

∇̂f c
t−u(V̂c,j−1

t+d )=ĤcH
t−u

( C∑

l=1

(Ĥl
t−uV̂

l,j−1

t+d )−Ĥt−uŴt−u

)

(7)

for j = 1, . . . , JCC.
With previous precoder update V̂c,j−1

t+d and gradient estimate
in (7), the CC performs the following closed-form projected
gradient descent to update V̂c,j

t+d:

V̂c,j
t+d = PVc

{

V̂c,j−1
t+d −

1
α
∇f̂ c

t−u(V̂c,j−1
t+d )

}

(8)

where α > 0 is a step-size parameter and PVc{Vc} ,
arg minUc∈Vc{‖Uc − Vc‖2

F } is the projection operator onto
the local convex feasible set Vc. After the JCC-step gradient
descent procedure, to assist the local precoder update at each
AP c, the CC then sends V̂c,JCC

t+d to each AP c.
Furthermore, as an important feature of SOPIP, instead of

sending the global CSI to every AP, the CC sends to each
AP c the following parsed global information on the precoding
deviation

Ĝc
t−u =

C∑

l=1,l 6=c

(
Ĥl

t−uV̂
l,JCC
t+d

)
− Ĥt−uŴt−u ∈ CK×K . (9)

We summarize the CC’s algorithm in Algorithm 1.

Remark 2. Since the global CSI is delayed and possibly
inaccurate, in SOPIP, different from the global precoding
design approaches, the precoders generated at the CC are not
used directly as the final precoders used by the APs. Instead,
the CC-generated precoder V̂c,JCC

t+d along with the parsed global

5Later in Sections V and VI, we show that multi-step gradient descent in
SOPIP improves the dynamic regret bound and the system performance.



Algorithm 1 SOPIP: CC’s algorithm
1: Initialize α > 0 and broadcast it all APs.
2: Receive Vc

t−u and Lc
t−u from each AP c.

3: Recover Ĥc
t−u from Lc

t−u.
4: Set V̂c,0

t+d = Vc
t−u for each AP c.

5: for j = 1 to JCC

6: Construct estimated gradient ∇̂f c
t−u(V̂c,j−1

t+d ) in (7).
7: Update V̂c,j

t+d for each AP c via (8).
8: end for
9: Send V̂c,JCC

t+d and Ĝc
t−u to each AP c.

information Ĝc
t−u are used at the APs to assist their local

precoder updates.

Remark 3. If the CC sends the exact global information
Ĥt−u, V̂JCC

t+d, and Ŵt−u to each AP c to enable its local
precoder updates, the amount of communication overhead is
3NK. By communicating V̂c,JCC

t+d and Ĝc
t−u to each AP c, the

amount of overhead is (N c + K)K, which is a substantial
reduction since we generally have N ≥ K in a MIMO
network.

Remark 4. Compared with ∇̂f c
t−u(V̂c,JCC

t+d ) in (7), the
global information Ĝc

t−u in (9) for AP c does not contain
Ĥc

t−uV̂
c,JCC
t+d , since more timely local CSI will be used by

the AP to reduce the gradient estimation error. Alternatively,
instead of sending specific Ĝc

t−u to each AP c, the CC can
broadcast the shared global information

∑C
l=1(Ĥ

l
t−uV̂

l,JCC
t+d )−

Ĥt−uŴt−u ∈ CK×K on the precoding deviation to all
the APs. Each AP c can then recover Ĝc

t−u−d locally by
subtracting Ĥc

t−u−dV̂
c,JCC
t at each time slot t, where Ĥc

t−u−d

is the previous local CSI that can be recovered from Lc
t−u−d

in the same way as the CC.

B. AP c’s Algorithm

Recall that each AP c has the current local CSI Hc
t at time

slot t. Since the precoding deviation ft(V) is non-separable,
each AP c cannot compute its local gradient ∇f c

t (Vc
t ) in (6)

based only on its local CSI. To address this issue, in SOPIP,
the CC assists the local gradient estimation by communicating
the parsed global information Ĝc

t−u to each AP c. Note that
due to the communication delay and CSI compression, the
parsed global information is delayed and inaccurate.

At time slot t, taking into account the additional downlink
delay, each AP c receives the parsed global information
Ĝc

t−u−d and the intermediate precoder V̂c,JCC
t from the CC.

Based on V̂c,JCC
t , each AP c initializes its own intermediate

local precoder Ṽc,0
t = V̂c,JCC

t and performs JAP-step local
gradient descent to generate Ṽc,JAP

t . For each gradient descent
step j = 1, . . . , JAP, based on (6), each AP c computes an
estimate of the current local gradient at Ṽc,j−1

t as

∇̂f c
t (Ṽc,j−1

t ) = HcH
t

(

Hc
tV̂

c,j−1
t + Ĝc

t−u−d

)

. (10)

Algorithm 2 SOPIP: AP c’s algorithm
1: Initialize Vc

t ∈ Vc at random for any t ≤ u.
2: Receive V̂c,JCC

t and Ĝc
t−u−d from the CC.

3: Set Ṽc,0
t = V̂c,JCC

t .
4: for j = 1 to JAP

5: Construct estimated gradient ∇̂f c
t (Ṽc,j−1

t ) in (10).
6: Update Ṽc,j

t via (11).
7: end for
8: Set Vc

t = Ṽc,JAP
t and execute Vc

t .
9: Send Vc

t and Lc
t to the CC.

Note that the above estimated gradient takes full advantage of
the timely local CSI at the AP c, as well as the global infor-
mation provided by the CC, for the local precoder updates.

Using V̂c,j−1
t from the previous step and ∇̂f c

t (Ṽc,j−1
t ) in

(10), each AP c performs the following closed-form projected
gradient descent to update Ṽc,j

t :

Ṽc,j
t = PVc

{

Ṽc,j−1
t −

1
α
∇f̂ c

t (Ṽc,j−1
t )

}

. (11)

Finally, each AP c uses Vc
t = Ṽc,JAP

t as its local precoder
for cooperative MIMO transmission with other APs at time
slot t. Each AP c then communicates Vc

t together with the
local CSI Lc

t to the CC. We summarize AP c’s algorithm in
Algorithm 2.

Remark 5. The computational complexity of the precoder
updates in (8) and (11) for each AP c are dominated by
matrix multiplications, which are in the order of O(NK2)
and O(N cK2), respectively. In addition, instead of a total AP
transmit power limit, per-antenna transmit power constraints
at each AP c can also be incorporated into the local feasible
set Vc. In this case, we still have closed-form solutions similar
to (8) and (11) with the projection operator now onto the new
feasible set Vc.

V. PERFORMANCE BOUNDS

In this section, we present new techniques to derive the
performance bounds for SOPIP, to be able to account for the
multi-step gradient descent at both the CC and the APs with
estimated gradients, in the presence of multi-slot delay.

We first observe that the channel gain is always bounded in
practice, i.e., there exists some constant B > 0, such that

‖Ht‖ ≤ B, ∀t. (12)

In the following lemma, we show that P1 satisfies several
properties that are used in the subsequence analysis: 1) The ob-
jective function ft(V) is strongly convex; 2) ft(V) is smooth;
3) The impact of the compact convex set V is bounded; 4)
The gradient of the objective function ∇ft(V) , ∂ft(V)

∂V∗ is
bounded. The proofs are omitted for brevity.

Lemma 1. Assume the bounded channel gain as in (12). Then,
the following statements hold for any U,V ∈ V and any t:

ft(U)≥ft(V)+〈∇ft(V),U−V〉F +
μ

2
‖U−V‖2

F , (13)



ft(U)≤ft(V)+〈∇ft(V),U−V〉F +
L

2
‖U−V‖2

F , (14)

‖U − V‖F ≤ R, (15)

‖∇ft(V)‖F ≤ D (16)

where 〈A,B〉F , 2<{tr{AHB}}, μ = 2, L = B, R =

2
√∑C

c=1 P c
max, and D = BR.

We also require the following lemma from [26, Lemma 2.8].

Lemma 2. (Lemma 2.8, [26]) Let X ∈ Rn be a nonempty
convex set. Let h(x) : Rn → R be a %-strongly con-
vex function over X with respect to a norm ‖ ∙ ‖. Let
y = arg minx∈X {h(x)}. Then, for any z ∈ X , we have
h(y) ≤ h(z) − %

2‖z − y‖2.

To proceed with our analysis, we first need to quantify
the impact of one-step estimated gradient descent in terms
of the gradient estimation error. This is given in the following
lemma. Here, for notation simplicity, we denote by ∇̂ft(V)
a global gradient estimation function with respect to the
accurate global gradient ∇ft(V), which provides an upper
bound on the estimation error for the local gradient estimation
schemes in (7) and (10). The proof of this lemma utilizes the
results in Lemma 2 and the properties of strong convexity
and smoothness while considering the impact of inaccurate
gradient. It is omitted due to space limitation.

Lemma 3. Let U = PV{V− 1
α∇̂ft(V)}. If we choose α ≥ L,

for any γ ∈ (0, 2μ), we have

‖U−Wt‖
2
F ≤ η‖V−Wt‖

2
F + β‖∇ft(V)−∇̂ft(V)‖2

F (17)

where η = α−ν
α+ν−γ < 1 and β = 1

γ(α+ν−γ) .

Next, we examine the impact of multi-step gradient descent
on the dynamic regret bound of SOPIP, in the presence of
both gradient estimation error and multi-slot delay. To this
end, we need to quantify the accumulated variations of the
underlying time-varying system. We define the accumulated
variation of the globally optimal solution {Wt}T

T=1, which is
also referred to as the path-length in the OCO literature [35],
as ΠT ,

∑T
t=1 ‖Wt − Wt−1‖F . Another important varia-

tion measure is the squared path-length, defined as Π2,T ,∑T
t=1 ‖Wt − Wt−1‖2

F . Note that Π2,T is often smaller than
ΠT in terms of the growth order [39].6 Further variation
measures are required when we use estimated gradients. To
this end, we define the accumulated gradient error as ΔT ,∑T

t=1 maxV∈V ‖∇ft(V) − ∇̂ft(V)‖F , and the accumulated
squared gradient error as Δ2,T ,

∑T
t=1 maxV∈V ‖∇ft(V)−

∇̂ft(V)‖2
F .

Remark 6. The precoders designed at the CC are based on
the information at time slot t−u and arrive at the APs at time
slot t+d. One can easily verify that only the round-trip delay

6For instance ‖Wt − Wt−1‖F ∝ T κ for any t, then ΠT = O(T 1+κ)
and Π2,T = O(T 1+2κ). For a sublinear ΠT or Π2,T , we have κ < 0 and
therefore Π2,T is smaller than ΠT in terms of the growth rate. Particularly,

if κ = − 1
2

, we have Π2,T = O(1) and ΠT = O(T
1
2 ).

u+d determines the timeliness of the precoders received at the
APs. Therefore, in the following, with out loss of generality,
we can equivalently consider the case of τ -slot uplink delay,
where τ = u + d, and zero downlink delay.

Based on Lemmas 1-3, for any number of total gradient
descent steps JAP + JCC ≥ 1, we provide an upper bound on
the dynamic regret REd

T of SOPIP in the following theorem.

Theorem 4. For JAP + JCC ≥ 1, if we choose α ≥ L, the
dynamic regret yielded by SOPIP is bounded for any γ ∈
(0, 2μ) as follows:

REd
T ≤2τDR+

2D

1−
√

ηJAP+JCC

(

τR +τΠT +
2
√

β

1−
√

η
ΔT

)

.(18)

Proof: We have

REd
T =

T∑

t=1

ft(Vt)−ft(Wt)
(a)

≤2
T∑

t=1

‖∇ft(Vt)‖F ‖Vt−Wt‖F

(b)

≤ 2τDR + 2D

T∑

t=τ+1

‖Vt − Wt‖F (19)

where (a) follows from the convexity of ft(V) and
〈A,B〉F ≤ 2| tr{AHB}| ≤ 2‖A‖F ‖B‖F , and (b) follows
from the feasible set V and the gradient ∇ft(V) being
bounded in (15) and (16), respectively.

We now bound the right-hand side (RHS) of (19). We have

T∑

t=τ+1

‖Vt−Wt‖F

(a)

≤
√

ηJAP

T∑

t=τ+1

‖V̂JCC
t −Wt‖F +

√
βΔT

1−
√

η
(20)

where (a) follows from applying Lemma 3 to (11) for
JAP times, ‖A‖2

F + ‖B‖2
F ≤ (‖A‖F + ‖B‖F )2 such that

‖Ṽj
t − Wt‖F ≤

√
η‖Ṽj−1

t − Wt‖F +
√

β‖∇ft(Ṽ
j−1
t ) −

∇̂ft(Ṽ
j−1
t )‖F , ∀j = 1, . . . , JAP, and the definition of ΔT .

We continue to bound the RHS of (20) as follows:

T∑

t=τ+1

‖V̂JCC
t −Wt‖F

(a)

≤
T∑

t=τ+1

‖V̂JCC
t −Wt−τ‖F +‖Wt−Wt−τ‖F

(b)

≤
√

ηJCC

T∑

t=τ+1

‖Vt−τ − Wt−τ‖F +

√
βΔT

1−
√

η
+ τΠT (21)

where (a) is because ‖A + B‖F ≤ ‖A‖F + ‖B‖F and (b)
follows from applying Lemma 3 to (8) for JCC times similar
to (a) in (20) and the definition of ΠT .

Substituting (21) into (20), and rearranging terms, we have

(
1−
√

ηJAP+JCC

) T∑

t=τ+1

‖Vt−Wt‖F −
√

ηJAP+JCC

τ∑

t=1

‖Vt−Wt‖F

≤
√

ηJAPτΠT +
(
√

ηJAP + 1)
√

β

1 − η
ΔT . (22)

Substituting (22) into (21) and noting that η < 1 and the
feasible set V being bounded in (15), we have (18).

The dynamic regret bound (18) in Theorem 4 improves as
the total number of gradient descent steps JAP+JCC increases.



When JAP + JCC is sufficiently large, we provide another
dynamic regret bound for SOPIP below.

Theorem 5. For JAP + JCC > logη( 1
2 ), if we choose α ≥ L,

the dynamic regret yielded by SOPIP is bounded for any γ ∈
(0, 2μ) as follows:

REd
T ≤

L

2(1−2ηJAP+JCC)

(

2τR2+2τ2Π2,T +
3β

1−η
Δ2,T

)

. (23)

Proof: We have

REd
T

(a)

≤
T∑

t=1

〈∇ft(Wt),Vt − Wt〉F +
L

2
‖Vt − Wt‖

2
F

(b)

≤
L

2
τR2 +

L

2

T∑

t=τ+1

‖Vt − Wt‖
2
F (24)

where (a) follows from the objective function ft(V) being
L-smooth in (14) and (b) is because ∇ft(Wt) = 0 and the
feasible set V is bounded in (15).

We now bound the RHS of (24). We have
T∑

t=τ+1

‖Vt − Wt‖
2
F

(a)

≤
T∑

t=τ+1

ηJAP‖V̂JCC
t − Wt‖

2
F +

βΔ2,T

1−η
(25)

where (a) follows from applying Lemma 3 to (11) for JAP

times such that ‖Vt − Wt‖2
F ≤ ηJAP‖V̂JCC

t − Wt‖2
F +

β
∑JAP

i=1 ηi−1‖∇̂ft(Ṽ
JAP−i
t )−∇ft(Ṽ

JAP−i
t )‖2

F and the defini-
tion of Δ2,T .

We continue to bound the RHS of (25) as follows:
T∑

t=τ+1

‖V̂JCC
t −Wt‖

2
F

(a)

≤2
T∑

t=τ+1

‖V̂JCC
t −Wt−τ‖

2
F +‖Wt−Wt−τ‖

2
F

(b)

≤ 2
T∑

t=τ+1

‖V̂JCC
t − Wt−τ‖

2
F + 2τ2Π2,T

(c)

≤ 2
T∑

t=τ+1

ηJCC‖Vt−τ−Wt−τ‖
2
F +

2βΔ2,T

1 − η
+2τ2Π2,T (26)

where (a) is because ‖A + B‖2
F ≤ 2(‖A‖2

F + ‖B‖2
F ),

(b) follows from ‖Wt − Wt−τ‖2
F ≤ τ

∑τ
i=1 ‖Wt−τ+i −

Wt−τ+i−1‖2
F and the definition of Π2,T , and (c) follows from

applying Lemma 3 to (8) for JCC times similar to (a) in (25).
Substituting (26) into (25) and rearranging terms, we have

(
1−2ηJAP+JCC

) T∑

t=τ+1

‖Vt−Wt‖
2
F −2ηJAP+JCC

τ∑

t=1

‖Vt−Wt‖
2
F

≤ 2ηJAPτ2Π2,T +
(2ηJAP + 1)β

1 − η
Δ2,T . (27)

Substituting (27) into (24), noting that η < 1 and the
radius of V being bounded in (15), and on the condition that
2ηJAP+JCC < 1, we have (23)

From Theorems 4 and 5, we directly conclude the following
growth rate of the dynamic regret of SOPIP.

Corollary 6. For JAP + JCC ≥ 1, we have

REd
T = O(max{τΠT , ΔT }). (28)

For JAP + JCC > logη( 1
2 ), we have

REd
T =O

(
min

{
max{τΠT , ΔT }, max{τ2Π2,T , Δ2,T }

})
. (29)

Note that the feedback delay is always bounded by some
constant in practice, i.e., τ = O(1). Thus, from Corollary 6, a
sufficient condition for SOPIP to yield sublinear dynamic re-
gret is either max{ΠT , ΔT } = o(T ) or max{Π2,T , Δ2,T } =
o(T ), i.e., the variation measures grow sublinearly over time.
Achieving sublinear dynamic regret is an interesting scenario,
since it implies that the time-averaged precoding deviation
converges to zero as T goes to infinity.

Remark 7. Sublinearity of the variation measures is necessary
to have sublinear dynamic regret for a system with delayed
system information [42]. This can be seen from the dynamic
regret bounds derived in the OCO literature [35]-[41]. In
systems that stabilize over time, leading to sublinear variation
measures, we have sublinear dynamic regret.

Remark 8. The semi-online joint global and local gradient de-
scent structure of SOPIP may be viewed as a generalization of
several existing studies on generic OCO with strongly convex
and smooth objective functions [38]-[40]. All of these works
consider only centralized gradient descent, and they are limited
to one-slot information delay. With one-step and multi-step
gradient descent algorithms, O(ΠT ) and O(min{ΠT , Π2,T })
dynamic regrets were achieved in [38] and [39], respectively,
while [40] showed that O (max{ΠT , ΔT }) dynamic regret
can be achieved with one-step gradient descent using inexact
gradients. It is easy to see that these regret bounds are special
cases of the ones yielded by SOPIP in (28) and (29).

Remark 9. Our proposed algorithm and performance analysis
can be extended to accommodate the following concerns in
practical systems. 1) If the APs experience different delays,
the CC can synchronize the transmissions of the APs based
on the maximum delay. 2) If accurate CSI is not available,
the APs can use inaccurate CSI instead. It has impact on both
the local and global gradient estimation accuracy. 3) When
there is local delay, the APs can use the delayed local CSI. Its
impact on algorithm performance can be analyzed similarly to
the case of delayed global CSI at the CC.

VI. SIMULATION RESULTS

In this section, we present simulation studies under typical
cellular system settings. We study the impacts of various sys-
tem parameters on the convergence and performance of SOPIP.
We numerically demonstrate the performance advantage of
SOPIP over other centralized and distributed alternatives.

A. Simulation Setup

We consider an urban micro-cell of radius 500 m, with C =
3 equally separated APs. Each AP c is equipped with N c = 16
antennas by default. We consider 5 co-located users at the mid-
point between every two adjacent APs, for a total of K = 15
users in the network by default.

Following the typical cellular system settings [43], we con-
sider transmission over one subcarrier of bandwidth BW = 15
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Fig. 2. f̄(T ) and R̄(T ) vs. T with JAP = 1 and different JCC values.

kHz and set one time slot to one symbol duration 1
BW

=
66.7 μs. We set the maximum transmit power limit P c

max =
30 dBm for all c. The receiver thermal noise power spectral
density is N0 = −174 dBm/Hz and noise figure is NF = 10
dB. We model the fading channel over time as a first-order
Gauss-Markov process [44] hc,k

t+1 = αhh
c,k
t + zc,k

t between
AP c and user k, where αh ∈ [0, 1] is the channel correlation
coefficient, hc,k

t ∼ CN (0, βc,kI) with βc,k representing the
large-scale fading variation consisting of the path-loss and
shadowing, and zc,k

t ∼ CN (0, (1 − α2
h)βc,kI) is independent

of hc,k
t . We model βc,k[dB] = −31.54−33 log10(d

c,k)−ψc,k

[43], where dc,k is the distance from AP c to user k, and
ψc,k ∼ CN (0, σ2

φ) is the shadowing effect that is used to
model the variation of user positions with σ2

φ = 8 dB. We
set αh = 0.998 as default, which corresponds to user speed
1 km/h. We emphasize here that the Gauss-Markov channel
model is used for illustration only. SOPIP can be applied to
any arbitrary wireless environment, and neither the CC nor the
APs needs to know the channel statistics.

We assume each AP c communicates the exact local CSI
Hc

t to the CC, since the impact of compression error can
be emulated by increasing the communication delay τ un-
der the Gauss-Markov channel model. We assume the CC
adopts cooperative ZF precoding as its desired coopera-
tive precoder WZF

t =
√

P ZF
t HH

t (HtHH
t )−1, where P ZF

t =
minc∈{1,...,C}{

P c
max

‖HcH
t (HtHH

t )−1‖2
F

} maximizes the sum rate

subject to per-AP transmit power limits [45].7

To measure the performance, we define the time-
averaged normalized precoding deviation as f̄(T ) ,

7We assume the K users have the same noise power σ2
n = NF + N0BW

and therefore all users will have the same rate log2(1+
P ZF

t
σ2

n
) by using WZF

t .
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Fig. 3. f̄(T ) and R̄(T ) vs. T with JCC = 8 and different JAP values.

1
T

∑T
t=1

ft(Vt)
‖HtWZF

t ‖2
F

, and the time-averaged per-user rate as

R̄(T ) , 1
TK

∑T
t=1

∑K
k=1 log2(1 + SINRk

t ), where SINRk
t =

|[HtVt]k,k|
2

∑
j 6=k |[HtVt]k,j |2+σ2

n
is the signal-to-interference-plus-noise-

ratio (SINR) of user k at time slot t with [A]i,j being the
(i, j) element of matrix A.

B. Impact of Number of Precoder Update Steps

Fig. 2 and Fig. 3 show f̄(T ) and R̄(T ) yielded by SOPIP
versus T for different numbers of the precoder update steps
JCC at the CC and JAP at the APs, respectively. We set the
communication delay as one time slot. We observe that SOPIP
converges fast (within T = 100 time slots). Furthermore,
the system performance improves as JCC or JAP increases,
showing the performance gain brought by performing multi-
step precoder updates with our proposed gradient estimation
schemes at either the CC or the APs. As shown in Fig. 2, the
system performance almost stabilizes when JCC = 8. Further
considering the fact that the APs usually have less computation
capacity than the CC, we set JCC = 8 and JAP = 4 as default
parameters in the simulation results presented below.

C. Performance Comparison

For comparison, we consider the following schemes.

• Delayed Optimal: The CC collects the global CSI from
all APs, computes the optimal cooperative precoder, and
sends it to all APs. However, due to communication delay,
the APs actually execute the delayed precoder WZF

t−τ that
can be received from the CC at each time slot t.

• Centralized OCO: We run Algorithm 1 at the CC with
different numbers of cooperative precoder updates, which
can be viewed as the centralized OCO approach. Each
AP c executes the precoder V̂c,JCC

t (generated based on



1 2 4 8 12 16 24 32
0

20

40

60

80

(a) f̄ vs. τ .

1 2 4 8 12 16 24 32

2

3

4

5

6

7

8

(b) R̄ vs. τ .

Fig. 4. Performance comparison on f̄ and R̄ vs. τ (one time slot is 66.67 μs).

the delayed global CSI Ht−τ ) that can be received from
the CC at each time slot t, without performing any local
precoder update.

• Local CSI (LCSIDynamic User Association (UA): We
consider the following distributed precoding scheme.
Each user k selects the AP that has the highest channel
gain for downlink signal transmission at each time slot
t based on the local CSI Hc

t . Let the number of users
associated with AP c be Kc

t . Let H̄c
t ∈ CKc

t ×Nc

denote
the available channel state between the Kc

t users and AP
c. Each AP c adopts ZF precoding to serve the Kc

t users at
each time slot t, given by V̄c

t =
√

P̄ c
t H̄cH

t (H̄c
tH̄

cH
t )−1,

where P̄ c
t is set such that ‖V̄c

t‖
2
F = P c

max.
• LCSI Fixed UA: This is a more realistic alternative to

LCSI Dynamic UA. Each user k selects the AP that has
the lowest path loss. The user association does not change
during our simulation. The APs operate in the same way
as under LCSI Dynamic UA.

Fig. 4 shows the performance comparison between SOPIP
and the alternative schemes of the steady state value of f̄(T )
and R̄(T ) versus the communication delay τ . Note that f̄ is
relevant only to SOPIP and Centralized OCO. For a wide range
of τ values, SOPIP outperforms the distributed alternatives
Dynamic UA and Fixed UA. This demonstrates that even with
a large communication delay, utilizing a CC is beneficial to
improve the performance. Furthermore, SOPIP outperforms
the centralized alternatives Delay Optimal and Centralized
OCO, which demonstrates the importance of performing local
precoder updates at the APs. Overall, we observe that, by fully
taking advantage of the timely local CSI and delayed global
CSI for precoder updates at both the APs and CC, SOPIP
substantially outperforms the other centralized or distributed
alternatives over a wide range of delay scenarios.
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Fig. 5. Impacts of Nc and K on R̄ with τ = 4.

We further study the impacts of the numbers of antennas
N c and users K on the performance of SOPIP with τ = 4.
Fig. 5a shows that the steady-state per-user rate R̄ increases
as the number of antennas N c increases. This is because the
APs have more degrees of freedom to design their cooperative
precoding. The steady-state per-user rate R̄ dramatically im-
proves as N c increases, indicating the performance advantage
of massive MIMO. Fig. 5b shows that R̄ decreases as K
increases, due to the increased inter-user interference. We
observe that SOPIP substantially outperforms Delay Optimal
when the number of users is close to the number of antennas.
Furthermore, in a wide range of N c and K values, SOPIP
yields the best performance among all alternatives.

VII. CONCLUSIONS

We have studied cooperative precoding design in a MIMO
network, where multiple APs jointly transmit signals to serve
all the users with the assistance of a CC over non-ideal
backhaul. We propose an efficient SOPIP algorithm to mini-
mize the accumulated precoding deviation between the actual
and desired cooperative precoders, subject to per-AP transmit
power limits. SOPIP allows both timely local precoder updates
at the APs and delayed cooperative precoder updates at the CC,
by effectively parsing the channel and precoder information.
Furthermore, SOPIP allows multi-step precoder updates at
both the APs and the CC via gradient descent to fully utilize
their available computational resource. Our performance anal-
ysis considers the impacts of the multi-step gradient descent
at both the CC and the APs, in the presence of both gradient
estimation error and multi-slot delay, to derive bounds on the
optimality gap. Our simulation results demonstrate the superior
delay tolerance and substantial advantage of SOPIP over other
centralized and distributed alternatives under a wide rage of
scenarios.
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