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Abstract—We consider wireless network virtualization (WNV)
in the uplink of a coordinated multi-cell system, where multiple
service providers (SPs) operate in virtually isolated networks
managed by an infrastructure provider (InP). The InP provides
service isolation among the SPs by exploiting the spatial structure
in MIMO communication. We jointly optimize the uplink receive
beamforming at the base stations (BSs) and the transmit power
of the SPs’ subscribing users, by alternating between two sub-
problems that both admit efficient closed-form solutions. We then
propose a distributed implementation that solves each subprob-
lem among the BSs without the need for a central controller.
We show that the distributed approach requires significantly
less communication overhead compared with the centralized
one, especially when the system is not overloaded. Our simu-
lation results under typical wireless networking environments
demonstrate that the proposed solution enables effective network
virtualization, to support the independent operation of multiple
SPs over multiple cells, without losing communication efficiency
compared with non-virtualized network operation. Furthermore,
it substantially outperforms traditional WNV based on strict
resource separation, especially for systems with a large number
of antennas or a large number of SPs.

I. INTRODUCTION

Wireless communication service providers (SPs) face sub-
stantial hurdles to market entry owing to high initial capital
expenses and deployment costs. Traditionally, a new SP needs
to build new and full infrastructure that consists of a large
number of base stations (BSs) to provide wide coverage,
capacity, and performance that are similar to those provided
by existing SPs. Building such infrastructure requires large
capital. To address this issue, wireless network virtualization
(WNV) has been put forward as a framework for different SPs
to share the network’s physical resources.

A WNV system consists of the SPs and an infrastructure
provider (InP) that owns and manages the network’s physical
resources and splits them into virtual slices. These virtual
slices are leased to the SPs, which in turn utilize them to
provide services to their subscribing users. An SP demands
services from the InP without needing knowledge of the
existence of the other SPs. Although multiple SPs share the
same infrastructure, none of them is expected to consider inter-
SP interference in their design for the demands. Thus, it is the
job of the InP to provide service isolation, i.e., to satisfy the
demands of each SP without affecting the other SPs.
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Although virtualization has been well studied for wired
networks [1]–[5], WNV is more complicated, with the need
to share both the hardware and the radio spectrum, and with
new challenges arising in guaranteeing service isolation under
wireless interference [6]. To achieve service isolation among
the SPs in a wireless network, most existing works propose
strict separation of the physical resources, an approach rooted
in the traditional solution for wired network virtualization.
This strict separation could be in the form of dividing the
time, frequency spectrum, resource blocks, or antennas among
different SPs [7]–[12]. However, strict separation lacks flexi-
bility and can lead to inefficient resource utilization and severe
loss of system throughput. Other works proposed non-strict
resource separation between the SPs, so that they can cause
interference to one another. This interference was ignored in
[13] and [14], while non-orthogonal multiple access (NOMA)
was used in [15]–[17] to handle the interference between users.
None of the techniques in [13]–[17] allow the SPs to tailor
their service demands for individual users, so they do not
achieve full virtualization.

It was first proposed in [18] to provide service isolation
among the SPs using multiple-input multiple-output (MIMO)
signal processing techniques while they share all physical
resources of a base station. Beamforming was used also in
[19] and [20] to provide service isolation among the users of
different SPs, by minimizing the expected deviation between
the InP’s supply and the SPs’ demands, in offline and online
setups, respectively. All these papers considered the virtualiza-
tion of the wireless downlink. However, the problem of uplink
WNV is equally important.

The beamforming solutions developed in [18]–[20] cannot
be applied to the uplink. Furthermore, to achieve service isola-
tion in the uplink we need to additionally manage the transmit
powers of the users, to effectively reduce their interference
with each other. The authors of [21] studied uplink WNV
with beamforming in a single cell, and they further showed
that fully-cooperative multi-cell WNV is a direct extension of
their single-cell solution. However, a fully-cooperative multi-
cell system requires that all mobile users communicate with all
BSs, which can incur prohibitive communication and control
overhead [22], [23].

Therefore, in this work, we consider a more practical
multi-cell scheme where the BSs use coordinated multi-
cell communication [22]–[25]. In such a scheme, inter-cell



interference can be a determining factor on the performance
of the communication system. Hence, we propose new designs
for the coordinated multi-cell WVN framework where inter-
cell interference, both among users of the same SP and
among users of different SPs, is implicitly accounted for and
suppressed. We jointly design the uplink receive beamforming
vectors of each BS and the transmit power of user devices, for
the InP to supply the signals demanded by the SPs while sup-
pressing the inter-SP interference and inter-cell interference.
The contributions of this paper are summarized below:

• We formulate the above uplink coordinated multi-cell
MIMO WNV as a joint beamforming and power control
optimization problem, to minimize the system-wide de-
viation between the SPs’ demanded received signals and
the actual received signals supplied by the InP. Our for-
mulation allows all SPs to simultaneously enjoy the full
physical resources available at the InP while providing
them with the required service isolation. (Section II)

• Observing that the formulated joint optimization problem
is biconvex, we solve it by first decomposing it into two
subproblems, one for the receive beamforming and the
other for the transmit power of users. We derive closed-
form solutions to both subproblems. Then, a solution to
the joint optimization problem is obtained via alternating
optimization, which guarantees convergence to a partial
optimum. (Section III)

• We further propose a distributed approach to implement
the proposed solution without any central controller.
This is achieved by decomposing the original problem
into cell-separable subproblems, in two different forms,
for beamforming and for power control. The proposed
distributed implementation provides a solution equivalent
to the centralized approach, yet with much lower com-
munication overhead. (Section IV)

• Our simulation results indicate that the proposed virtu-
alization solution provides per-user data rate similar to
that of a multi-cell system without virtualization, while
providing strong service isolation among the SPs. It
also substantially outperforms the traditional virtualiza-
tion scheme of strictly separating the physical resources
among the SPs. (Section V)

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Uplink Coordinated Multi-Cell WNV

We study multi-cell uplink communication in WNV with
M SPs. The BSs are governed by an InP that performs
virtualization of the system, i.e., slicing the system into M
virtual networks, each for an SP. The main objective of
virtualization is service isolation as defined in Section I.

Without loss of generality, we focus on any one multiple-
access channel that is shared among all SPs. Suppose that SP
m serves Km single-antenna users in this shared channel. Let
Ktot =

∑M
m=1 Km be the total number of users. We consider

C cells where this channel is in use. Each cell has one BS,
and the InP has control over all BSs. We further assume that

BS c has Nc antennas. Let Kc be the number of users in cell
c, and Kc,m of them are subscribing to SP m. Then Ktot =∑C

c=1 Kc =
∑C

c=1

∑M
m=1 Kc,m.

Each SP assembles certain demands to be fulfilled by
the InP, so that its subscribing users achieve some desired
performance, e.g., maximum sum-rate or fairness. The SPs
design their demands in ignorance of each other, and thus, it is
the responsibility of the InP to supply the requested demands
of all SPs while managing the wireless interference among
them, i.e., providing service isolation. More precisely, each
SP m requests that the InP uses a set of beamforming vectors
wc,m,i ∈ CNc×1, ∀i ∈ {1, · · · ,Kc,m} to decode the messages
of its users in cell c, and that its users transmit their sig-
nals with powers pc,m =

[
pc,m,1, pc,m,2, · · · , pc,m,Kc,m

]T ∈
RKc,m . We further assume that the SPs design their demands
in a distributed fashion, i.e., each SP designs its demands in
cell c without considering the interference coming from its
own users in other cells. The inter-cell interference is left for
the InP to handle.

Under the control of the InP, the BSs cooperate to better
mitigate the interference between cells. We assume that the
cooperation between BSs is limited to sharing only their
channel state information (CSI), beamforming vectors, and
their users’ transmit powers. Thus, unlike fully-cooperative
multi-cell systems that require extremely high levels of control
and communication overhead [22], [23], here the BSs do not
cooperate in decoding each other’s users’ signals. Moreover,
the BSs treat out-of-cell signals as interference that cannot
be exploited and needs to be mitigated. This corresponds to
the coordinated multi-cell communication scheme in standard
wireless networks [22]–[25].

In the following, we define the desired and actual received
signals of all users, comprising the demands of the SPs and
the supply of the InP.

1) SPs’ Demands: Let xc,m =

[xc,m,1, xc,m,2, · · · , xc,m,Km ]
T ∈ CKc,m be the transmitted

symbol vector of the users of SP m in cell c. Without loss of
generality, we set E

{
xc,m

}
= 0 and E

{
xc,mxH

c,m

}
= IKc,m .

From SP m’s perspective, it desires that the received signal
vector at the BS of cell c is

ydesired
c,m =

Km∑
j=1

hcc,m,j
√
pc,m,jxc,m,j + nc

= Hcc,mdiag(q̄c,m)xc,m + nc, (1)

where q̄c,m =
[√

pc,m,1, · · · ,
√
pc,m,Km

]T ∈ RKc,m is the
signal amplitude vector set by SP m for its users in cell c,
Hcc,m =

[
hcc,m,1,hcc,m,2, · · · ,hcc,m,Kc,m

]
∈ CNc×Kc,m is

the channel matrix from the users of SP m that are located
in cell c to the different antenna elements of the BS in cell c,
and nc ∼ CN (0, σ2

nINc
) is the additive noise at the antennas

of BS c. Note that the received signals at BS c in (1) only
accounts for the signals of those users in cell c, meaning that
the SP does not need to know what occurs outside of cell



c. Then, by the design of SP m, the decoded received signal
vector of all users in cell c subscribed to SP m is given by

x̂desired
c,m = Wc,mydesired

c,m

= Wc,mHcc,mdiag(q̄c,m)xc,m +Wc,mnc, (2)

where Wc,m =
[
wc,m,1,wc,m,2, · · · ,wc,m,Kc,m

]T ∈
CKc,m×Nc is the desired beamforming matrix designed by SP
m to be used at BS c in order to decode the messages of its
users in that cell.

Considering all M SPs, the desired decoded received signal
vector from all SPs in cell c is given by

x̂desired
c = Dcdiag(q̄c)xc +Wcnc, (3)

where xc = [xT
c,1, · · · ,xT

c,M ]T ∈ CKc is the
transmitted symbol vector of users in cell c,
q̄c = [q̄T

c,1, · · · , q̄T
c,M ]T ∈ RKc denotes their transmitted

signal amplitudes, Dc is a block diagonal matrix representing
the virtualization demands in cell c and is given by
Dc = blkdiag {Wc,1Hcc,1, · · · ,Wc,MHcc,M}, and
Wc = [WT

c,1, · · · ,WT
c,M ]T is a stacking of the beamforming

matrices designed by all SPs in cell c. By stacking (3) over
all C cells, we can finally write the desired decoded received
signal from all users in the system as

x̂desired = Ddiag(q̄)x+Wn, (4)

where D = blkdiag {D1, · · · ,DC}, q̄ = [q̄T
1 , q̄

T
2 , · · · , q̄T

C ]
T ,

x = [xT
1 , · · · ,xT

C ]
T , W = blkdiag {W1,W2, · · · ,WC}, and

n = [nT
1 , · · · ,nT

C ]
T .

The desired signal in (4), designed by the SPs, does not
account for the interference between SPs, i.e., intra-cell inter-
SP interference, or the interference across cells. These types
of interference occur due to the fact that all SPs use the same
time-frequency resources, while they are being oblivious to
one another. Therefore, the desired signal is unrealistic and
cannot be directly achieved. In WNV, it is the job of the InP
to utilize its physical resources to approximate the desired
signal as best as it can.

2) InP’s Supply: The InP makes the actual beamforming
design and chooses the user transmit powers to achieve its
goal of satisfying those demands.

In coordinated multi-cell communication, each BS receives
signals from all users. Thus, the actual received signal vector
at the BS of cell c is given by

yactual
c = Hcdiag(q)x+ nc, (5)

where Hc = [H1c,H2c, · · · ,HCc] ∈ CNc×K , and Hlc =
[Hlc,1,Hlc,2, · · · ,Hlc,M ] ∈ CNc×Kl is the channel matrix
between the users in cell l and the BS in cell c, and q is
the signal amplitude vector set by the InP for all users. BS c
applies a set of beamforming vectors to decode the messages
of its users in cell c only. Thus, the actual decoded received
signal vector at BS c is given by

x̂actual
c = Vcy

actual
c = VcHcdiag(q)x+Vcnc, (6)

where Vc ∈ CKc×Nc is the actual beamforming matrix
designed by the InP for the BS of cell c to decode the
messages of the users in the cell. If we let x̂actual =
[x̂actualT

1 , · · · , x̂actualT
C ]T be the actual decoded received signal

vector of all cells, we can write it as

x̂actual = blkdiag {V1,V2, · · · ,VC} (Hdiag(q)x+ n) (7)
= V (Hdiag(q)x+ n) , (8)

where H = [HT
1 ,H

T
2 , · · · ,HT

C ]
T ∈ C

∑
c Nc×K is the over-

all channel matrix from all users to all BSs, and V =
blkdiag {V1,V2, · · · ,VC} is a block-diagonal beamforming
matrix. It is worth to point out that the form of the supply
above does not depend on M , the number of SPs the InP
serves.

Although the InP provides services directly to the users,
these services should be based on the demands of the SPs of
those users. That is, the InP designs the beamforming matrices
{Vc}Cc=1 and the user transmit power vector q based on what
the different SPs demand for their users. This is expressed in
the problem formulation below.

B. WNV Problem Formulation

As an inherent characteristic of WNV, the InP aims to
supply the demands requested by the different SPs, which may
be based on some prior agreements between the InP and the
SPs. The demands, as described in (4), are fully characterized
by the receive beamforming matrices and user transmit powers,
i.e., Wm and q̄m ∀m. Noting that the form in (4) represents
perfect isolation between SPs since no interference is present,
it is a logical choice for the InP to aim at making x̂actual as
close to x̂desired as possible. We consider the expected l2-norm
deviation as a metric to measure how far the two vectors are
from each other, which is given by

f(V,q) = E
{∥∥x̂actual − x̂desired

∥∥2
2

}
, (9)

where the expectation is taken over x and n.
Thus, the InP aims to solve the following optimization

problem:

min
V,q

f(V,q) (10a)

s.t. V is block diagonal, (10b)
0 ≼ q ≼ qmax. (10c)

As seen above, the InP jointly optimizes the beamforming
matrix and the transmit powers to minimize the expected
deviation. The constraint in (10b) imposes the block diagonal
structure on V, and the power constraint in (10c) gives the
InP the permission to use any power value below the users’
maximum available power. We remark that another practically
meaningful variation of this constraint is to prevent the InP
from assigning powers that are greater than the requested
powers, which can be reflected by replacing constraint (10c)
with 0 ≼ q ≼ q̄. The solutions in Sections III and IV can be
easily modified to facilitate this case.



Next, we first consider a simpler centralized solution, i.e., all
BSs are connected to a central controller (CC) and all decisions
and design parameters are computed at the CC before they
are sent back to the BSs for implementation. Later in Section
IV, we propose distributed implementation that removes the
need for the CC and achieves the same solution with lower
communication overhead.

III. PROPOSED SOLUTION FOR UPLINK COORDINATED
MULTI-CELL WNV

The first step into tackling problem (10) is to simplify the
deviation expression in the objective. We have

f(V,q) = E
{∥∥x̂actual − x̂desired

∥∥2
2

}
= E

{∥∥∥(VHdiag(q)−Ddiag(q̄))x+ (V −W)n
∥∥∥2
2

}
= ∥VHdiag(q)−Ddiag(q̄)∥2F + σ2

n ∥V −W∥2F , (11)

where the last line is obtained using the properties ∥a∥22 =

aHa = tr
(
aHa

)
, ∥A∥2F = tr

(
AAH

)
, and E{tr (·)} =

tr (E{·}). Due to the multiplication operation in the first term
in (11), problem (10) is non-convex in the decision variables V
and q, so it cannot be solved via regular convex optimization
techniques. However, this problem is biconvex [26], i.e., it is
convex in V and q but not jointly in both.

Therefore, our approach to solving problem (10) is by
decomposing it into a beamforming subproblem to optimize
V and a power control subproblem to optimize q. In the
following subsections, we show that there is a closed-form
solution to each of them. Then, we use an alternating opti-
mization approach to find a partial optimum of the original
joint optimization problem.

A. Beamforming Subproblem

Here, we treat q in problem (10) as a constant and find
the optimal beamforming matrix V⋆ by solving the following
beamforming subproblem:

min
V
∥VHdiag(q)−Ddiag(q̄)∥2F + σ2

n ∥V −W∥2F (12a)

s.t. V is block diagonal. (12b)

The block-diagonal structure of V makes it difficult to
deal with (12) as it is. Hence, we rewrite this problem by
incorporating the constraint (12b) into the objective

f(V,q) =

C∑
c=1

(
∥VcHccdiag(qc)−Dcdiag(q̄c)∥2F

+

C∑
l ̸=c

∥VcHlcdiag(ql)∥2F + σ2
n ∥Vc −Wc∥2F

)
. (13)

The first term in (13) represents the noise-free deviation
between the supply and demand in cell c, which, combined
with the third term, gives the exact local deviation in cell c
assuming the cell is isolated. This is identical to the single-cell
case [21], except that here we are summing over all the cells.

The second term quantifies the interference received by the
BS in cell c from out-of-cell users. This quantity is sometimes
called the signal leakage, since it represents unwanted signals
that are leaked into cell c from other cells.

We can interpret the signal leakage in (13) as a supply to
no demand, and hence (13) can be further simplified as

f(V,q) =

C∑
c=1

∥∥VcHcdiag(q)−Dcdiag(q̄)
∥∥2
F

+ σ2
n ∥Vc −Wc∥2F , (14)

where Dc = [0Kc×
∑c−1

j=1 Kj
,Dc,0Kc×

∑C
j=c+1 Kj

], and 0A×B

is a zero-valued matrix of size A × B. The form in (14)
indicates that the expected deviation in the system is the
sum of the individual deviations of its constituent cells. Thus,
we have converted problem (12) to an unconstrained convex
problem with a differentiable objective function in (14). A
unique minimum can be found by finding the values of
{Vc}Cc=1 that make the gradient of the objective equal to zero.

Let Q = diag(q), and Q̄ = diag(q̄). We start by writing the
Frobenius norms in f(V,q) as traces to make the objective
easier to differentiate:

f(V,q) =

C∑
c=1

{
tr
(
VcHcQQHHH

c VH
c

)
− tr

(
DcQ̄QHHH

c VH
c

)
− tr

(
VcHcQQ̄HD

H

c

)
+ tr

(
DcQ̄Q̄HD

H

c

)
+ σ2

n

(
tr
(
VcV

H
c

)
− tr

(
WcV

H
c

)
− tr

(
VcW

H
c

)
+ tr

(
WcW

H
c

))}
.

Differentiating f(V,q) with respect to V†
c , the complex

conjugate of Vc, gives

∂f(V,q)

∂V†
c

= VcHcQQHHH
c −DcQ̄QHHH

c

+ σ2
nVc − σ2

nWc,

where we have used trace differentiation rules [27]. Since the
matrix

(
HcQQHHH

c + σ2
nI
)

is positive definite, we solve
∂f(V,q)

∂V†
c

= 0 and obtain a closed-form expression for V⋆
c :

V⋆
c =

(
DcQ̄QHHH

c + σ2
nWc

) (
HcQQHHH

c + σ2
nI
)−1

=
(
DcQ̄cQ

H
c HH

cc + σ2
nWc

) (
HcQQHHH

c + σ2
nI
)−1

.
(15)

B. Power Control Subproblem
In this part, we treat V in problem (10) as a constant

and find the optimal user transmit powers q⋆ by solving the
following power control subproblem:

min
q
∥VHdiag(q)−Ddiag(q̄)∥2F + σ2

n ∥V −W∥2F (16a)

s.t. 0 ≼ q ≼ qmax. (16b)

This is a constrained convex optimization problem with a
differentiable objective. Strong duality holds since Slater’s
condition is trivially satisfied.



We solve this problem by studying the KKT conditions [28].
To do so, we start by letting A = VH. Now, the objective
can be written as f(V,q) = ∥Adiag(q)−Ddiag(q̄)∥2F +

σ2
n ∥V −W∥2F . The Lagrangian of this problem is

L(q,λ,µ) = ∥Adiag(q)−Ddiag(q̄)∥2F + σ2
n ∥V −W∥2F

+ λT (q− qmax)− µTq

=

K∑
j=1

q2ja
H
j aj −

K∑
j=1

q̄jqjd
H
j aj −

K∑
j=1

q̄jqja
H
j dj

+ C + λT (q− qmax)− µTq, (17)

where aj and dj are respectively the jth columns of A and
D, C =

∑K
j=1 q̄

2
jd

H
j dj + σ2

n ∥V −W∥2F is the sum of
the terms that are independent of q, and λ and µ are the
Lagrange multipliers associated with the constraints in (16b).
Differentiating L(q,λ,µ) with respect to every qj and setting
it to zero gives the following stationarity condition:

2q⋆j ∥aj∥
2
2 = 2q̄jℜ

(
dH
j aj

)
− (λ⋆

j − µ⋆
j ) ∀j. (18)

The other KKT conditions for (q⋆,λ⋆,µ⋆) to form a
globally optimal solution of problem (16) are

q⋆ ≼ qmax, (19)
q⋆ ≽ 0, (20)
λ⋆ ≽ 0, (21)
µ⋆ ≽ 0, (22)

λ⋆
j (q

⋆
j − qjmax) = 0, ∀j, (23)

µ⋆
jq

⋆
j = 0, ∀j, (24)

where equations (19)-(20) and (21)-(22) are, respectively, the
primal and dual feasibility conditions, and (23)-(24) are the
complementary slackness conditions.

To solve for q, we look into the different possibilities of
q⋆j , λ⋆

j , and µ⋆
j that satisfy the KKT conditions.

1) λ⋆
j > 0: From (23), q⋆j = qjmax, and from (24), µ⋆

j = 0.
By (18) this implies that q̄jℜ

(
dH
j aj

)
> qjmax ∥aj∥

2
2.

2) λ⋆
j = 0: We have two cases for µ⋆

j :
i) µ⋆

j = 0: By (18), q⋆j is given by

q⋆j =
ℜ
(
dH
j aj

)
∥aj∥22

q̄j

and from (19) and (20) we have 0 ≤ q̄jℜ
(
dH
j aj

)
≤

qjmax ∥aj∥
2
2.

ii) µ⋆
j > 0: From (24), q⋆j = 0. Then (18) implies that
ℜ
(
dH
j aj

)
< 0.

By combining these different cases, we have the following
closed-form expression for the optimal q⋆j :

q⋆j =

min

{
ℜ(dH

j aj)
∥aj∥2

2

q̄j , qjmax

}
, ℜ

(
dH
j aj

)
≥ 0,

0, ℜ
(
dH
j aj

)
< 0.

(25)

Algorithm 1 Proposed Solution to Problem (10)

Input: D, q̄, W, ϵ
Output: V⋆, q⋆

Initialize: q(0), i← 0
1: Compute V⋆(0) from q(0) using (15)
2: Compute f (0) = f(V⋆(0),q(0)) using (11)
3: repeat
4: i← i+ 1
5: Compute q⋆(i) from V⋆(i−1) using (25)
6: Compute V⋆(i) from q⋆(i) using (15)
7: Compute f (i) = f(V⋆(i),q⋆(i)) using (11)
8: until f(i−1)−f(i)

f(i) ≤ ϵ ▷ (Convergence)
9: Set V⋆ ← V⋆(i), q⋆ ← q⋆(i)

C. Solution to the Joint Optimization Problem

Now that we have optimally solved problem (12) and
problem (16), we employ an alternating optimization approach
to find a solution to problem (10). The detailed steps are
provided in Algorithm 1.

Theorem 1. Algorithm 1 guarantees convergence to a partial
optimum of problem (10).

Proof. Since problem (10) is biconvex, and we have found
optimal solutions to the subproblems, each iteration of the
algorithm results in a lower value of the objective function, i.e.,
f (i+1) ≤ f (i). Therefore, convergence is guaranteed by the
monotone convergence theorem. Furthermore, at convergence,
f(V⋆,q⋆) ≤ f(V,q⋆) and f(V⋆,q⋆) ≤ f(V⋆,q) for all
feasible V and q, so (V⋆,q⋆) is a partial optimum [26].

■

IV. DISTRIBUTED IMPLEMENTATION

A. Motivation

Direct implementation of Algorithm 1 requires centralized
operation, with a CC that collects all CSI and the SPs’
demands in each cell. The amount of data to be sent to the CC
for processing can be large. In particular, the CSI from the BS
of cell c to all users in the system is contained in Hc, which
is a complex matrix of size Nc×Ktot. In addition to the CSI,
each BS sends the SPs’ demands to the CC, represented by the
complex matrix Wc of size Kc×Nc and the real vector q̄c of
length Kc. Thus, each BS needs to send 2KtotNc+2KcNc+Kc

real coefficients to the CC, totaling
∑

c 2KtotNc+2KcNc+Kc

from all BSs. This quantity can be prohibitive especially in
future large-scale MIMO systems.

B. Proposed Distributed Implementation

Instead, we propose a distributed coordinated approach
to solve problem (10) by computing the decision variables
locally at the BSs. To this end, we only require the BSs to
communicate with each other, either via direct links or through
some backhaul connection, to share partial information as
needed. The proposed distributed coordinated approach gives



an equivalent solution to the centralized approach in the
previous section.

Aiming at solving the equivalent problem

min
{Vc},{qc}

E
{∥∥x̂actual − x̂desired

∥∥2
2

}
(26a)

s.t. 0 ≼ q ≼ qmax, (26b)

in a distributed manner, we consider the expression of the
system deviation presented in (13). Noting that the problem is
biconvex in terms of {Vc}Cc=1 and {qc}Cc=1, we tackle each
of the following subproblems separately.

1) Distributed Beamforming Solution to Problem (12):
Note that the deviation form in (13) is separable in Vc, i.e.,
Vc appears only once in the outer summation. This implies
that the problem of minimizing E

{∥∥x̂actual − x̂desired
∥∥2
2

}
over

{Vc}Cc=1 is equivalent to minimizing each entry of the outer
summation. In other words, to solve the beamforming sub-
problem in (12), each BS needs to solve

min
Vc

∥VcHccdiag(qc)−Dcdiag(q̄c)∥2F

+

C∑
l ̸=c

∥VcHlcdiag(ql)∥2F + σ2
n ∥Vc −Wc∥2F . (27)

This convex problem has the same closed-form solution pre-
sented in (15).

2) Distributed Power Control Solution to Problem (16):
For the power control subproblem, we note that the deviation
in (13) is not separable in qc. Nonetheless, it can be made
separable as follows. Note that the issue of non-separation
arises in the signal leakage term only. By manipulating the
indices, we can rewrite the total signal leakage as

C∑
c=1

C∑
l ̸=c

∥VcHlcdiag(ql)∥2F =

C∑
c=1

C∑
l ̸=c

∥VlHcldiag(qc)∥2F .

This has a nice interpretation in terms of inter-cell interference,
corresponding to the fact that the total leakage going to all
cells equals to the total leakage leaving all cells.

With this expression for the signal leakage, we can rewrite
(13) to reflect this change as

E
{∥∥x̂actual − x̂desired

∥∥2
2

}
=

C∑
c=1

(
∥VcHccdiag(qc)−Dcdiag(q̄c)∥2F

+

C∑
l ̸=c

∥VlHcldiag(qc)∥2F + σ2
n ∥Vc −Wc∥2F

)
. (28)

This form is separable in qc, and thus solving

min
qc

∥VcHccdiag(qc)−Dcdiag(q̄c)∥2F

+

C∑
l ̸=c

∥VlHcldiag(qc)∥2F + σ2
n ∥Vc −Wc∥2F (29a)

s.t. 0 ≼ qc ≼ qmax, (29b)

Algorithm 2 Distributed Algorithm for Problem (10)

Input: {Dc}, {q̄c}, {Wc}, ϵ
Output: {V⋆

c}, {q⋆
c}

Initialize: {q(0)
c }, i← 0

1: BS c computes V
⋆(0)
c using (15), ∀c

2: Compute f (0) = f(V⋆(0),q(0)) using (11)
3: repeat
4: i← i+ 1
5: BS c shares ∥alc,j∥2 with BS l, ∀c, l ̸= c, j ∈ [1 · · ·Kl]

6: BS c computes q
⋆(i)
c using (31), ∀c

7: BS c shares q
⋆(i)
c with other BSs

8: BS c computes V
⋆(i)
c using (15), ∀c

9: Compute f (i) = f(V⋆(i),q⋆(i)) using (11)
10: until f(i−1)−f(i)

f(i) ≤ ϵ ▷ (Convergence)

11: Set {V⋆
c} ← {V

⋆(i)
c }, {q⋆

c} ← {q
⋆(i)
c }

locally in each BS is equivalent to solving problem (16). The
stationarity condition in (18) is replaced with

2q⋆c,j

(
∥acc,j∥22 +

∑
l ̸=c

∥acl,j∥22

)
= 2q̄c,jℜ

(
aHcc,jdc,j

)
− (λ⋆

j − µ⋆
j ) ∀j, (30)

where acl,j , and dc,j represent the jth column of the matrices
Acl = VlHcl, and Dc, respectively. Similar to how we have
solved (16), here the KKT conditions (19)-(24), and (30)
results in the following closed-form solution to problem (29):

q⋆c,j =


min

 ℜ(aH
cc,jdc,j)(

∥acc,j∥2
2+

∑
l̸=c

∥acl,j∥2
2

) q̄c,j , qjmax

,

ℜ
(
aHcc,jdc,j

)
≥ 0,

0, ℜ
(
aHcc,jdc,j

)
< 0.

(31)

3) Distributed Alternating Optimization: The above dis-
tributed solutions to the subproblems are used in alternating
optimization to solve problem (10). The algorithm steps are
given in Algorithm 2. Note that the convergence of Algorithm
2 is guaranteed by Theorem 1. However, since the alternating
optimization steps in Algorithm 2 are carried out over multiple
communication rounds among the BSs, we need to carefully
analyze the resultant communication overhead.

C. Communication Overhead

The BSs need to acquire all required information to compute
(15) and (31) locally. Other than Q, the expression in (15) con-
tains information that are available at BS c. Thus, to compute
Vc, BS c needs to collect the power values of the users in
other cells. That is, it needs to receive Ktot −Kc real values.
The total over all cells is

∑
c Ktot−Kc = (C−1)Ktot. For the

power control solution in (31), the quantity Acl is not present
at BS c. This information needs to be transmitted from BS l to
BS c, for all l ̸= c. However, for the power computation, BS c
does not need the entire matrix Acl, but only the norms of the



columns of Acl. Thus, only Kc real values are sent from BS l
to BS c, or a total of (C−1)Kc real values received by BS c.
The total over all cells is

∑
c(C−1)Kc = (C−1)Ktot. Hence,

a total of 2(C − 1)Ktot coefficients are shared between BSs
for one iteration in Algorithm 2. If the alternating optimization
approach requires T iteration to converge, the total number of
shared coefficients is 2(C − 1)KtotT . Note that the demands
are not shared since they are computed locally at the BSs.

Compared with the centralized approach, Algorithm 2 can
significantly reduce the communication overhead. If we as-
sume a uniform distribution of users among cells, i.e., Kc =
K = Ktot

C , and all BSs have the same number of antenna
elements Nc = N , the ratio of the required overhead between
the distributed and centralized approaches is:

δ =
2(C − 1)KtotT∑

c 2KtotNc + 2KcNc +Kc

=
2(C − 1)KtotT

2CKtotN + 2KtotN +Ktot

=
2(C − 1)T

2(C + 1)N + 1
≤ T

N
.

This indicates that when T ≤ N , using the distributed solution
requires less overhead. As an example, consider the scenario of
N = 128 antennas, Ktot = 140 users, and C = 7 cells. In this
case, the centralized solution requires 286, 860 real parameters
to be sent through the backhaul to the CC. In contrast, as will
be shown in the simulation results in Section V, the distributed
approach only requires on average 5161 real parameters to be
transmitted between BSs.

V. SIMULATION RESULTS

We conduct simulation in Matlab to study the performance
of the proposed coordinated multi-cell WNV method. We
also investigate the reduction in communication overhead by
distributed implementation.

A. Simulation Setup

We consider a network of hexagonal cells each of radius
500 m with a BS at the center. We adopt the wrap-around
implementation of cells to emulate uniform interference for
all cells [29], with C = 7 neighboring cells. Unless otherwise
specified, we set the number of SPs to M = 4 as default.
Each SP m has Km = Ktot

M users, and they are evenly split
among all cells, i.e., Kc,m = Ktot

7M . The users in each cell are
uniformly distributed in space.

We model the channel from user k to each BS as a
Rayleigh fading channel given by hk = β

1/2
k gk. Here, βk is

the large-scale fading coefficient that captures both pathloss
and shadowing and is given as 10 log10 βk = −31.54 −
33 log10 (dk) + Zk, where dk is the Euclidean distance from
user k to the BS, and Zk ∼ CN (0, σ2

z) is the shadowing at that
user with σz = 8 dB; and gk ∼ CN (0, I) denotes the small-
scale fading. The users share a bandwidth of B = 1 MHz
for transmission with a power budget of pmax = q2max = 27
dBm for each user. We set the noise power spectral density to
N0 = −174 dBm/Hz, and the noise figure to NF = 2 dB.

As an example of the virtualization requirements, we
assume that the SPs set their demands with zero-forcing
(ZF) beamforming and full power transmission. Hence, SP
m’s demand in cell c is given by the beamforming matrix
Wc,m = (HH

cc,mHcc,m)−1HH
cc,m and the signal amplitude

vector q̄c,m = qmax. This choice of power is known to
maximize the sum-rate when ZF beamforming is used [30].

We study two important metrics. First, the normalized
expected deviation, which indicates the quality of network
virtualization, given by

E{
∥∥x̂actual − x̂desired

∥∥2
2
}

E{∥x̂desired∥22}

=
∥VHdiag(q)−Ddiag(q̄)∥2F + σ2

n ∥V −W∥2F
∥Ddiag(q̄)∥2F + σ2

n ∥W∥
2
F

.

The second metric is the average per-user rate normal-
ized by the system bandwidth, which is given by R =
1
B

1
Ktot

∑Ktot
k=1 Bk log2 (1 + SINRk), where Bk is the bandwidth

for user k, and SINRk is the signal-to-interference plus noise
ratio (SINR) of user k given by

SINRk =

∣∣vT
k hk

∣∣2 q2k∑
j∈Bk

∣∣vT
k hj

∣∣2 q2j + σ2
n ∥vk∥22

,

where vk is the receive beamforming vector for user k, and
Bk is the set of users that share bandwidth with user k other
than k itself.

B. Comparison Benchmarks

We compare the performance of our coordinated multi-
cell WNV approach with three other methods. 1) A fully
centralized non-virtualized approach, referred to as “Non-
virtualized”, where the InP uses full communication bandwidth
to simultaneously serve all users with ZF beamforming and
full power. 2) A common WNV method based on strict
resource separation, referred to as “FD-WNV”, where ser-
vice isolation is performed by allocating different frequency
bands to different SPs and dividing the bandwidth B equally
among them. In FD-WNV, each SP uses ZF beamforming and
maximum user transmit power. In both Non-virtualized and
FD-WNV systems, full pilot ZF is used where each BS tries
to suppress the interference coming from all other cells [31].
3) A distributed non-coordinated multi-cell WNV, referred
to as “Non-coordinated”, where each BS uses the solutions
developed in [21] for the single cell.

In the following results, our coordinated multi-cell WNV
method is referred to as “Proposed”. In addition, when com-
paring the proposed centralized and distributed approaches
we refer to them as “Centralized” and “Distributed”. For the
proposed coordinated WNV, we initialize the power values in
Algorithms 1 and 2 with full power, i.e., q(0) = qmax, and
we set ϵ = 0.01. Note that both algorithms have the same
performance but differ only in their communication overhead.
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Fig. 1: Normalized deviation vs. Kc and Nc.

C. Deviation between SPs Demands and InP’s Supply

Fig. 1 presents the normalized deviation between the InP’s
supply and the SPs’ demands in the proposed coordinated
WNV method. This figure indicates how well the proposed
approach fulfills its main goal, i.e., service isolation. We
observe that with a practical number of antennas, the proposed
method can keep the deviation small. Recall that the SPs’
demands correspond to an idealized setting where there is no
inter-SP interference, as if each SP owned a separate copy of
the entire network infrastructure. This suggests that, through
proper beamforming design and user power control strategy,
there is an opportunity to substantially increase system effi-
ciency by limiting the deviation from the SPs’ demands. This
observation is further confirmed in terms of the average per-
user rate in the results below.

D. Average Data Rate

Fig. 2 shows the average per-user rate with coordinated
BSs versus the number of users in each cell Kc for var-
ious numbers of BS antennas Nc. As expected, we see a
monotonically decreasing per-user rate in all systems. This
figure shows a clear gap between the performance of FD-
WNV and our proposed approach within the typical region of
operation, i.e.,

∑
c Kc ≤ Nc. Even with overloaded systems,

i.e.,
∑

c Kc > Nc, the proposed approach still provides
higher spectral efficiency compared with FD-WNV as long
as

∑
c Kc ̸≫ Nc. Although the bandwidth separation in

FD-WNV guarantees no inter-SP interference, the smaller
bandwidth allocated to each SP causes a huge drop in the
users’ rates.

Furthermore, the proposed method outperforms even the
non-virtualized method over a wide range of Kc values. This
is clear in Fig. 2 when

∑
c Kc is slightly less than Nc. Note

that, unlike the non-virtualized method, our method performs
virtualization. It achieves average rates that are at least as
high as those achieved by the non-virtualized method, even
when

∑
c Kc ≪ Nc. We remark that the non-virtualized

method here, which uses full-pilot ZF, is not defined when∑
c Kc > Nc, an undesirable behavior for a beamforming

strategy. The proposed coordinated methods, however, do not
have such limitation. Fig. 2 also shows that the proposed
coordinated WNV approach is far superior to the one without

coordination in all settings. The poor performance of the non-
coordinated solution is mainly due to the InP disregarding the
inter-cell interference.

In Fig. 3, we show the average per-user rate as the number
of SPs M varies from 1 to 7, while the total number of
users remains at Ktot = 56. This figure illustrates that the
performance of the proposed approach does not deteriorate
as more SPs subscribe to the InP’s services. This matches
our expectation from Section II-A that the InP supplies an
actual signal vector that does not depend on M . In contrast,
we observe a drastic drop in the performance of FD-WNV.
This is due to its strict separation of frequency bands between
different SPs, which is a highly inefficient means to achieve
service isolation. Further, note that the non-virtualized system
is constant, which is not surprising since it neither performs
virtualization nor deals with the SPs. It merely applies ZF
beamforming to users regardless of their SPs. Moreover, the
performance gap between the proposed and non-coordinated
methods is also apparent in this figure.

E. Communication Overhead

Fig. 4 shows the communication overhead versus Kc in
both centralized and distributed approaches. We first note that
for the centralized method, the size of the communication
overhead increases with Nc, which is expected since the
number of parameters is, as we have shown in Section IV-A,
a linear function of the number of BS antennas. This has
been frequently reported as an impediment in centralized
multi-cell systems [32]–[34]. Fig. 4 suggests that as long as∑

c Kc ≤ Nc, the distributed solution requires much less com-
munication overhead compared with the centralized solution.
However, when

∑
c Kc > Nc and interference dominates,

the number of iterations required for the distributed algorithm
to converge grows significantly, causing the communication
overhead to increase. As Kc increases further, we observe
that the number of iterations required for Algorithm 2 to
converge starts to decrease, and therefore the communication
overhead starts to decrease. It is expected that the number
of antennas will increase to the thousands in future MIMO
systems, which will allow the systems to avoid operating in
the overloaded region. As we have observed here, in that
case the distributed algorithm will converge faster and the
communication overhead will be kept much smaller than that
of the centralized solution, since it is not a function of Nc.

Recall that the results reported in Fig. 4 for the distributed
approach is based on the default convergence threshold ϵ =
0.01 in Algorithm 2. However, since the communication
overhead depends on T , choosing different values for ϵ would
lead to different amounts of communication overhead. Fig. 5
presents the communication overhead versus ϵ for different
values of Nc when the number of users is kept at Kc = 36
per cell. This figure confirms that relaxing the convergence
criterion lowers the communication overhead. Furthermore, in
Fig. 6, we study the effect ϵ has on the optimization objective,
i.e., the normalized deviation. Choosing a smaller ϵ means
that precisely locating the optimum is of greater importance.
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Fig. 2: Average per-user rate vs. Kc and Nc
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Fig. 6: Normalized deviation vs. ϵ and Nc.

This figure shows that as ϵ increases, the normalized devia-
tion increases. Furthermore, the difference in the normalized
deviation when ϵ ∈ [0.001 0.01] is minimal. This is the main
reason behind our choice of ϵ = 0.01 in the previous results.

VI. CONCLUSIONS

We have considered joint receive beamforming and power
control optimization to minimize the expected deviation be-
tween the virtual demands from the SPs and the actual
supply from the InP, in the uplink of a coordinated multi-cell
WNV system. We decompose the problem into two alternating
subproblems and derive closed-form solutions to both. We
have further proposed an equivalent distributed solution, which

can significantly reduce the communication overhead com-
pared with the centralized one. We have observed substantial
performance benefits by the proposed method. In our examples
with 4 SPs and typical numbers of antennas and users, the
proposed virtualization method provides 3 to 4 times the user
data rate compared with traditional virtualization approaches
that depend on strict resource separation among the SPs, and
even higher performance gains for larger numbers of SPs.
Furthermore, the benefit of virtualization can be achieved
without loss of communication efficiency, as the proposed
solution attains data rates similar to or higher than classical
systems that do not provide virtualization.
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