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Abstract—We study online federated learning over a wireless
network, where the central server updates an online global
model sequence to minimize the time-varying loss of multiple
local devices over time. The server updates the global model
through over-the-air model-difference aggregation from the local
devices over a noisy multiple-access fading channel. We consider
the practical scenario where information on both the local loss
functions and the channel states is delayed, and each local device
is under a time-varying power constraint. We propose Con-
strained Over-the-air Model Updating with Delayed infOrmation
(COMUDO), where a new lower-and-upper-bounded virtual
queue is introduced to counter the delayed information and
control the hard constraint violation. We show that its local model
updates can be efficiently computed in closed-form expressions.
Furthermore, through a new Lyapunov drift analysis, we show
that COMUDO provides bounds on the dynamic regret, static
regret, and hard constraint violation. Simulation results on image
classification tasks under practical wireless network settings show
substantial accuracy gain of COMUDO over state-of-the-art
approaches, especially in the low-power region.

I. INTRODUCTION

With the explosion of data at wireless edge devices, along-
side their increasing computational capacities and privacy
concerns, federated learning (FL) [1] has been recognized
as a vital framework to support edge intelligence. Migrating
machine learning from the cloud to the edge, however, requires
communication-efficient FL, to reduce the communication
overhead caused by transmitting the machine-learning models
between the edge devices and the parameter server [2].

Existing works on wireless FL adopt two broad approaches
for communication efficiency. The first approach [3]-[7] uses
conventional orthogonal multiple access in digital communica-
tion, with error-control coding and possible model quantization
[8] and sparsification [9]. This approach can still lead to
high communication overhead and latency especially for large
networks. In contrast, the over-the-air (OTA) computation
approach [10]-[22] uses a multiple access channel in analog
communication, for multiple devices to concurrently transmit
their local models. A noisy global model can be directly
recovered from the superimposed analog signals at the server.

Due to the analog communication nature, OTA computa-
tion is highly sensitive to the channel state during signal
transmission and the corresponding transmit power setting.
In particular, [21] observed that the optimal model update in
each training round of OTA FL should consider not only the
steepness of the loss-function gradient, but also whether the
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updated model can be efficiently transmitted from the edge
devices to the server. However, all existing works on OTA FL
with transmit power control [14]-[21] assume that the channel
state is known in each model training round. In practice, the
channel state in wireless communication fluctuates over time,
and the computation time in each training iteration is often
longer than the coherence period of the channel. As a result,
the channel state for aggregating the updated local models at
the end of each training round is different from the channel
state used in computing the model update at the beginning of
the training round. In other words, the available channel state
information is delayed.

Furthermore, most existing OTA FL works assume the loss
functions are fixed or independent and identically distributed
(i.i.d.) over time [10]-[21], which does not allow streaming
data that can possibly change arbitrarily in many online
applications [23]-[25]. OTA FL with delayed loss function
information was recently considered in [22], which was the
first work to provide bounds on the static regret with respect
to a fixed offline solution. However, [22] still required current
i.e., non-delayed, channel state information in each training
round. Furthermore, the optimization constraint considered
in [22] is fixed, so it cannot accommodate transmit power
control, which requires a time-varying constraint due to the
time-varying channel states in OTA FL.

In this work, we consider both delayed loss function infor-
mation and delayed channel state information during model
updates. Our goal is to develop an online algorithm that
provides strong performance guarantees, in terms of dynamic
and static regret bounds. To achieve this goal, we must address
several challenges: 1) Analog OTA requires careful transmit
signal control to counter the channel noise that propagates in
the entire learning process. 2) The delays in the loss functions
and the channel states require an online design to adapt to the
system variations that are unknown a priori. 3) The learning
performance and system constraints such as power are tightly
coupled over time, necessitating a holistic analysis of the
incurred performance loss and constraint violation.

Our contributions can be summarized as follows:
• We formulate an online OTA FL problem with time-

varying loss functions, channel states, and power con-
straints. Both the loss function information and the
channel state information are delayed, and as a re-
sult the constraint function information is also delayed.
Our optimization formulation further accommodates hard
constraints [26], which do not allow any compensated
violation over time or devices and thus are stronger than
the soft constraints in [18]-[22].



• We propose an effective algorithm named Constrained
Over-the-air Model Updating with Delayed infOrmation
(COMUDO) to solve this problem. COMUDO introduces
a new lower-and-upper-bounded virtual queue, which
eliminates the need for Slater’s condition and enforces a
minimum constraint penalty, to strictly control the power
violation. The resulting closed-form local updates can
adapt to unknown variations of both the local loss func-
tions and channel states under individual power limits.

• We establish a connection between the bounds on the vir-
tual queue and the hard constraint violation through a new
Lyapunov drift analysis. We show that COMUDO pro-
vides O(T

1+max{µ,ω}
2 ) dynamic regret, O(T

1+ω
2 ) static

regret, and O(T ν) hard constraint violation for general
convex loss functions. Here, T is the number of training
rounds, and µ, ν, and ω respectively represent how fast
the dynamic online benchmark, power constraints, and
channel noise fluctuate over time.

• We experiment on canonical datasets over typical wireless
settings to study the performance of COMUDO for both
convex and non-convex loss functions. Our simulation
results show that COMUDO significantly improves the
learning performance over state-of-the-art benchmarks.
The performance gain is more substantial in the low-
power region.

II. RELATED WORK

A. Communication-Efficient Error-Free Distributed Learning

Much of the machine learning literature on communication-
efficient distributed learning, e.g., [1], [8], [9], overlooks the
possibility to further mitigate the communication cost through
wireless transmission design. Prior works on distributed learn-
ing over wireless networks mainly focus on error-free digital
communication (see [3] and references therein). For exam-
ple, adaptive model aggregation [4], joint optimization [5],
temporal model similarity [6], and model pruning [7] have
been proposed to improve the communication efficiency. These
works all adopt the conventional orthogonal multiple access
to transmit the model parameters device by device to the
server, resulting in possible high communication overhead and
latency. In this work, we focus instead on OTA FL.

B. Over-the-Air Federated Learning

To mitigate the communication overhead and reduce the
communication latency, OTA computation has been adopted
in FL recently. Various solutions have been proposed in the
literature, including model truncation [10], device selection
[11], aggregation error minimization [12], and truncated chan-
nel inversion [13]. The above works, however, do not explicitly
consider transmit power control at the local devices.

All existing works on OTA FL that consider transmit
power control [14]-[21] assume the channel state for OTA
computation remains unchanged after model training and the
loss functions are fixed or i.i.d. over time. For example,
joint transmit power control and receiver beamforming were
considered in [16] with perfect channels and fixed losses. Joint
uplink and downlink beamforming were considered in [17]

with perfect channels and fixed losses. Long-term transmit
power control was achieved by scaling the power factor using
channel inversion [18]. Based on i.i.d. channels, the optimality
gap was minimized through power allocation in [19]. Under
long-term power constraints, a regularized channel inversion
scheme was proposed to improve convergence in [20]. Online
model update and analog aggregation were jointly considered
in [21] with current information of the i.i.d. data and channel.

OTA FL with delayed loss function information was con-
sidered in [22]. The modified saddle-point-type algorithm
provided O(

√
T ) static regret and O(T

3
4 ) soft constraint

violation. However, [22] still assumes non-delayed channel
state information as in [14]-[21]. Furthermore, the interaction
among devices is only through the optimization constraints,
which eliminates the need to consider analog model aggre-
gation and simplifies the bounding analysis. Additionally,
[22] only allows fixed optimization constraints, which cannot
accommodate power control in OTA FL, since the transmit
power in OTA generally depends on the time-varying channel
state. In contrast, our proposed online algorithm is designed
to tolerate both delayed loss function information and delayed
channel state information during model updates, while pro-
viding bounds on the dynamic regret, static regret, and hard
constraint violation for time-varying power constraints.

C. Constrained Online Optimization
To handle the time-varying and delayed loss functions and

power constraints, we borrow some techniques from Lyapunov
optimization [27] and online convex optimization (OCO) [28].
Early OCO works focused on fixed constraints. For example,
the online gradient descent algorithm in [29] achieved O(

√
T )

static regret to a fixed offline decision. Dynamic regret to a
time-varying decision sequence was analyzed in [29], [30].
Later works considered long-term constraints [25], [31]-[34].
These OCO algorithms, however, are centralized.

Almost all existing works on distributed OCO either assume
fixed constraints or consider the soft constraint violation [35]-
[39], which allows the violation to be compensated over time
and over the local learners. For example, dynamic regret bound
and soft constraint violation bound were provided in [38], [39].
In contrast, with the goal of limiting instantaneous constraint
violation, [26], [40], [41] considered a stronger notion of hard
constraint violation, which does not allow any compensated
violation over time. However, the proposed online algorithms
in [26], [40], [41] require centralized implementation.

Distributed OCO with hard constraint violation was more re-
cently considered in [42]. Assuming error-free communication
without any cost, the distributed saddle-point-type algorithm in
[42] achieved O(

√
T ) static regret, and O(T

3
4 ) hard constraint

violation even when the constraints are fixed. In contrast,
for OTA FL considered in our work, we must consider non-
ideal communication with channel noise and the need for
power control. Furthermore, through a novel lower-and-upper-
bounded queue together with a new Lyapunov drift analysis,
our proposed algorithm provides a dynamic regret bound and
a hard constraint violation bound that smoothly approach to
the optimal O(

√
T ) regret and O(1) violation, respectively, as

the system variations diminish.



III. ONLINE OVER-THE-AIR FEDERATED LEARNING

A. OTA FL with Delayed Information

We consider an online FL system that operates over rounds
t = 1, . . . , T . There are a total of N local devices in the system
coordinated by a central server. Each device n experiences
a local loss function fnt (x) : Rd → R at round t. At
the beginning of each round t, each device n computes a
local model xnt ∈ Rd. Only at the end of each round t,
device n receives feedback information on the current local
loss function fnt (x) [22]. Therefore, when device n selects
its local model xnt at round t, it only has some delayed
information — usually the gradient ∇fnt−1(x) — on the
previous local loss function fnt−1(x). This model includes the
standard offline FL scenario fnt (x) = fn(x),∀t, considered
in [10]-[20] as a special case.

Given the delayed loss function information, FL aims at
generating a global model sequence {xt} at the server, to
minimize the accumulated losses of the N local devices:

min
{xt}

1

N

T∑
t=1

N∑
n=1

fnt (xt). (1)

Each device n updates its local model xnt via online local
gradient descent xnt = xt−1 − α∇fnt−1(xt−1), where α >
0 is the step size. At the end of each round t, each device
n sends its model difference xnt − xt−1 = −α∇fnt−1(xt−1)
(or local gradient) to the server, which then performs model-
difference aggregation to update its global model xt = xt−1+
1
N

∑N
n=1(xnt − xt−1).1 We adopt the above model-difference

aggregation in this work since it usually incurs less transmit
power than directly aggregating the models [21].

We assume OTA computation for efficient global model
update at the server. The wireless communication channel
between the server and devices is modeled as a noisy multiple-
access fading channel. Let hnt = [hnt [1], . . . , hnt [d]]T ∈ Cd
denote the channel state information between the server and
device n at round t, with 0 < hLB ≤ |hnt [i]|,∀t,∀n, ∀i.
In practical communication networks, instantaneous channel
state information is usually unavailable [43]. Furthermore, the
computation of xnt can be lengthy and the channel state may
have already changed when xnt is ready for transmission. We
therefore consider delayed channel state information at all the
local devices, i.e., when device n computes xnt , it only has
the previous channel state information hnt−1. In Fig. 1, we
illustrate online OTA FL with delays on both the local loss
function information and the channel state information.

Wireless channels are naturally fading and noisy. Therefore,
the devices need to properly design their transmit signals, so
that the global model xt can be recovered at the server. Let
x̂t be the recovered noisy global model. Due to the delay
caused by computing xnt , the analog signals that carry the
information of xnt are transmitted to the server at the end of
each round t. Adopting the standard OTA technique [10], [13]-

1We keep two appearances of xt−1 here instead of merging them, since
as will be seen later, in OTA FL, the second one will eventually be replaced
by an inexact estimate of xt−1.

Fig. 1. An illustration of OTA FL with delayed information. The solid arrows
indicate signal transmission, and the dashed arrows indicate information flow.
At the beginning of round t, when device n updates its local model xn

t , it only
has the delayed local loss function information fn

t−1(x) and the delayed local
channel state information hn

t−1. At the end of round t, only after updating
xn
t , the information of fn

t (x) and hn
t becomes available to device n.

[15], [18], [21], we set the analog signal vector snt ∈ Cd to
be transmitted by device n as

snt = bnt ◦ (xnt − x̂t−1) (2)

where bnt ,
[λhnt [1]∗
|hnt [1]|2

, . . . ,
λhnt [d]

∗

|hnt [d]|2
]H ∈ Cd is the channel

inversion vector of hnt , with λ > 0 being a scaling factor
and x ◦ y denotes the entry-wise product.

All devices concurrently transmit each entry of {snt } over
an orthogonal channel. The analog signals {snt } are summed
over the wireless multiple-access channel. The server receives
the aggregated signal vector yt =

∑N
n=1 h

n
t ◦ snt + zt, where

zt ∈ Cd is the additive channel noise with zUB ≥ ‖zt‖F ,∀t.
The server post-processes yt to recover a noisy global model

x̂t = x̂t−1 +
<{yt}
Nλ

= xt + nt (3)

where <{x} returns the real values of vector x and nt =
<{zt}
Nλ ∈ Rd is a residual noise vector. The server then

broadcasts x̂t back to the devices.

Remark 1. We can extend our model in multiple fronts
without major technical changes. For example, we can use
multi-antenna receiver beamforming to reduce the residual
noise nt [16]. We can consider noisy downlink channels
and incorporate the downlink residual noise into nt [17].
We can use the imaginary part of snt to reduce the number
of channels [18]. Some lossy methods, e.g., truncated chan-
nel inversion [10], model sparsification [18], and regularized
channel inversion [20] will incur additional noise that can be
incorporated as part of nt in (3), and our derived performance
bounds later in Section V still hold.

B. Online Optimization Problem Formulation

With both delayed loss function and channel state informa-
tion, our optimization objective is to minimize the accumulated
loss incurred by the sequence of noisy global models at the
server, under time-varying power constraints on the local mod-
els at each device. Our formulated online OTA FL problem is

P : min
{xnt ∈X}

T∑
t=1

N∑
n=1

fnt (x̂t)

s.t. gnt (xnt ) ≤ 0, ∀t, ∀n (4)

where

gnt (x) , ‖bnt ◦ (x− x̂t−1)‖2 − Pn, ∀t, ∀n (5)



with Pn being the power limit of device n, and X = {x :
−xUB1 � x � xUB1} is a feasible set with xUB > 0 being
the model value upper bound. Note that since bnt in (5) is a
function of hnt , the constraint function is also time-varying,
and its information is also delayed when xnt is computed.

Since the local loss function fnt (x), channel state hnt , and
power constraint gnt (x) are unknown a priori and can possibly
change arbitrarily over time with unknown distributions, ob-
taining an optimal solution to P is impossible, since it needs
central calculation using all the information of the local loss
functions {fnt (x)}, channel states {hnt }, and power constraints
{gnt (x)} in hindsight.

In this work, our goal is to compute locally a model
sequence {xnt } to P that can provide sublinear dynamic regret

Regd(T ) ,
1

N

T∑
t=1

N∑
n=1

[
fnt (x̂t)− fnt (x◦t )

]
(6)

where x◦t ∈ arg minx∈X
{

1
N

∑N
n=1 f

n
t (x)

∣∣‖bnt ◦(x− x̂t)‖2 ≤
Pn,∀n

}
is the centralized dynamic online benchmark com-

puted using all the current information. When we compare
the online model sequence with the centralized fixed offline
benchmark x◦ ∈ arg minx∈X { 1

N

∑T
t=1

∑N
n=1 f

n
t (x)

∣∣‖bnt ◦
(x− x̂t)‖2 ≤ Pn,∀t,∀n}, the resulting regret

Regs(T ) =
1

N

T∑
t=1

N∑
n=1

[fnt (x̂t)− fnt (x◦)] (7)

is commonly referred to as the static regret. In this work, we
provide performance guarantees on both the dynamic regret
and the static regret.

Furthermore, since the information of hnt and gnt (x) is only
available to device n at the end of round t, it is impossible
to compute a local model xnt at the beginning of round t,
such that the power constraints (4) are strictly satisfied. We
therefore need to allow some violations on (4) and introduce
a hard constraint violation measure to quantify the amount of
instantaneous violations of the constraints

Vioh(T ) ,
1

N

T∑
t=1

N∑
n=1

[
gnt (xnt )

]
+

(8)

where [x]+ = max{x, 0}. The hard constraint violation
Vioh(T ) in (8), also referred to as cumulative constraint
violation in [26], [40]-[42], does not allow the violation at
one time or one device to be compensated by any other time
or device. It is a stronger notion of the standard soft constraint
violation, i.e., 1

N

∑T
t=1

∑N
n=1 g

n
t (xnt ), which quantifies the

amount of compensated violations over time and devices [21],
[22], [35]-[39].

A constrained online algorithm is desired that simultane-
ously achieves limT→∞

Regd(T )
T = 0, limT→∞

Regs(T )
T = 0,

and limT→∞
Vioh(T )
T = 0, which implies that the online model

sequence computed locally using the delayed information
is asymptotically no worse than either the dynamic online
benchmark or the fixed offline benchmark, and at the same
time, the individual power constraints (4) are satisfied in the
time-averaged manner.

IV. CONSTRAINED OVER-THE-AIR MODEL UPDATING
WITH DELAYED INFORMATION (COMUDO)

We present the COMUDO algorithm for solving P. CO-
MUDO introduces a new lower-and-upper-bounded virtual
queue, which will be shown in Section V to provide improved
hard constraint violation bounds. Furthermore, COMUDO
yields closed-form local model updates that are tolerant to
both delayed loss function information and delayed channel
state information.

A. Preliminaries

We show in the following lemma that P satisfies several
properties: 1) the residual noise nt defined below (3) is
bounded; 2) the feasible set X defined below P is bounded;
and 3) the power constraint function gnt (x) in (5) is bounded.
These properties will be useful for our performance analysis.
The proof is omitted due to the page limit.

Lemma 1. P has the following properties:

‖nt‖ ≤ E, ∀t, (9)
‖x− y‖ ≤ R, ∀x,y ∈ X , (10)
|gnt (x)| ≤ G, ∀x ∈ X ,∀t, ∀n, (11)

where E = zUB
Nλ , R = 2

√
dxUB, and G =

maxn{max{Pn, d(R+E)2λ2

h2
LB

− Pn}}.

B. Lower-and-Upper-Bounded Virtual Queue

COMUDO maintains a virtual queue Qnt , which is initial-
ized as Qn1 = V and updated at the end of each round t > 1,
to control the power violation at each local device n:

Qnt = max
{

(1− η)Qnt−1 + [γgnt (xnt )]+, V
}

(12)

where V ∈ (0, γGη ) is any minimum virtual queue length,
η ∈ (0, 1) is a penalty factor on Qnt−1, and γ > 0 is a weight
on gnt (xnt ). Note that the information of gnt (x) is available at
the end of round t and is used to update the virtual queue Qnt .
This is in contrast to the model update of xnt at the beginning
of round t, where only the delayed information of gnt−1(x) is
available.

Remark 2. Through a virtual queue lower bound analysis,
the centralized online algorithm in [41] shows matched or
improved performance bounds over the saddle-point-type al-
gorithms [40], [42]. In this work, we introduce a novel lower-
and-upper-bounded virtual queue in (12), together with a new
Lyapunov drift analysis in Section V-B, to bound the hard
power constraint violation for OTA FL.

In the following lemma, we show that without requiring
Slater’s condition, the additional penalty factor η in (12) can
be seen as a virtual Slater’s constant, leading to a virtual
queue upper bound that is not inversely scaled by the actual
Slater’s constant Pn. Furthermore, V in (12) provides a non-
zero virtual queue lower bound, which prevents COMUDO
from incurring an overly large constraint violation.



Algorithm 1 COMUDO at Local Device
1: Initialization: x̂0 = 0, x̂1 ∈ X and Qn1 = V .
2: At the beginning of t, use ∇fnt−1(x̂t−1) and hnt−1, do:
3: if g̃nt−1(−α∇fnt−1(x̂t−1)) > 0 then
4: Update local model xnt via (15).
5: else Update local model xnt via (16).
6: At the end of t, receive ∇fnt (x̂t) and hnt , do:
7: Transmit analog signal snt in (2) to the server.
8: Update local virtual queue Qnt via (12).

Lemma 2. The virtual queue updated via (12) is bounded by

V ≤ Qnt ≤
γG

η
, ∀t, ∀n. (13)

Proof: From (12), we readily have Qnt ≥ V,∀t. We now
prove Qnt ≤

γG
η ,∀t by induction. From initialization, Qn1 =

V < γG
η . Then, suppose Qnt−1 ≤

γG
η at round t− 1 for some

t > 1. We now prove that Qnt ≤
γG
η at round t. From (12),

the triangle inequality, and the bound on |gnt (x)| in (11), Qnt
is upper bounded by Qnt ≤ (1 − η)Qnt−1 + [γgnt (xnt )]+ ≤
(1− η)γGη + γG = γG

η , which proves (13).
Lemma 2 shows that the virtual queue upper bound γG

η is
reversely proportional to the virtual Slater’s constant η, instead
of the actual Slater’s constant Pn for the constraint function
(5). This virtual queue upper bound, however, can no longer be
directly used to bound the hard constraint violation Vioh(T ).
In Section V-B, we propose a new Lyapunov drift analysis,
which uses both the lower and upper bounds of the virtual
queue in (13) to reconnect Qnt and Vioh(T ).

C. COMUDO Algorithm

We decompose P into a set of per-slot per-device optimiza-
tion problems {Pnt }, given by

Pnt : min
x∈X

〈∇fnt−1(x̂t−1),x− x̂t−1〉+
1

2α
‖x− x̂t−1‖2

+Qnt−1[γg̃nt−1(x)]+. (14)

where 〈x,y〉 denotes the inner product operation and
g̃nt−1(x) , ‖bnt−1 ◦ (x− x̂t−1)‖2−Pn.2 Note that Pnt uses the
delayed local gradient ∇fnt−1(x̂t−1) and the delayed channel
state hnt−1. The local gradient ∇fnt−1(x̂t−1) at device n is
taken on x̂t−1 to minimize the accumulated global loss via
noisy local gradient descent. Furthermore, each power con-
straint (4) has been converted to minimizing Qnt−1[γg̃nt−1(x)]+
as part of the objective function in Pnt for controlling the hard
constraint violation.

We now show that the optimal solution to Pnt is in
a closed form. The objective function of Pnt has a gra-
dient ∇fnt−1(x̂t−1) + 1

α (x − x̂t−1) + γQnt−1θ
n
t−1 ◦ (x −

x̂t−1)1{g̃nt−1(x) > 0}, where θnt−1 ◦ (x − x̂t−1) is the
gradient of constraint function g̃nt−1(x), with the i-th entry
of θnt−1 ∈ Rd being θnt−1[i] = 2λ2

|hnt−1[i]|2
, and 1{x > 0}

is an indicator function. We set the above gradient to zeros
for solving x. Then, to satisfy the fixed constraints in the

2We replace x̂t−2 in the definition of gnt−1(x) (5) with the more up-to-date
information of x̂t−1 available at the beginning of round t.

Algorithm 2 COMUDO at Central Server

1: Initialization: α > 0, η ∈ (0, 1), γ > 0, and V ∈ (0, γGη ).
2: At the end of t, do:
3: Receive analog signal yt over the air.
4: Recover a noisy global model x̂t in (3).
5: Broadcast x̂t to all the devices.

feasible set X , we project the solution onto X . The resulting
optimal solution to Pnt depends on the power constraint
violation g̃nt−1(−α∇fnt−1(x̂t−1)) caused by transmitting the
local gradient. Specifically, if g̃nt−1(−α∇fnt−1(x̂t−1)) > 0,
i.e., the amount of power required to transmit −α∇fnt−1(x̂t−1)
exceeds the power limit Pn, we update xnt via

xnt =
[
x̂t−1 −

α

1 + αγQnt−1θ
n
t−1
◦ ∇fnt−1(x̂t−1)

]xUB1

−xUB1
(15)

where [x]zy = min{z,max{x,y}}. Otherwise, we update xnt
via projected local gradient descent

xnt =
[
x̂t−1 − α∇fnt−1(x̂t−1)

]xUB1

−xUB1
. (16)

Note that ∇fnt−1(x̂t−1) is entry-wise scaled by a factor
α

1+αγQnt−1θ
n
t−1[i]

in (15) that is determined by the ratio of each
channel strength |hnt−1[i]|2 and the virtual queue length Qnt−1.
When the channels are strong and the virtual queue, which
measures the hard power constraint violation, is small, i.e.,
Qnt−1

|hnt−1[i]|2
is close to 0, the local model update (15) becomes

(16) to greedily minimize the loss. When the virtual queue
length dominates the channel strength, (15) becomes x̂t−1 to
save the transmit power. Therefore, the update of xnt is both
computation- and communication-aware.

Algorithms 1 and 2 summarize the COMUDO algorithm
for the local device and the central server, respectively. In
Section V-C, we will further discuss how to choose the
algorithm parameters, α, η, γ, and V for COMUDO to yield
the best convergence rates on Regd(T ), Regs(T ), and Vioh(T ).

Remark 3. The computational complexity of COMUDO is
mainly determined by the solutions to Pnt in (15) or (16). Note
that both solutions have closed-form expressions, and contain
a single local gradient computation ∇fnt−1(x̂t−1). This makes
COMUDO highly efficient, with a computational complexity
comparable to the standard FL algorithm.

V. PERFORMANCE BOUNDS OF COMUDO

In this section, we provide upper bounds on the dynamic
regret (6), static regret (7), and hard constraint violation (8)
for COMUDO. We take into account the joint impact of the
lower-and-upper-bounded virtual queue, residual noise, and
information delay on the performance of COMUDO.

To facilitate our analysis, we assume the loss functions are
convex as in [22]. We show numerically in Section VI that
COMUDO also performs well for non-convex loss functions.

Assumption 1. Function fnt (x) is convex and its gradient is
upper bounded, i.e., there exists some D > 0, s.t.,

‖∇fnt (x)‖ ≤ D, ∀x ∈ Rd,∀t,∀n. (17)



A. Bounding the Regret

The following lemma provides a per-slot per-device perfor-
mance upper bound for COMUDO.

Lemma 3. The performance of each device n yielded by
COMUDO is bounded for each round t by[

fnt−1(x̂t−1)− fnt−1(x◦t−1)
]

+Qnt−1[γg̃nt−1(xnt )]+

≤ R

α
‖x◦t−1 − x◦t ‖+

2R

α
‖nt‖+

1

2α
‖nt‖2

+
αD2

2
+

1

2α

(
φt + ψnt ) (18)

where we define φt , ‖x◦t−1 − x̂t−1‖2 − ‖x◦t − x̂t‖2 and
ψnt , ‖x◦t−1 − xt‖2 − ‖x◦t−1 − xnt ‖2.

Proof: Pnt is 1
α -strongly convex over X , with xnt being

its optimal solution. Applying Lemma 2.8 in [28] (optimality
condition of strongly convex function) to Pnt , we have

〈∇fnt−1(x̂t−1),xnt − x̂t−1〉+
1

2α
‖xnt − x̂t−1‖2

+Qnt−1[γg̃nt−1(xnt )]+

≤ 〈∇fnt−1(x̂t−1),x◦t−1 − x̂t−1〉+
1

2α
‖x◦t−1 − x̂t−1‖2

+Qnt−1[γg̃nt−1(x◦t−1)]+ −
1

2α
‖x◦t−1 − xnt ‖2. (19)

We now bound the right-hand side (RHS) of (19). Since
fnt−1(x) is convex, we have 〈∇fnt−1(x̂t−1),x◦t−1 − x̂t−1〉 ≤
fnt−1(x◦t−1)− fnt−1(x̂t−1). From the definition of the dynamic
benchmark, we directly have Qnt−1[γg̃nt−1(x◦t−1)]+ = 0. For
the rest two terms on the RHS of (19), we have

‖x◦t−1 − x̂t−1‖2 − ‖x◦t−1 − xnt ‖2

= ‖x◦t−1 − x̂t−1‖2 − ‖(x◦t−1 − x◦t ) + (x◦t − x̂t)‖2

+
(
‖x◦t−1 − x̂t‖2 − ‖x◦t−1 − xnt ‖2

)
(a)

≤ φt − ‖x◦t−1 − x◦t ‖2 + 2‖x◦t − x̂t‖‖x◦t−1 − x◦t ‖
+
(
‖x◦t−1 − x̂t‖2 − ‖x◦t−1 − xnt ‖2

)
(b)

≤ φt + 2R‖x◦t−1 − x◦t ‖+ 2R‖nt‖
+
(
‖(x◦t−1− xt)− nt‖2 − ‖x◦t−1 − xnt ‖2)

(c)

≤ φt + 2R‖x◦t−1 − x◦t ‖+ ψnt + ‖nt‖2 + 4R‖nt‖ (20)

where (a) is because of ‖x+y‖2 ≥ ‖x‖2 +‖y‖2−2‖x‖‖y‖;
(b) is due to x̂t being defined in (3) and X being bounded in
(10), such that ‖x◦t − (xt +nt)‖‖x◦t−1−x◦t ‖ ≤ (‖x◦t −xt‖+
‖nt‖)‖x◦t−1−x◦t ‖ ≤ R(‖x◦t−1−x◦t ‖+‖nt‖); and (c) follows
from inequality ‖x−y‖2 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ and the
bound on X in (10).

Substituting the above three inequalities into the RHS of
(19), rearranging terms, and noting that −〈∇fnt−1(x̂t−1),xnt −
x̂t−1〉 − 1

2α‖x
n
t − x̂t−1‖2 ≤

α‖∇fnt−1(x̂t−1)‖2

2 ≤ αD2

2 by
completing the square, we have proved (18).

Using the results in Lemma 3, we are now ready to
derive a dynamic regret bound for COMUDO. Note that the
virtual queue length is always strictly positive and the hard
constraint violation is non-negative. Therefore, their product
Qnt−1[γg̃nt−1(xnt )]+ in (18) remains non-negative. Different

from the soft-constrained algorithm analysis in [22], [25], [31]-
[39], this unique property allows us to bound the dynamic
regret without worrying about the constraint violation.

Theorem 1. The dynamic regret of COMUDO has the fol-
lowing upper bound:

Regd(T ) ≤ R

α

T∑
t=2

‖x◦t−1 − x◦t ‖+
2R

α

T∑
t=2

‖nt‖+
1

2α

T∑
t=2

‖nt‖2

+
αD2T

2
+
R2

2α
+D(R+ E). (21)

Proof: Summing (18) over n = 1, . . . , N and t = 2, . . . , T ,
noting that Qnt−1[γg̃nt−1(xnt )]+ ≥ 0, and dividing both sides
by N , we have

1

N

T−1∑
t=1

N∑
n=1

[
fnt (x̂t)− fnt (x◦t )

]
≤ R

α

T∑
t=2

‖x◦t−1 − x◦t ‖+
2R

α

T∑
t=2

‖nt‖+
1

2α

T∑
t=2

‖nt‖2

+
αD2T

2
+

1

2α

T∑
t=2

φt +
1

2αN

T∑
t=2

N∑
n=1

ψnt . (22)

From x̂1 ∈ X by initialization and the bound on X in (10),
we can show that

∑T
t=2 φt = ‖x◦1 − x̂1‖2 − ‖x◦T − x̂T ‖2 ≤

‖x◦1−x̂1‖2 ≤ R2. Applying the property of separate convexity,
we have

∑N
n=1 ψ

n
t =

∑N
n=1(‖x◦t−1 − 1

N

∑N
m=1 x

m
t ‖2 −

‖x◦t−1 − xnt ‖2) ≤
∑N
n=1( 1

N

∑N
m=1 ‖x◦t−1 − xmt ‖2 − ‖x◦t−1 −

xnt ‖) = 0. Substituting the two inequalities into the RHS of
(22), and from fnT (x̂T ) − fnT (x◦T ) ≤ 〈∇fnT (x̂t), x̂T − x◦T 〉 ≤
‖∇fnT (x̂T )‖(‖xT−x◦T ‖+‖nT ‖) ≤ D(R+E), we have (21).

From the analysis of Theorem 1, we can readily derive
a static regret bound for COMUDO. The proof follows by
replacing the dynamic online benchmark {x◦t } with the fixed
offline benchmark x◦ in the proof of Theorem 1.

Theorem 2. The static regret of COMUDO has the following
upper bound:

Regs(T ) ≤ 2R

α

T∑
t=2

‖nt‖+
1

2α

T∑
t=2

‖nt‖2 +
αD2T

2
+
R2

2α

+D(R+ E). (23)

B. Bounding the Hard Constraint Violation
We bound the hard constraint violation yielded by CO-

MUDO. To relate the lower-and-upper-bounded virtual queue
to the hard constraint violation, we define a Lyapunov drift

Θn
t−1 ,

1

2
(Qnt − V )2 − 1

2
(Qnt−1 − V )2, ∀t,∀n. (24)

We bound Θn
t−1 produced by COMUDO in the following

lemma, using both the virtual queue lower bound and upper
bound in (13).3

3Existing virtual queue techniques for constrained online optimization can
be divided into two groups: Algorithms like [21], [25], [27], [32], [34] provide
soft constraint violation bounds by constructing a virtual queue that admits an
upper bound only. The algorithm in [41] bounds the hard constraint violation
by constructing a virtual queue that enforces a non-zero lower bound. In
contrast, our virtual queue construction allows us to incorporate both lower
and upper bounds into the Lyapunov drift analysis, leading to improved
performance bounds.



Lemma 4. The Lyapunov drift yielded by COMUDO has the
following upper bound for any t and n:

Θn
t−1 ≤ Qnt−1[γg̃nt−1(xnt )]+ − V [γgnt (xnt )]+

+
γ2G

η

∣∣g̃nt−1(xnt )− gnt (xnt )
∣∣+ 2γ2G2. (25)

Proof: We can show that

(Qnt − V )2 ≤
[
(Qnt−1 − V ) + ([γgnt (xnt )]+ − ηQnt−1)

]2
= (Qnt−1 − V )2 +

(
[γgnt (xnt )]+ − ηQnt−1

)2 − 2V [γgnt (xnt )]+

+ 2Qnt−1[γgnt (xnt )]+ − 2η(Qnt−1 − V )Qnt−1 (26)

where the first inequality is due to |max{x, y}− y| ≤ |x− y|
for any x, y ≥ 0.

Using the constraint function upper bound in (11), the
virtual queue upper bound in (13), and the triangle inequality,
the second term on the RHS of (26) has an upper bound∣∣[γgnt (xnt )]+ − ηQnt−1| ≤ |γgnt (xnt )| + ηQnt−1 ≤ γG +

η γGη = 2γG. From Qnt ≤
γG
η and |[x]+ − [y]+| ≤ |x − y|,

the fourth term on the RHS of (26) can be bounded as
Qnt−1[γgnt (xnt )]+ ≤ Qnt−1[γg̃nt−1(xnt )]+ + γ2G

η |g̃
n
t−1(xnt ) −

gnt (xnt )|. For the last term on the RHS of (26), using the
lower bound on the virtual queue Qnt ≥ V in (13), we
directly have −(Qnt−1 − V )Qnt−1 ≤ 0. Substituting the above
three inequalities into the RHS of (26), rearranging terms, and
dividing by 2, we complete the proof.

Using the results in Lemma 4, we bound the hard constraint
violation (8) of COMUDO in the following theorem.

Theorem 3. The hard constraint violation yielded by CO-
MUDO is upper bounded as

Vioh(T ) ≤ γG

ηV N

T∑
t=2

N∑
n=1

∣∣g̃nt−1(xnt )− gnt (xnt )
∣∣

+
R

αγV

T∑
t=2

‖x◦t−1−x◦t ‖+
2R

αγV

T∑
t=2

‖nt‖+
1

2αγV

T∑
t=2

‖nt‖2

+
D(R+ E)T

γV
+
αD2T

2γV
+

R2

2αγV
+

2γG2T

V
+G. (27)

Proof: Substituting (25) of Lemma 4 into (18) of Lemma 3,
summing the resulting inequality over n = 1, . . . , N and
t = 2, . . . , T , dividing both sides by N , and then rearranging
terms, we have

V

N

T∑
t=2

N∑
n=1

[γgnt (xnt )]+ ≤
1

N

T−1∑
t=1

N∑
n=1

[
fnt (x◦t )− fnt (x̂t)

]
− 1

N

T∑
t=2

N∑
n=1

Θn
t−1 +

γ2G

ηN

T∑
t=2

N∑
n=1

∣∣g̃nt−1(xnt )− gnt (xnt )
∣∣

+
R

α

T∑
t=2

‖x◦t−1 − x◦t ‖+
2R

α

T∑
t=2

‖nt‖+
1

2α

T∑
t=2

‖nt‖2

+
αD2T

2
+

1

2α

T∑
t=2

φt +
1

2αN

T∑
t=2

N∑
n=1

ψnt + 2γ2G2T.(28)

We can show that the first term on the RHS of (28) is
upper bounded by fnt (x◦t ) − fnt (x̂t) ≤ D(R + E),∀t. From
the initialization of the virtual queue Qn1 = V , the second term

on the RHS of (28) satisfies −
∑T
t=2 Θn

t−1 = 1
2

∑T
t=2[(Qnt−1−

V )2 − (Qnt − V )2] = 1
2 [(Qn1 − V )2 − (QnT − V )2] ≤ 1

2 (Qn1 −
V )2 = 0. Substituting the above two inequalities, and the
derived bounds on

∑T
t=2 φt and

∑N
n=1 ψ

n
t into (28), dividing

by γV , and noting that |gn1 (xn1 − x̂0)| ≤ G, we have (27).

C. Reaching Sublinear Regret and Hard Constraint Violation

As is generally the case for online optimization, problem
P may be impossible to solve exactly when both the loss
functions and the channel states are fully dynamic and their
information is delayed. However, COMUDO can simultane-
ously achieve sublinear dynamic regret (6), sublinear static
regret (7), and sublinear hard constraint violation (8), when the
underlying system gradually stabilizes over time. This suggests
that it can closely track the system environmental dynamics
even when they continuously fluctuate over time.

To capture the system environmental dynamics, we in-
troduce two commonly used system variation measures
[25], [29], [30], [33], [34], [38]-[41]. The first one is the
accumulated difference of the dynamic online benchmarks (or
the path length)

∑T
t=2 ‖x◦t−1−x◦t ‖ = O(Tµ). The second one

is the accumulated difference of adjacent constraint functions
1
N

∑T
t=2

∑N
n=1 maxx∈X |g̃nt−1(x) − gnt (x)

∣∣ = O(T ν). Here,
µ, ν ∈ [0, 1] represent the time variability. We set the power
regularization factor λ = O(T 1−ω), such that the accumulated
noise satisfies

∑T
t=2 ‖nt‖ = O(Tω) and

∑T
t=2 ‖nt‖2 =

O(Tω) for any ω ∈ [0, 1].
The following corollary provides convergence rates for the

dynamic regret and the hard constraint violation, in terms
of the above system variation measures. This is achieved by
properly selecting α, η, γ, and V in the bounds provided by
Theorems 1 and 3.

Corollary 1. Dynamic regret and hard constraint violation:
Let α = T

max{µ,ω}−1
2 , η = T ν−1, γ > 1

G , and V = T 1−ν in
COMUDO, then we have

Regd(T ) = O(T
1+max{µ,ω}

2 ), (29)
Vioh(T ) = O(T ν). (30)

We can see from Corollary 1 that a sufficient condition for
COMUDO to reach Regd(T ) = o(T ) and Vioh(T ) = o(T )
is: µ, ν, ω < 1, i.e., the accumulated system variations grow
sublinearly over time. In this case, both Regd(T ) and Vioh(T )
are guaranteed to converge. Note that even for error-free
online optimization [25], [29], [30], [33], [34], [38]-[41],
sublinear system variation is necessary for an online algorithm
to achieve sublinear dynamic performance bounds.

The following corollary provides convergence rates for the
static regret and the hard constraint violation, by substituting
the corresponding values of α, η, γ, and V into the bounds
provided by Theorem 2 and 3.

Corollary 2. Static regret and hard constraint violation: Let
α = T

ω−1
2 , η = T ν−1, γ > 1

G , and V = T 1−ν in COMUDO,
then we have

Regs(T ) = O(T
1+ω
2 ), (31)

Vioh(T ) = O(T ν). (32)



Remark 4. The modified saddle-point-type algorithm pro-
posed in [22] for OTA FL with fixed long-term constraints
achieved O(

√
T ) static regret and O(T

3
4 ) soft constraint

violation when only the information of the loss functions
is delayed. No dynamic regret bound is given in [22]. In
contrast, with delayed information of the loss functions,
channel states, and power constraints, COMUDO achieves
O(T

1+max{µ,ω}
2 ) dynamic regret that smoothly approaches a

static regret of O(T
1+ω
2 ) as the dynamics of the online

benchmark decrease. Meanwhile, COMUDO provides O(T ν)
hard constraint violation that smoothly approaches O(1) as the
channel fluctuations reduce. Note that the learning objective
in [22] is for each device to minimize its own accumulated
local loss instead of the global loss. This eliminates the need
of analog model aggregation and thus the resulting O(

√
T )

static regret bound in [22] is not impacted by the channel
noise, i.e., the parameter ω. The O(T

1+ω
2 ) static regret of

COMUDO also approaches O(
√
T ) as the variation of channel

noise diminishes.

VI. SIMULATION RESULTS

We conduct numerical experiments on OTA FL with long-
term transmit power control [18]-[22] for standard image
classification tasks. We showcase the performance advantages
of COMUDO compared with the state-of-the-art approaches,
for both convex and non-convex losses under realistic wireless
network conditions. This complements the theoretical bound-
ing analysis of COMUDO in Section V.

A. Simulation Setup
We investigate an OTA FL system comprised of a central

server and N = 10 local devices. The noisy multiple-access
fading channel consists of C = 1000 orthogonal subchannels
divided in frequency. Each subchannel occupies BW = 15 kHz
bandwidth. We set the noise figure to NF = 10 dB and the
noise power spectral density to N0 = −174 dBm/Hz. We
model the wireless fading channel between the central server
and each local device n as a Gauss-Markov process [44],
where the channel state evolves according to hnt+1 = κhnt +rnt .
Here, κ represents channel correlation, hnt ∼ CN (0, ξnI)
with ξn representing the path-loss and shadowing effects,
rnt ∼ CN (0, (1− κ2)ξnI) is independent of hnt . We consider
pedestrian speed and set κ = 0.997. We consider urban
macrocells and set ξn[dB] = −31.54−37 log10(ρn)−sn [45],
where ρn is the distance to the server, and sn ∼ CN (0, σ2)
represents shadowing. We set ρn = 500m,∀n and σ2 = 8 dB.
We assume the devices share the same power limit P .

We conduct classification on the MNIST [46], Fashion-
MNIST [47], and CIFAR-10 [48] datasets for model training
and evaluation. We consider a setting with streaming data and
non-i.i.d. distribution, where each local device n can only
access to data samples of label n and gathers a dataset of
20 random data samples at the end of each round t.

We implement the following benchmark schemes:
• Idealized FL: The idealized error-free FL algorithm [1]

performs the standard local gradient descent model up-
date and global model averaging at each round. It serves
as a performance upper bound for COMUDO.

• OTA-LPC: The long-term power control (LPC) scheme
[18] sets the transmit power around a predefined threshold
by adjusting the power-scaling factor at each round. We
set the threshold as the average power limit as in [18].

• OTA-RCI: The regularized channel inversion (RCI) strat-
egy [20] (structurally similar to the one derived in [19])
is the state-of-the-art long-term power control approach
for OTA FL over homogeneous and static channels. We
extend it to model-difference aggregation over heteroge-
neous and time-varying channels.

• OMUAA: The online model updating with analog ag-
gregation (OMUAA) algorithm in [21] is the current
best solution for OTA FL with soft long-term power
constraints, based on the current information of the i.i.d.
data and channel at each round.

• OTA-MSP: The modified saddle-point (MSP) algorithm
in [22] is the state-of-the-art approach for OTA FL
with fixed soft long-term constraints and delayed loss
function information. We extend it to model-difference
aggregation and replace its fixed constraints with time-
varying power constraints in (5).

Among the above benchmarks, only OTA-MSP is designed
to use delayed information on the loss functions. For fair
comparison with COMUDO, we use delayed loss function and
channel state information in all benchmark solutions. Since
OTA-LPC, OTA-RCI, OMUAA, and OTA-MSP consider soft
power violation, they are run with a time-averaged power limit
P at each device.

B. Convex Logistic Regression

For the experiment on convex loss functions, we employ
multinomial logistic regression with cross-entropy loss, using
the MNIST dataset. The total number of model parameters is
7840. For fair comparison among different schemes, we first
find that setting the learning rate α = 0.01 in Idealized FL
achieves the best learning performance, and then we use the
same α for COMUDO, OTA-LPC, OTA-RCI, OMUAA and
OTA-MSP. We set xUB = 10, λ = 2 × 10−6, η = 1 × 10−3,
γ = 1.2× 10−2, and V = 20 in COMUDO. In our presented
results, we have optimized the hyperparameters of all other
schemes.

Fig. 2 shows the averaged test accuracy and the averaged
normalized hard power violation 1

NT

∑T
t=1

∑N
n=1

[Pnt −P ]+
P

in dB, where Pnt is the transmit power consumed by device n
at time t. For a fair comparison of the learning performance,
all schemes except Idealized FL are fine tuned to consume
nearly the same average transmit power at the end of round
T , i.e., 1

TN

∑T
t=1

∑N
n=1 P

n
t ≈ P . We set P = 16 dBm and

T = 500. We observe that OTA-LPC achieves the lowest
79.4% average test accuracy. The reason is that the OTA-LPC
approach only adjusts the power scaling factor to satisfy the
power constraint, resulting in higher scaled noise during the
model training process compared to the other schemes. OTA-
RCI achieves 83.5% average test accuracy, which is slightly
better than the 81.3% accuracy yielded by OTA-MSP. This is
because the subchannel-wise inversion design provides OTA-
RCI more direct power control capabilities compared with
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Fig. 2. Averaged test accuracy and normalized hard power violation for
convex logistic regression on MNIST.
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Fig. 3. The impact of transmit power limit P on the averaged test accuracy
and training loss.

the single gradient-descent-based dual update used in OTA-
MSP. The virtual queue mechanism in COMUDO serves as
a power-violation-aware direct regularization on the model
difference. Together with its effectiveness in controlling the
hard power constraint violation, COMUDO achieves a higher
86.1% average test accuracy than the 84.2% accuracy of
OMUAA, while incurring much less hard power variation in
both the initial and final training stages.

Fig. 3 presents a comparison of the averaged test accuracy
and training loss performance between COMUDO, OTA-LPC,
OTA-RCI, OMUAA, and OTA-MSP under different transmit
power limit P . We simply change γ in COMUDO to meet
different power limits. We have also optimized the hyper-
parameters of all other schemes to meet different P values.
We observe that as P decreases, the accuracies of all other
four schemes drop more significantly than COMUDO. For
example, COMUDO can achieve ∼ 80% test accuracy while
OMUAA achieves around ∼ 70% test accuracy, and the other
three schemes can only achieve ∼ 60% test accuracy when
P = 8 dBm. This is because the virtual-queue-based hard
power violation control in COMUDO dynamically regularizes
the model difference to generate smaller noise during model
training, compared with adjusting the power scaling factor in
OTA-LPC, the channel inversion design in OTA-RCI, the soft
power violation control in OMUAA, and the gradient-descent-
based dual update in OTA-MSP.

C. Non-Convex Neural Network Training

While the theoretical performance bounds of COMUDO
derived in Section V are established for convex loss functions,
we also evaluate the practical performance of COMUDO
in non-convex convolutional neural network training on the
MNIST, Fashion-MNIST, and CIFAR-10 datasets. For the
MNIST classification task, we employ a neural network ar-
chitecture consisting of a convolutional layer with 10 filters
of size 7 × 7, followed by a ReLU activation layer, and a
fully connected layer with a softmax output. The total number
of model parameters in this architecture is 48, 910. To ensure
fair comparison, all the schemes are evaluated using the same
α = 0.02 learning rate. We set γ = 2× 10−3, η = 1× 10−3,
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Fig. 4. Averaged test accuracy and normalized hard power violation for non-
convex neural network training on MNIST.

TABLE I
COMPARISON ON AVERAGED TEST ACCURACY

Datasets Idealized-FL COMUDO OTA-LPC OTA-RCI OMUAA OTA-MSP

MNIST 90.35 87.72 74.06 80.68 81.27 79.02
Fashion-MNIST 80.56 78.00 71.55 73.23 73.82 72.35

CIFAR-10 63.29 59.51 53.96 55.38 56.57 54.08

and V = 1 in COMUDO and have optimized the hyper-
parameters of all the other schemes.

Fig. 4 shows the averaged test accuracy and normalized hard
power violation for neural network training on MNIST with
P = 16 dBm and T = 2000. In the context of non-convex
neural network training with noise, gradient descent based
algorithms such as COMUDO typically converge to points in
the vicinity of a local minimum. Around these local minima,
the learning performance of COMUDO is close to Idealized-
FL and substantially outperforms the rest of the four schemes.

We further consider fashion-MNIST and CIFAR-10 classifi-
cation in Table I. For fashion-MNIST, we use a convolutional
network consisting of two convolutional layers succeeded
by two fully connected layers. The total number of model
parameters is 144,370. We use the same power limit P and
total training rounds T as for MNIST. For CIFAR-10, we use
three convolutional layers followed by three fully connected
layers with a total of 2,456,842 model parameters. The detailed
neural network settings are available in our released code. Due
to the complexity of CIFAR-10 classification, we set P = 23
dBm and T = 4000 to reach satisfactory performance. From
Table I, we can see that COMUDO significantly outperforms
OTA-LPC, OTA-RCI, OMUAA, and OTA-MSP under differ-
ent datasets and neural network settings.

VII. CONCLUSIONS

We have examined the problem of online OTA FL with
time-varying loss functions and power constraints under delays
on both the loss function and channel state information.
We introduce an effective algorithm named COMUDO that
minimizes the accumulated time-varying loss at the server,
while adhering to individual power constraints at the local
devices. COMUDO provides closed-form local model updates
that are resilient to delays on the loss functions, channel
states, and power constraints. Through a novel lower-and-
upper-bounded virtual queue design, COMUDO achieves im-
proved regret and hard constraint violation bounds compared
with the current best results, which is proven using a new
Lyapunov drift analysis technique. Our simulation results on
canonical image classification datasets show that COMUDO
significantly outperforms the state-of-the-art methods under
practical wireless network conditions.

The authors have provided public access to their
code and data at https://github.com/yituo-liu/INFOCOM2025-
COMUDO.
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