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Abstract—Distributed minimax optimization is essential for
robust federated learning, offering resiliency against the vari-
ability in data distribution. Most previous works focus only on
learning guarantees and convergence analysis, without explicit
consideration of the communication delay, which can be crucial
in practical systems. In this work, we consider the problem
of communication-efficient distributed minimax optimization via
judicious client sampling, proposing an algorithm termed CE-
MINIMAX, which takes into consideration both the training
convergence performance and the communication time per train-
ing round. We derive convergence bounds for CE-MINIMAX
under both convex and non-convex loss functions, which we
then use to design the client sampling probabilities in joint
consideration of the communication time. We conduct numerical
experiments with canonical classification datasets to demonstrate
that CE-MINIMAX can achieve higher worst-case test accuracy
under substantially reduced communication time, compared with
state-of-the-art client sampling schemes for distributed minimax
optimization.

I. INTRODUCTION

With the advent of ubiquitous computing devices and
vast amount of available data, distributed machine learning,
especially federated learning (FL), has received increasing
attention in research [1]–[4]. In FL, the goal is to train a model
utilizing the locally stored data from all clients in a distributed
manner, with a central server serving as the coordinator. Since
each client maintains its local dataset, each local loss function
fn(·) can only be accessed at the corresponding client n.

In standard FL, the optimization objective is to minimize
a global loss, defined as a fixed p-weighted sum of the local
losses, i.e.,

min
w∈W

f(w) :=

N∑
n=1

pnfn(w), (1)

where N is the number of clients and w ∈ W contains the
model parameters. The weight vector p here is a given constant
vector, whose nth element is typically chosen to be 1

N or a
number proportional to the local data size at client n. Numer-
ous first-order methods such as federated stochastic gradient
descent (FEDSGD) [4], federated averaging (FEDAVG) [4],
local stochastic gradient descent (LOCAL SGD) [5], and many
variants have been proposed to solve (1). However, the mini-
mization objective in (1) only guarantees model performance
on a specific p-weighted mixture of the local data distributions.
It has been observed that the performance of the learned model
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on some clients can be abysmal in some applications, which
are highly undesirable [6], [7].

To address this issue, the so called agnostic federated
learning (AFL) was first proposed in [8], which considered
the following minimax optimization problem,

min
w∈W

max
p∈P

F (w,p) :=

N∑
n=1

pnfn(w), (2)

where p ∈ P is a general weight vector to be optimized. The
solution of (2) promotes uniform performance on the learned
model over the data distributions of all clients, i.e., distri-
butionally robust learning [7]. Various distributed minimax
optimization methods have been studied in [8]–[17].

In FL, due to the large number of model or gradient
parameters that need to be sent from the clients to the server,
communication efficiency is of crucial importance [1]–[4].
In particular, in a large network with many clients, only a
subset of the clients should be selected to participate, in order
to reduce the communication overhead. This is commonly
termed client sampling. However, none of [8]–[17] above has
considered the communication delay. For example, in [8], the
clients are selected uniformly at random or only based on the
value of the weight vector p. Clearly, these client selection
schemes are suboptimal under realistic communication condi-
tions or general allocation of resources that are heterogeneous
over different clients. However, no prior work has studied the
impact of client sampling on the communication overhead in
distributed minimax optimization.

In this work, we are motivated to design an algorithm to
distributedly train a robust model by solving the minimax
optimization problem in (2), with a principled client sampling
strategy to also reduce the communication delay. Toward
this goal, we need to overcome the following challenges: i)
The algorithm for solving the minimax optimization problem
should enable flexible client sampling strategies and have con-
vergence guarantees. ii) The client sampling strategy should
take into account not only the learning performance but also
the communication overhead. iii) The optimization of client
sampling should be solved efficiently. In this context, the
contributions of this paper are as follows:

• We propose a distributed Communication-Efficient Min-
imax (CE-MINIMAX) algorithm to solve problem (2)
under the FL framework with reduced communication
delay. CE-MINIMAX allows random client sampling with
any probability distribution, while guaranteeing the con-



vergence of FL training. To the best of our knowledge, no
existing work in the literature provides explicit consider-
ation of flexible client sampling for distributed minimax
optimization.

• We derive convergence bounds for both convex and non-
convex loss functions. In the convex case, we bound the
expected duality gap, while in the non-convex case, we
bound the stationarity of a Moreau envelope of the worst-
case loss function. The convergence bounds are then
used to optimize the client sampling probabilities in CE-
MINIMAX, in joint consideration of the communication
time per training round.

• We conduct numerical studies for classification tasks on
canonical image datasets over heterogeneous communica-
tion environments. Our simulation results show that CE-
MINIMAX increases FL robustness for the worst-case test
data distribution, and it can substantially reduce the com-
munication time, compared with state-of-the-art client
sampling methods for distributed minimax optimization.

The remainder of the paper is organized as follows. We pro-
vide a literature review on distributed minimax optimization
and client sampling in Section II. The distributed minimax
optimization framework is discussed in Section III, followed
by the design and analysis details of CE-MINIMAX in Sec-
tion IV. The simulation results are presented in Section V. We
give conclusion remarks in Section VI.

II. RELATED WORK

A. Centralized and Distributed Minimax Optimization

Minimax problems, also sometimes under the name of
saddle-point problems, have been extensively studied in the
centralize setting. They include the seminal work of von
Neumann’s minimax theorem [18] to solve bilinear minimax
problems, as well as more general forms in game theory [19]
and optimization [20]–[23]. Numerous first-order methods
have been proposed to solve minimax problems, including
gradient descent ascent (GDA) and stochastic gradient descent
ascent (SGDA) [21], [24], [25] with acceleration [26], [27],
extra-gradient (EG) [28]–[31], and optimistic gradient descent
ascent (OGDA) [30]–[32].

The authors of [8] were the first to propose distributed so-
lutions to minimax optimization. The resultant STOCHASTIC-
AFL algorithm uses SGDA and provides learning performance
guarantee for convex loss functions. Subsequently, leveraging
gradient tracking, FEDGDA-GT was proposed to achieve
linear convergence for minimax optimization of Lipschitz
smooth and strongly-convex-strongly-concave functions in [9].
Allowing multi-step local updates, the distributionally robust
federated averaging (DRFA) [10] and the local stochastic gra-
dient descent ascent (LOCAL-SGDA) [11] were proposed to
achieve communication-convergence trade-off for distributed
minimax problems. Utilizing different momentum techniques,
SGDAM-PEF and SGDAM-REF were proposed and ana-
lyzed in [12] while momentum local SGDA combined momen-
tum and local updates in [13]. Applying variance reduction

techniques, DGDA-VR was proposed to solve distributed
nonconvex strongly-concave minimax problems [14]. It was
proposed to normalize the client updates to deal with client
heterogeneity in general minimax problems [15]. Furthermore,
lower bounds for distributed and decentralized minimax prob-
lems were analyzed in [16], [17].

None of these methods explicitly consider per-round com-
munication time with system constraints. Our work fills this
gap by introducing communication-aware client sampling.

B. Client Sampling in Standard Federated Learning

It is well-known that client selection can reduce the commu-
nication overhead in distributed learning [33]–[42]. An early
work to perform client selection in the FL setting was [33],
where the FEDCS algorithm was proposed to choose as many
clients as possible with resource constraints on computation
and communication. A meta algorithm FLANP was proposed
in [34] to make FL straggler-resilient under system hetero-
geneity by geometrically increasing client participation. For
wireless FL, a joint learning, wireless resource allocation, and
client selection problem was proposed and solved in [35], and
the FEDL algorithm was proposed to optimize CPU-cycle
control, uplink power control, accuracy level and learning
rate in [36]. All of [33]–[36] considered deterministic client
selection.

It is possible to allow probabilistic client sampling where
each client is chosen with some probability to avoid combi-
natorial optimization of client selection and to achieve more
flexibility in performance improvement. Using the norms
of the gradients as the importance of the data at different
clients, client sampling for FL was proposed and analyzed
in [37] without any explicit system consideration. Importance
and channel-aware probabilistic client sampling was proposed
in [38], sampling one client per round. Optimization to mini-
mize convergence time was solved in [39], assuming that one
client has to always be connected to the central server. Further
improvements to optimize the client sampling probabilities for
communication efficiency have been proposed in [40]–[42].

However, all of the aforementioned methods only consider
client sampling for the standard FL problem of minimizing the
weighted sum loss as defined in (1). They are not applicable
to the minimax optimization problem, which is the focus of
our work.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. Federated Learning with Minimax Optimization

We consider the conventional client-server system architec-
ture in FL, where a central server coordinates the training
of a machine learning model with N clients indexed by
N = [N ] := {1, . . . , N} over a star network topology. All
clients can directly communicate with the central server but
no pair of clients can communicate with each other.

For any n ∈ [N ], the local dataset Dn at client n is drawn
independently from data distribution Pn and has size Dn. We
refer to the j-th data point at client n as zn,j for all n ∈
[N ] and j ∈ [Dn]. We denote the loss incurred on one data



point zn,j under model w by ℓn,j(w) = ℓ(w, zn,j) for all
n ∈ [N ] and j ∈ [Dn]. Then, the average loss incurred on
a mini-batch of data points J under model w is ℓn,J(w) =
1
|J|

∑
j∈J ℓn,j(w) for all n ∈ [N ] and J ⊆ Dn, and the local

empirical loss for the entire dataset at client n under model
w is fn(w) = 1

Dn

∑
j∈[Dn]

ℓn,j(w) for all n ∈ [N ].
The objective of our FL system is distributionally robust

learning [7], [8], i.e., to minimize the loss over the worst
mixture of the N clients’ local data distributions, formulated
as a minimax optimization problem in (2). Note that p ∈ P
in (2). If p is unconstrained, then problem (2) is equivalent to
minimizing the local loss of a client with the worst-case local
data distribution. However, for general P , we are interested in
the worst mixture of data distributions.

B. Client Sampling and Communication Overhead

We assume T discrete time slots, i.e., FL training rounds, to
solve problem (2), whose index set is T = {0, 1, . . . , T − 1}.
In each round t, each client n ∈ [N ] is selected inde-
pendently with probability q

(t)
n to participate in the train-

ing. We denote the client sampling vector in round t by
q(t) = [q

(t)
1 , . . . , q

(t)
n , . . . , q

(t)
N ]. We further assume the ex-

pected number of scheduled clients per round is set to m,
i.e.,

∑N
n=1 q

(t)
n = m for all t ∈ T . This can be interpreted as

a limitation due to the per-round resource budget given to the
system.

Besides the accuracy of solution to problem (2), we are
also interested in the communication overhead over the T
training rounds. In particular, we note that in practical net-
work systems, the clients can have diverse communication
capabilities and channel conditions. For example, a client
with weak channel will require increased duration to transmit
its parameter updates to the server. Let T

(t)
n be the uplink

communication time of any client n in round t, which can
be computed using channel state estimates from classical
communication techniques such as pilot signaling. Then, the
expected total communication time for round t is given by

Γ(q(t)) = E{a(t)
n }N

n=1

[ ∑
n∈[N ]

a(t)n T (t)
n

]
=

∑
n∈[N ]

q(t)n T (t)
n , (3)

where a
(t)
n is the indicator function for whether client n is

scheduled in round t. A typical example of this is time division
multiple access (TDMA), where the total communication time
is determined by the sum of all client-server transmission
times.

For downlink communication, since the server can broadcast
model w to all clients with constant time requirement, we do
not include it in our communication overhead optimization.
Therefore, our goal in this work is to design a distributed
optimization scheme to solve the minimax problem (2) while
minimizing the total uplink communication time, i.e., the sum
of (3) over all T training rounds.

IV. CLIENT SAMPLING FOR COMMUNICATION-EFFICIENT
DISTRIBUTED MINIMAX OPTIMIZATION

We propose a new algorithm called Communication-
Efficient Minimax (CE-MINIMAX) with flexible client sam-
pling to improve communication efficiency. We first provide
an outline on the two phases of the proposed algorithm, we
then derive a convergence bound for its minimax optimization
performance, which is followed by optimization design of the
client sampling probabilities based on the convergence bound
and communication overhead.

A. Outline of CE-Minimax

CE-Minimax adopts the general SGDA framework [8], [21],
[24], [25], but we add special treatment to accommodate
the client sampling probability vector q(t). The server first
initializes a global model w(0) and a uniform weight vector
p(0) = [1/N, . . . , 1/N ]. In each training round t, there are two
phases. In Phase 1 the model parameter vector w is updated,
while in Phase 2 the weight vector p is updated. The algorithm
terminates after T training rounds. The pseudocode of CE-
MINIMAX is given in Algorithm 1.

In Phase 1, the server samples clients to obtain a subset
S(t) ⊆ [N ] of all clients, with sampling probabilities given by
the vector q(t) from the solution to optimization problem P1,
which is later detailed in Section IV-C. Specifically, the server
samples each client n via an independent Bernoulli trial with
success probability given by q

(t)
n . The server then broadcasts

the current model w(t) to all clients n ∈ S(t). After receiving
the model w(t), each client n ∈ S(t) samples a mini-batch
of data points J

(t)
n ⊆ Dn uniformly at random and calculates

the stochastic gradient of the local loss ∇wℓ
n,J

(t)
n
(w(t)) in

parallel. Each client n ∈ S(t) then sends ∇wℓ
n,J

(t)
n
(w(t)) to

the server.
The server aggregates all available ∇wℓ

n,J
(t)
n
(w(t)) to con-

struct the stochastic gradient ∇̃wF (w(t),p(t)) via

∇̃wF (w(t),p(t)) =
∑
n∈N

p
(t)
n a

(t)
n

q
(t)
n

∇wℓ
n,J

(t)
n
(w(t)). (4)

Note that in the aggregation of local gradients in (4),
we compensate each local gradient by dividing its sam-
pling probability such that the aggregated stochastic gra-
dient is always an unbiased estimation of the full gra-
dient, i.e., E

q(t),J
(t)
n ∼Dn

[
∑

n∈N
p(t)
n a(t)

n

q
(t)
n

∇wℓ
n,J

(t)
n
(w(t))] =∑

n∈N p
(t)
n ∇wfn(w

(t)) = ∇wF (w(t),p(t)). Then, the server
updates the model via

w(t+1) = ΠW(w(t) − ηw∇̃wF (w(t),p(t))), (5)

where ηw is the learning rate of model updates and ΠW(·) is
the projection onto the set W .

In Phase 2, the server first samples U (t) clients of size m
uniformly at random and broadcasts the model w(t) to all
sampled clients. Each client n ∈ U (t) samples a mini-batch
K

(t)
n of its data points uniformly at random and calculates

the sampled loss ℓ
n,K

(t)
n
(w(t)) in parallel. After all sampled



Algorithm 1: CE-MINIMAX

Input: initial model w(0), initial weight vector
p(0) = [1/N, . . . , 1/N ], learning rates ηw and ηp, total
number of rounds T , hyperparameter λ, and m.

Output: ŵ = 1
T

∑T−1
t=0

1
|S(t)|

∑
n∈S(t) w

(t)
n and

p̂ = 1
T

∑T−1
t=0 p(t).

1: for each round t = 0, . . . , T − 1 do
2: // Phase 1
3: Server calculates q(t) via solving P1.
4: Server samples clients S(t) ⊆ N by q(t).
5: Server broadcasts w(t) to S(t).
6: for each client n ∈ S(t) do
7: Client n samples a mini-batch of data points

J
(t)
n ⊆ Dn uniformly at random.

8: Client n calculates ∇wℓ
n,J

(t)
n
(w(t)).

9: Client n sends ∇wℓ
n,J

(t)
n
(w(t)) to the server.

10: end for
11: Server constructs ∇̃wF (w(t),p(t)) via (4).
12: Server updates the model parameters via (5).
13:
14: // Phase 2
15: Server samples clients U (t) ⊆ N uniformly at random.
16: Server broadcasts w(t) to U (t).
17: for each client n ∈ U (t) do
18: Client n samples a mini-batch of data points

K
(t)
n ⊆ Dn uniformly at random.

19: Client n calculates ℓ
n,K

(t)
n
(w(t)).

20: end for
21: Server constructs ∇̃pF (w(t),p(t)) via (6).
22: Server updates the weight vector via (7).
23: end for

clients send the estimated loss ℓ
n,K

(t)
n
(w(t)) to the server,

the server constructs the stochastic gradient ∇̃pF (w(t),p(t)),
where its nth element is defined as

[∇̃pF (w(t),p(t))]n =

{
N
mℓ

n,K
(t)
n
(w(t)), if n ∈ U (t),

0, otherwise.
(6)

Finally, the server updates the weight vector via projected
gradient ascent

p(t+1) = ΠP(p
(t) + ηp∇̃pF (w(t),p(t))), (7)

where ηp is the learning rate of weight vector updates and
ΠP(·) is the projection onto the set P .

Note that for simplicity we choose uniform client sampling
for the weight p update in Phase 2. We can allow a more flex-
ible strategy there but that does not change our convergence
analysis, and it has limited impact on our communication
overhead since each client only transmits a float number in
Phase 2 instead of the entire gradient in Phase 1.

B. Convergence Analysis with Client Sampling

In order to optimize {q(t)}T−1
t=0 , we first need to analyze its

impact on the convergence performance of the CE-MINIMAX

algorithm. Since we are solving the minimax optimization
problem (2) instead of the conventional minimization prob-
lem (1), the existing convergence analysis of first-order meth-
ods for distributed minimization such as [5] does not directly
apply.

A convergence bound was derived in [8] for minimax
optimization, account for how the optimization variables w
and p are updated iteratively. However, [8] considered only
the limited scenario where a single client is chosen in each
training round, so its analysis does not apply to CE-MINIMAX,
where multiple clients are sampled in each round based on a
general vector q(t). Furthermore, the analysis in [8] is limited
to convex loss functions. Here, we consider both convex
and non-convex loss functions, which enables more general
applicability to the training of machine learning models, such
as neural networks, that induce non-convex loss.

We adopt the following commonly used assumptions [8],
[10], [43].

Assumption 1 (Bounded Domains). The diameters of the
compact convex set W and P are RW and RP , respectively.

Assumption 2 (Bounded Gradients). There exists some pos-
itive Gw and Gp such that ∥∇wfn(w)∥2 ≤ Gw,∀w ∈
W,∀n ∈ N and ∥∇pF (w,p)∥2 ≤ Gp,∀w ∈ W,∀p ∈ P .

Assumption 3 (Bounded Variance of Stochastic Gradients).
There exist some non-negative constants σw,I and σp such
that E[∥∇wℓ

n,J
(t)
n
(w) − ∇wfn(w)∥22] ≤ σ2

w,I holds for all

n ∈ N , t ∈ T , w ∈ W and J
(t)
n ∼ Dn and E[∥∇̃pF (w,p)−

∇pF (w,p)∥22] ≤ σ2
p holds for all w ∈ W , p ∈ P .

1) Convex loss: We first analyze the convergence perfor-
mance when the local loss functions are convex in w.

Assumption 4 (Convexity). For all n ∈ N , the local loss
fn(·) is convex, i.e., fn(w1) ≥ fn(w2) + ∇fn(w2)

T (w1 −
w2) holds ∀w1,w2 ∈ W .

Clearly, in this case, for any given p ∈ P , F (w,p) is
convex in w as it is a non-negative weighted sum of convex
functions. Furthermore, for any given w ∈ W , F (w,p)
is linear in p. Hence, (2) is a constrained convex-concave
minimax optimization problem.

The optimality of a solution (ŵ, p̂) for constrained convex-
concave optimization can be measured by the duality gap,
given by

gap(ŵ, p̂) := max
p∈P

F (ŵ,p)− min
w∈W

F (w, p̂), (8)

where p̂ = 1
T

∑T−1
t=0 p(t) is the time-averaged weights,

ŵ = 1
T

∑T−1
t=0

1
|S(t)|

∑
n∈S(t) w

(t)
n contains the time-averaged

model parameters, and S(t) is the set of sampled clients
for model updates in round t. A minimax point (w∗,p∗),
i.e., Nash equilibrium (NE), always exists in the constrained
convex-concave minimax optimization problem. By definition,
the duality gap of any minimax point (w∗,p∗) is zero, i.e.,
gap(w∗,p∗) = maxp∈P F (w∗,p)−minw∈W F (w,p∗) = 0.



Therefore, the smaller gap(ŵ, p̂) is, the better the solution
(ŵ, p̂) is.

Theorem 1 (Convex-Concave). Under Assumption 1-4, the
expected duality gap of CE-MINIMAX with arbitrary client
sampling probabilities {q(t)}T−1

t=0 has the following upper
bound:

E [gap(ŵ, p̂)] ≤ R2
P

2ηpT
+

ηp(G
2
p + σ2

p)

2
+

RPσp√
T

+
R2

W
2ηwT

+
ηw
2T

T−1∑
t=0

N∑
n=1

p
(t)
n

q
(t)
n

(G2
w+σ

2
w,I)+

RW

T

√√√√T−1∑
t=0

N∑
n=1

p
(t)
n Ψ(q

(t)
n ), (9)

where Ψ(q
(t)
n ) = (

(1−q(t)n )G2
w

q
(t)
n

+
σ2
w,I

q
(t)
n

).

Proof. Please see Appendix A.

Remark 1. When q
(t)
n = 1 holds for all n ∈ N and t ∈ T , i.e.,

full participation of clients, and we let ηw = Rw√
T (G2

w+σ2
w,I)

and ηp =
Rp√

T (G2
p+σ2

p)
in (9), we obtain the same convergence

rate of O( 1√
T
) achieved in [8].

2) Non-convex loss: With non-convex loss functions, an NE
may not exist, and the duality gap is no longer a meaningful
measure of optimality. To facilitate our analysis, we define
Φ(w) = maxp∈P F (w,p) such that our optimization formu-
lation (2) is equivalent to minw∈W Φ(w). Note that Φ(w) can
be computed efficiently because F (w, ·) is linear in p given
any w ∈ W . However, since Φ(·) itself is non-convex in w,
the problem of finding a global minimum of Φ(·) is in general
NP-hard. Instead, we will follow a common approach in the
non-convex optimization literature to find a stationary point of
Φ. Note that the function Φ(·) generally is not differentiable,
making it impossible to directly use the gradient to find such
a stationary point.

Instead, we leverage a Moreau envelope on Φ(·) for con-
vergence analysis [25], [43]. The µ-Moreau envelope of
a function Φ with a positive parameter µ is Φµ(w) =
minv∈W{Φ(v) + 1

2µ∥v − w∥2}. To properly choose the
hyperparameter µ and facilitate convergence analysis, we
further assume our minimax objective F is L-smooth, i.e.,
has Lipschitz gradients,

Assumption 5 (Smoothness). There exists a positive L such
that ∥∇F (w1,p1)−∇F (w2,p2)∥ ≤ L∥(w1,p1)−(w2,p2)∥,
holds ∀w1,w2 ∈ W and ∀p1,p2 ∈ P .

With this smoothness assumption, Φ can still be non-smooth
but it is a L-weakly convex function [25]. We then choose
µ = 1

2L and observe that Φ1/2L(·) is differentiable. Hence, the
stationarity of the function Φ can be approximately measured
by ∥∇Φ1/2L(·)∥.

Theorem 2. Under Assumption 1-3 and Assumption 5, the
(1/2L)-Moreau envelope of Φ in CE-MINIMAX with arbitrary

client sampling probabilities {q(t)}T−1
t=0 satisfies the following

upper bound:

1

T

T−1∑
t=0

E
[∥∥∥∇Φ1/2L(w

(t))
∥∥∥2]

≤
4Φ1/2L(w

(0))

ηwT
+ 8L

(
R2

P
2ηpT

+
ηp
2
(G2

p + σ2
p)

)
+ 4

RWL

T

T−1∑
t=0

N∑
n=1

p(t)n

√
Ψ(q

(t)
n )

+
4Lηw
T

T−1∑
t=0

N∑
n=1

p
(t)
n

q
(t)
n

(G2
w + σ2

w,I), (10)

where Ψ(q
(t)
n ) =

(
(1−q(t)n )G2

w

q
(t)
n

+
σ2
w,I

q
(t)
n

)
.

Proof. Please see Appendix B.

Remark 2. When q
(t)
n = 1 holds for all n ∈ N and t ∈ T , i.e.,

full participation of clients, and we let ηw =

√
Φ1/2L(w(0))

LT (G2
w+σ2

w,I)

and ηp =
Rp√

T (G2
p+σ2

p)
in (9), the convergence rate is simplified

to O( 1√
T
).

C. Optimization of Client Sampling Probabilities

In this section, we utilize the convergence bounds in The-
orem 1 and Theorem 2, and further take into account the
communication delay to optimize the client sampling proba-
bilities {q(t)}T−1

t=0 . This then fully specifies the CE-MINIMAX
algorithm outlined in Section IV-A.

From the bounds in (9) and (10), we can see that only
the last two expressions on the right-hand side are related to
the sampling probabilities {q(t)}T−1

t=0 . However, neither of the

terms
√∑T−1

t=0

∑N
n=1 p

(t)
n Ψ(q

(t)
n ) and

∑N
n=1 p

(t)
n

√
Ψ(q

(t)
n ) is

a convex function of q(t), making minimization of the up-
per bounds intractable. Instead, we make a monotonicity-
preserving convex relaxation by removing the square root
operation. Then, by rearranging terms, we have the follow-
ing two expressions for convex loss and non-convex loss,
respectively: 1

T

∑T−1
t=0

∑N
n=1

p(t)
n

q
(t)
n

(ηw

2 + RW)(σ2
w,I + G2

w) −
W
T

∑T−1
t=0

∑N
n=1 p

(t)
n G2

w and 1
T

∑T−1
t=0

∑N
n=1

p(t)
n

q
(t)
n

(4L(ηw +

RW)(G2
w + σ2

w,I)) − 1
T

∑T−1
t=0

∑N
n=1 p

(t)
n 4RWLG2

w. We ob-
serve that in both cases only the first term contains the
sampling probability q, which has the same pattern of
1
T

∑T−1
t=0

∑N
n=1

p(t)
n

q
(t)
n

ζ, where ζ is some constant independent

of {q(t)}T−1
t=0 .

Taking into account the communication time Γ(·) as defined
in Section III-B, we consider the following minimization
objective in each round t:

y0(t) =

N∑
n=1

p
(t)
n

q
(t)
n

+ λΓ(q(t)), (11)



(a) LR for Fashion (b) MLP for Fashion (c) LR for EMNIST (d) MLP for EMNIST

Fig. 1: Worst-case test accuracy over time for various λ values.

(a) Worst accuracy, Fashion (b) Average accuracy, Fashion (c) Worst accuracy, EMNIST (d) Average accuracy, EMNIST

Fig. 2: Worst-case and average test accuracies of LR.

(a) Worst accuracy, Fashion (b) Average accuracy, Fashion (c) Worst accuracy, EMNIST (d) Average accuracy, EMNIST

Fig. 3: Worst-case and average test accuracies of MLP.

where λ ∈ R+ is a hyper-parameter that represents the relative
importance of the communication time. Thus, we obtain the
following per-round optimization problem:

P1: minimize
q(t)

y0(t) (12)

subject to
N∑

n=1

q(t)n = m, (13)

0 < q(t)n ≤ 1, ∀n ∈ [N ]. (14)

Since Γ(·) is linear in q(t), the optimization problem P1
is convex and can be efficiently solved via standard convex
solvers [44]. Our proposed algorithm CE-MINIMAX uses the
optimal solutions of these per-round problems P1 as shown in
line 3 of Algorithm 1.

V. NUMERICAL EVALUATION

We consider the following benchmarks for comparison with
the proposed CE-MINIMAX:

• MINIMAX-UNIFORM. Calculating the stochastic gradient
with respect to w in each round t by choosing m client
uniformly at random. This is a multi-client extension of
the PERDOMAIN scheme in [8].

• MINIMAX-WEIGHTED. Calculating the stochastic gradi-
ent with respect to w in each round t with client sampling
probabilities proportional to the current weight vector p(t)

and m expected clients. This is a multi-client extension
of the WEIGHTED scheme [8].

• MINIMAX-ALL. Always selecting all clients, i.e., q(t)n =
1, ∀n ∈ [N ],∀t ∈ T .

• MIN-UNIFORM. Solving the minimization problem (1)
using federated SGD from [4] with m clients chosen
uniformly at random in each round.

Note that we do not numerically compare CE-MINIMAX with
the other distributed minimax solutions in [9]–[17]. None of
these solutions consider flexible client sampling, and they
improve on [8] with extensions or additional techniques (e.g.,
gradient tracking [9]) that are orthogonal to the client sampling
of CE-MINIMAX.

We conduct numerical experiments, using the PyTorch ver-
sion 2.3.1 [45], on the Fashion-MNIST dataset [46] and the
EMNIST/Digits dataset [47], both of which contain images of
10 classes. We consider N = 10 clients, where each client
contains all data points of exactly one image class. We use
cross-entropy loss in all experiments. For learning models,



we use multinomial logistic regression (LR) to represent the
scenario of convex loss functions, while we use a fully-
connected neural network, i.e., multi-layer perceptron (MLP),
with 2-hidden layers of neurons 300 and 100 each and ReLU
activation functions to represent the scenario of non-convex
loss functions. For heterogeneous communication time, we
assume 10 ms for clients 1-5 and 1 ms for clients 6-10. We
set m = 5 where applicable. To enhance algorithmic stability,
we add a chi-squared divergence regularization of strength
0.00001 between the weight vector p and a uniform vector
for all methods solving the minimax optimization.

A. Effect of λ on CE-Minimax Performance

In our per-round optimization P1, λ is a tunable hyper-
parameter. In Fig. 1, we show the worst-case test accuracy
among the N clients/distributions under different λ values for
both LR and MLP on both the Fashion-MNIST and EMNIST
datasets. We observe that a λ value between 0.1 and 1 gives
the best performance in most scenarios. In the results below
for CE-Minimax, we choose the best λ value for each scenario.

B. Convex Loss

We study the results of LR on the Fashion-MNIST dataset
and the EMNIST dataset. We set λ = 0.1 for Fashion-MNIST
and λ = 0.2 for EMNIST. In Fig. 2, we show both the
worst-case test accuracy among the N clients/distributions,
and the average test accuracy. We observe that CE-Minimax
achieves significantly better tradeoff between worst-case test
accuracy and communication time than the other algorithms.
For example, to reach 55% worst-case test accuracy for
Fashion-MNIST, CE-MINIMAX requires 443.102 seconds,
compared with 666.402 seconds for MINIMAX-UNIFORM,
995.895 seconds for MINIMAX-WEIGHTED, 872.795 sec-
onds for MINIMAX-ALL while MIN-UNIFORM does not
reach the required worst-case test accuracy within 1000 sec-
onds. To reach 70% worst-case test accuracy for EMNIST,
CE-MINIMAX requires 149.238 seconds, compared with
308.615 seconds for MINIMAX-UNIFORM, 275.691 seconds
for MINIMAX-WEIGHTED, 492.030 seconds for MINIMAX-
ALL and 677.229 seconds for MIN-UNIFORM. Furthermore,
CE-MINIMAX also achieves average test accuracy competitive
with the best among the other algorithms, so its distribution
robustness does not need to come from any loss in the average
performance.

C. Non-convex Loss

We study the results of MLP on the Fashion-MNIST dataset
and the EMNIST dataset. We set λ = 0.2 for Fashion-
MNIST and λ = 1 for EMNIST. We observe from Fig. 3
that CE-MINIMAX again substantially outperforms the other
algorithms in terms of the tradeoff between the worst-case
test accuracy and communication time. Furthermore, unlike the
case of convex loss, we observe that CE-Minimax in the case
of non-convex loss also achieves the best average test accuracy.
This may be due to the intricate generalization abilities of
neural networks.

VI. CONCLUSION

In this work, we propose the CE-MINIMAX algorithm
to solve the distributed minimax optimization problem in
a communication-efficient manner. CE-MINIMAX formulates
and solves per-round optimization problems that take into
account both the client data contribution and its communi-
cation delay to perform random client sampling. We derive
convergence bounds for both convex loss and non-convex
loss functions, which enables optimization of the client sam-
pling probabilities. Our experiments on classification tasks
demonstrate that our proposed CE-MINIMAX can substantially
outperform other state-of-the-arts sampling benchmarks for
the distributed minimax problems, achieving higher worst-case
test accuracy for less communication time.

APPENDIX A
PROOF OF THEOREM 1

Proof. We first bound the terms related to updates of w. Recall
that the stochastic gradient with respect to w in round t is
∇̃wF (w(t),p(t)) =

∑
n∈N

p(t)
n a(t)

n

q
(t)
n

∇wℓ
n,J

(t)
n
(w(t)). We have

E[∥w(t+1) −w∥2]
= E[∥ΠW(w(t)−ηw∇̃wF (w(t),p(t)))−w∥2]
(a)

≤ E[∥w(t) − ηw∇̃wF (w(t),p(t))−w∥2]
(b)
= E[∥w(t) −w∥2] + η2wA

(t)
1 − 2ηwA

(t)
2 , (15)

where (a) is by projection onto a convex set and (b) is by
introducing A

(t)
1 = E[∥

∑
n∈N

p(t)
n a(t)

n

q
(t)
n

∇wℓ
n,J

(t)
n
(w)∥2] and

A
(t)
2 = E[(w(t) −w)T (

∑
n∈N

p(t)
n a(t)

n

q
(t)
n

∇wℓ
n,J

(t)
n
(w))].

To bound A
(t)
1 , we have

A
(t)
1

(a)

≤
N∑

n=1

p(t)n E[∥a
(t)
n

q
(t)
n

∇wℓ
n,J

(t)
n
(w)∥2]

=

N∑
n=1

p(t)n E[|a
(t)
n

q
(t)
n

|2∥∇wℓ
n,J

(t)
n
(w)∥2]

(b)
=

N∑
n=1

p(t)n E[|a
(t)
n

q
(t)
n

|2]E[∥∇wℓ
n,J

(t)
n
(w)∥2]

(c)

≤
N∑

n=1

p
(t)
n

q
(t)
n

(G2
w + σ2

w,I), (16)

where (a) is by Jensen’s inequality, (b) is by the independence
of client sampling and mini-batch data sampling, and (c)

follows Assumptions 2 and 3. Substituting the bound of A
(t)
1

in (16) into (15) and rearranging terms, we have a bound for
A

(t)
2 :

A
(t)
2 ≤ 1

2ηw
(E[∥w(t) −w∥2]− E[∥w(t+1) −w∥2])

+
ηw
2

N∑
n=1

p
(t)
n

q
(t)
n

(G2
w + σ2

w,I). (17)



Summing (17) over t from 0 to T − 1, dividing both sides by
T and taking total expectation, we have

E[
1

T

T−1∑
t=0

A
(t)
2 ]≤ R2

W
2ηwT

+
ηw
2T

T−1∑
t=0

N∑
n=1

p
(t)
n

q
(t)
n

(G2
w+σ2

w,I). (18)

Applying similar techniques to the updates of p, we obtain

E[
T−1∑
t=0

(p−p(t))T(∇̃pF (w(t),p(t))]≤R2
P

2ηp
+
ηpT

2
(G2

p+σ
2
p). (19)

We now bound the expected duality gap based on the bounds
of updates on w and p.

E[max
p∈P

F (ŵ,p)− min
w∈W

F (w, p̂)]

= E[ max
w∈W,p∈P

(F (ŵ,p)− F (w, p̂))]

(a)

≤ E[ max
w∈W,p∈P

1

T

T−1∑
t=0

(F (w(t),p)− F (w,p(t)))]

= E[ max
w∈W,p∈P

1

T

T−1∑
t=0

(F (w(t),p)− F (w(t),p(t))

+ F (w(t),p(t))− F (w,p(t)))]

(b)

≤ E[ max
w∈W,p∈P

(
1

T

T−1∑
t=0

(p− p(t))T∇pF (w(t),p(t))

+
1

T

T−1∑
t=0

(w(t) −w)T∇wF (w(t),p(t))]

(c)

≤ E[ max
w∈W,p∈P

C1 + C2 + C3 + C4 + C5 + C6], (20)

where (a) and (b) are from the fact that F (·, ·)
is convex-concave, and (c) is by introducing
C1 = 1

T

∑T−1
t=0 (p − p(t))T ∇̃pF (w(t),p(t)),

C2 = 1
T

∑T−1
t=0 (w(t) − w)T ∇̃wF (w(t),p(t)), C3 =

1
T

∑T−1
t=0 ((−w)T (∇wF (w(t),p(t)) − ∇̃wF (w(t),p(t)))),

C4= 1
T

∑T−1
t=0 (pT (∇pF (w(t),p(t))− ∇̃pF (w(t),p(t)))),

C5= 1
T

∑T−1
t=0 ((−p(t))T (∇pF (w(t),p(t))−∇̃pF (w(t),p(t)))),

C6= 1
T

∑T−1
t=0 ((w(t))T (∇wF (w(t),p(t))−∇̃wF (w(t),p(t)))).

Next, we further derive bounds for the expectations of C1
to C6. From (19), we have

E[max
p∈P

C1] ≤ R2
P

2ηpT
+

ηp
2
(G2

p + σ2
p). (21)

From (18), we have

E[max
w∈W

C2] ≤ R2
W

2ηwT
+

ηw
2T

T−1∑
t=0

N∑
n=1

p
(t)
n

q
(t)
n

(G2
w + σ2

w,I). (22)

We now bound C3.

E[max
w∈W

C3]

≤ E[− 1

T

T−1∑
t=0

(wT (∇wF (w(t),p(t))− ∇̃wF (w(t),p(t))))]

≤ E[
1

T
∥w∥∥

T−1∑
t=0

(∇wF (w(t),p(t))− ∇̃wF (w(t),p(t)))∥]

≤ E[
1

T
∥w∥

T−1∑
t=0

∥∇wF (w(t),p(t))− ∇̃wF (w(t),p(t))∥]

≤ RW

T

√√√√E[(
T−1∑
t=0

∥∇wF (w(t),p(t))− ∇̃wF (w(t),p(t))∥)2]

≤ RW

T

√√√√T−1∑
t=0

E[∥∇wF (w(t),p(t))− ∇̃wF (w(t),p(t))∥2].

Furthermore, we have

E[∥∇wF (w(t),p(t))− ∇̃wF (w(t),p(t))∥2]

= E[∥
∑
n∈N

p
(t)
n a

(t)
n
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(t)
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∇wℓ
n,J

(t)
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(a)

≤
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n∈N

p(t)n E[∥a
(t)
n

q
(t)
n

∇wℓ
n,J

(t)
n
(w(t))−∇wfn(w

(t))∥2]

=
∑
n∈N

p(t)n

(
E[∥a

(t)
n

q
(t)
n

∇wℓ
n,J

(t)
n
(w(t))∥2] + E[∥∇wfn(w

(t))∥2]

− 2E[(
a
(t)
n

q
(t)
n

∇wℓ
n,J

(t)
n
(w(t)))T∇wfn(w

(t))]
)

(b)
=

∑
n∈N

p(t)n (E[∥∇wℓ
n,J

(t)
n
(w(t))∥2]/q(t)n − ∥∇wfn(w

(t))∥2)

(c)

≤
∑
n∈N

p(t)n Ψ(q(t)n ), (23)

where (a) is by Jensen’s inequality, (b) is by the independence
of client sampling and mini-batch data sampling, and (c)

follows Assumptions 2 and 3 and the definition Ψ(q
(t)
n ) =

(
(1−q(t)n )G2

w

q
(t)
n

+
σ2
w,I

q
(t)
n

).
Therefore, we have the following bound for C3

E[max
w∈W

C3] ≤ RW

T

√√√√T−1∑
t=0

N∑
n=1

p
(t)
n Ψ(q

(t)
n ). (24)

Following similar proof techniques, we obtain the following
bound for C4:

E[max
p∈P

C4] ≤ RPσp√
T

. (25)

Finally, we note that C5 and C6 are not related to w and p.
Taking expectation on C5 and C6, we have E[C5] = E[C6] = 0
since ∇̃wF (w(t),p(t)) and ∇̃pF (w(t),p(t)) are unbiased esti-
mators of ∇wF (w(t),p(t)) and ∇pF (w(t),p(t)), respectively.
Combining the bounds for C1-C6, we complete the proof.

APPENDIX B
PROOF OF THEOREM 2

We start by bounding the terms related to the updates of
p. Following the update rule of p, the fact that F (w, ·) is



concave, and the Assumptions 2 and 3, we obtain, for all p ∈
P ,

E[∥p(t+1) − p∥2] ≤ ∥p(t) − p∥2 + η2p(G
2
p + σ2

p)

+ 2ηp(F (w(t),p(t))− F (w(t),p)). (26)

Rearranging the terms of (26), we have, for all p ∈ P ,

−F (w(t),p(t)) ≤ 1

2ηp
(∥p(t) − p∥2 − E[∥p(t+1) − p∥2])

+
ηp
2
(G2

p + σ2
p)− F (w(t),p). (27)

Let p∗(w(t)) = argmaxp∈P F (w(t),p). Setting p as
p∗(w(t)), adding F (w(t),p∗(w(t))) on both sides of (27), and
using the fact Φ(w(t)) = maxp F (w(t),p), we obtain

Φ(w(t))− F (w(t),p(t)) ≤ ∥p(t) − p∗(w(t))∥2/(2ηp)

− E[∥p(t+1) − p∗(w(t))∥2]/(2ηp) +
ηp
2
(G2

p + σ2
p). (28)

Summing (28) over t from 0 to T − 1, dividing both sides by
T , and taking total expectation, we obtain

1

T

T−1∑
t=0

[
Φ(w(t))−F (w(t),p(t))

]
≤ R2

P
2ηpT

+
ηp
2
(G2

p+σ2
p). (29)

We then bound the term with respect to the updates of w.
Let w(t)

∗ = argminw∈W Φ(w) + L∥w −w(t)∥2. We have

E[∥w(t)
∗ −w(t+1)∥2]

(a)

≤ E[∥w(t)
∗ −w(t) + ηw∇̃wF (w(t),p(t))∥2]

= E[∥w(t)
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p
(t)
n

q
(t)
n
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w + σ2
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∗ −w(t)∥2] + η2w
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p
(t)
n

q
(t)
n

(G2
w + σ2

w,I) + 2ηwA
(t)
3

+ 2ηwE[(w(t)
∗ −w(t))T (∇̃wF (w(t),p(t))−∇wF (w(t),p(t)))]

(c)

≤ E[∥w(t)
∗ −w(t)∥2] + η2w
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(t)
n
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(t)
n

(G2
w + σ2

w,I) + 2ηwA
(t)
3

+ ηwE[∥w(t)
∗ −w(t)∥∥∇̃wF (w(t),p(t))−∇wF (w(t),p(t))∥]

(d)

≤ E[∥w(t)
∗ −w(t)∥2] + η2w

N∑
n=1

p
(t)
n

q
(t)
n

(G2
w + σ2

w,I) + 2ηwA
(t)
3

+ ηwRWA
(t)
4 , (30)

where (a) is by the projection onto a convex set W , (b) is
by defining A

(t)
3 = E[(w(t)

∗ − w(t))T∇wF (w(t),p(t))], (c)
is by the Cauchy-Schwartz inequality, and (d) is by denoting
A

(t)
4 = E[∥∇̃wF (w(t),p(t))−∇wF (w(t),p(t))∥].
We next bound A

(t)
3 .

A
(t)
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≤ E[F (w
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∥∇Φ1/2L(w

(t))∥2], (31)

where (a) follows from the L-smoothness of F (·, ·), (b) is
from the definition of Φ(·), (c) is from the definition of w(t)

∗ ,
and (d) is because ∥∇Φ1/2L(w

(t))∥ = ∥2L(w(t) −w
(t)
∗ )∥.

We then bound A
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Now, we have

E[Φ1/2L(w
(t+1))]

= E[ min
w∈W

Φ(w) + L∥w −w(t+1)∥2]

≤ E[Φ(w(t)
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(a)
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(b)

≤ E[Φ1/2L(w
(t))] + E[2ηwL(Φ(w(t))− F (w(t),p(t)))]

+ η2w
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− ηw
4
E[∥∇Φ1/2L(w

(t))∥2], (33)

where (a) is by the bound in (30), and (b) is by the definition
of ∇Φ1/2L(·) and the bound of A(t)

3 in (31). Rearranging the
terms of (33), we have

E
[
∥∇Φ1/2L(w

(t))∥2
]
≤ 4ηw

N∑
n=1

p
(t)
n

q
(t)
n

(G2
w + σ2
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+ 4RWLA
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4 +

4

ηw
(E[Φ1/2L(w

(t))]− E[Φ1/2L(w
(t+1))])

+ 8L(E[Φ(w(t))]− E[F (w(t),p(t))]). (34)

Summing (34) over t from 0 to T−1, dividing both sides by T ,
taking total expectation, and then utilizing the bound of A

(t)
4

in (32) and the bound of 1
T

∑T−1
t=0

[
Φ(w(t))− F (w(t),p(t))

]
in (29), we complete the proof.
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