
Task Dispatch through Online Training for
Profit Maximization at the Cloud

Sowndarya Sundar and Ben Liang
Department of Electrical and Computer Engineering

University of Toronto, Ontario, Canada
{ssundar, liang}@ece.utoronto.ca

Abstract—We study the scheduling of tasks that arrive dy-
namically at a networked cloud computing system consisting of
heterogeneous processors. Execution of tasks yields some profit
to the cloud service provider. We intend to maximize the total
profit across all tasks arriving within a time interval, subject to
processor load constraints, without prior knowledge of the task
arrival times or processing requirements. We propose the Task
Dispatch through Online Training (TDOT) algorithm, which con-
sists of training and exploitation phases. We provide performance
bound analysis to show that TDOT can generate profit that is
close to the optimum, given a suitable size for the training task
set. TDOT assumes that profit can be obtained from partially
completed tasks, so we further propose a modified version of
TDOT, termed TDOT-G, for implementations where profit can
only be obtained from fully-completed tasks. Through simulation,
using Google cluster data, we compare the performance of TDOT
and TDOT-G with that of greedy scheduling, logistic regression,
and an offline upper-bound solution.

I. INTRODUCTION

Computational offloading refers to the migration of tasks
from local devices over a network to more resourceful servers.
Such convergence between networking and computing in-
creases the capabilities of resource-poor local devices by
improving battery life or application response time.

Most existing works deal with this task offloading problem
from an offline perspective by assuming all necessary task
information is known in advance. However, in practice, tasks
may arrive dynamically at the cloud, and task processing times
may not be known in advance [1]–[12]. In this paper, we
adopt an online task model where tasks arrive over time, in
order to address this more practical problem. We consider
the offloading of these tasks to multiple cloud servers. Each
cloud server in our system model consists of finite-capacity
and heterogeneous processors. As a result, the cloud servers
could represent cloudlets, edge-clouds, or peer devices, in a
generic and hybrid cloud computing environment.

In this paper, we address the task scheduling problem
from the perspective of a cloud service provider (CSP) that
obtains profit by processing user tasks. In our model, the
profit obtained is a function of the task processing time and
the profit generated per unit time on the scheduled processor.
We aim to obtain the scheduling decision that maximizes the
total profit across all tasks arriving within a time interval,

This work has been funded in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

subject to processor load constraints. In our online model,
we do not know in advance the total number of tasks that
will arrive within the time interval. We also do not know the
processing times of a task until it arrives at the CSP’s con-
troller, which then dispatches the task to the scheduled cloud
server for processing. In this paper, we propose polynomial-
time algorithms that use a combination of learning and dual-
optimization techniques to obtain effective solutions. The main
contributions of this work are as follows:
• We formulate our task scheduling problem and propose

the Task Dispatch through Online Training (TDOT) algo-
rithm. It consists of two broad phases: (1) a training phase
where we observe the processing times of some arriving
tasks to obtain information about task characteristics, and
(2) an exploitation phase where we make decisions on
future tasks with the help of the information obtained.
We draw inspiration from a relaxed solution to the offline
problem to identify the parameters that bridge TDOT’s
training and exploitation phases. This algorithm assumes
that profit can be obtained on a partially-completed task,
if the processor load constraint is met before the task
could complete execution.

• We derive performance bounds that quantify TDOT’s
effectiveness against the offline benchmark. For example,
for Poisson task arrivals, we present a scenario (below
Corollary 1) where TDOT achieves an expected profit
that is at least half of the maximum profit achievable by
any offline algorithm.

• We then propose a modified version of TDOT, namely
TDOT with Greedy Scheduling (TDOT-G), for imple-
mentation in systems where profit can only be obtained
from fully-completed tasks. We use tasks generated from
Google cluster traces [13] to investigate the practical
performance of the proposed algorithms. We compare it
with greedy scheduling, logistic regression, and an offline
upper-bound solution. We observe that TDOT and TDOT-
G generally outperform all other online alternatives and
achieves near-optimal performance over the non-training
set of tasks.

II. RELATED WORK

There are many existing works that deal with task schedul-
ing problems for cloud computing environments. However,
only a small portion of these address the online problem

where task information is not known in advance. This problem
has been explored for objectives such as makespan [1]–
[3], [5], and average response time [4], [6]. However, fewer
papers address this problem with an objective to maximize
profit/revenue or minimize cost.

Some earlier works aim to optimize a revenue or cost
objective by using right-sizing or appropriately turning off
servers to cut cost [7]–[9]. On the other hand, [10] and [11]
address the problem through intelligent scheduling. In [10], the
problem of maximizing profit for a datacenter by assigning
requests from clients to servers appropriately is considered,
and a heuristic is proposed. However, the average processing
times of requests from each client are assumed to be known
apriori, with an objective to maximize the expected profit.
In [11], the online data-migration problem with an objective
to minimize cost incurred by a user is considered, and an
approximation algorithm is proposed. However, the processing
capacity of the datacenters is not accounted for, and data can
be sent to only one chosen datacenter in a time slot.

In general, existing works that tackle online problems in
cloud computing make certain assumptions such as a single
server [3], [6], purely fluid tasks [6], [10], [11], homogeneous
resources [2], [4], [5], preemptable tasks [12], or propose
heuristic solutions [1], [10]. On the other hand, certain theoret-
ical works address generic online problems such as assigning
items to agents with budgets [14], [15] and scheduling jobs
to machines [16], [17], providing performance guarantees for
their schemes. However, these works solve a simpler problem
[14], address a considerably different objective [16], [17], or
make certain impractical assumptions such as equal-length
jobs [16] or a single-processor system [17]. Some of the
techniques we apply are similar to those proposed in [15],
but unlike [15], we (i) have no prior knowledge of the total
number of tasks, (ii) propose an algorithm to obtain feasible
task scheduling decisions, (iii) propose a modified algorithm
for implementations where profit can only be obtained from
fully-completed tasks, and (iv) assess the performance of the
proposed schemes through both performance bound analysis
and trace-based simulation.

In summary, we consider a novel system model comprising
multiple finite-capacity and heterogeneous cloud resources in
addition to the online task model. We address the scheduling
problem for tasks arriving within a time interval with an
objective to maximize profit subject to load constraints. To
the best of our knowledge, this leads to an interesting problem
that has not been studied in existing literature.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. Cloud Processors and Online Task Arrival

We consider a CSP with K broadly defined cloud servers
(CSs), which can be, for example, remote cloud servers,
mobile edge hosts, or cloudlets. Each CS k has Pk proces-
sors, which may not be identical. Tasks arrive at the CSP’s
controller at an average rate of λ tasks per unit time over
a duration of length T . The role of the controller is to
dispatch the tasks to the CSs for execution. The processing

TABLE I: Notations

Notation Description

tjrk processing time for task j on processor r at CS k

prk profit obtained per unit time on processor r at CS k

T time duration of the system

L maximum load on each processor

λ task arrival rate

Pk total number of processors at CS k

K total number of CSs

requirements, e.g. number of cycles or processing time, for
each task j on processor r in CS k is given by tjrk,∀r, k, and
is known only once the task arrives at the controller.

B. Profit Maximization

We assume that the work of processor r in CS k generates
profit prk per unit time, which may account for multiple
contributing factors such as the revenue from user payment and
the cost of maintaining the processor. Then, the profit obtained
by executing task j having processing requirements tjrk on
processor r in CS k is given by prktjrk. By intelligently
scheduling this task, we may maximize the profit we gain
from it. In this paper, we aim to identify a task dispatching
decision that maximizes the total profit across all tasks arriving
within duration T . It is important to note that since tasks arrive
dynamically, we have no prior knowledge of the exact number
of tasks that arrive within duration T , nor their processing
requirements on any processor.

Let M be the random number of tasks that arrive within
duration T . We define the scheduling decision variables as
xjrk = 1, when task j is scheduled to processor r in cloud
server k, and 0 otherwise. We consider a given load constraint
L on each processor1, so that
M∑
j=1

tjrkxjrk ≤ L, ∀k ∈ {1, . . . ,K}, r ∈ {1, . . . , Pk}. (1)

Additionally, each task is executed at most once:
Pk∑
r=1

K∑
k=1

xjrk ≤ 1, ∀j ∈ {1, . . . ,M}. (2)

We aim to maximize the profit of the CSP. Hence, we
formulate an optimization problem as follows:

maximize
{xjrk}

M∑
j=1

K∑
k=1

Pk∑
r=1

prktjrkxjrk (3)

subject to (1)− (2),

xjrk ∈ {0, 1} ∀j ∈ {1, . . . ,M},
k ∈ {1, . . . ,K}, r ∈ {1, . . . , Pk}. (4)

Here, objective (3) is to maximize the total profit across all
tasks, CSs, and processors, while we ensure that the maximum
load L is well-utilized by packing these tasks efficiently.

1The load constraint can be generalized to be processor dependent, i.e.,
Lrk . See Section IV-C for a discussion on this.

Remark 1. The multiple cloud servers in our model allow
us to differentiate between groups of processors. For example,
all the processors in a particular CS may incur a different
cost from another, and we may have profits prk = pk,∀r, k.
However, one may also visualize this model as just processors
with different profit rates.

In the offline version of the problem, the number of tasks
and the task processing times are known in advance. On
the other hand, the online nature of the proposed problem
is more challenging due to the lack of prior information.
Consequently, we propose a polynomial-time online algorithm
that uses training to identify appropriate scheduling decisions.

IV. TASK DISPATCH THROUGH ONLINE TRAINING

In this section, we first obtain an optimal solution to the
binary-relaxed offline problem for performance benchmarking
and to gain insights into the online algorithm construction. We
then propose the TDOT algorithm for online task scheduling,
and provide a performance bound with respect to the relaxed
offline solution.
A. Offline Solution through Lagrange Relaxation

We relax the binary constraints (4) in the offline version of
problem (3). The dual of this problem is then given by

minimize
{urk≥0,vj≥0}

K∑
k=1

Pk∑
r=1

urkL+

M∑
j=1

vj (5)

subject to urktjrk + vj ≥ prktjrk, ∀j ∈ {1, . . . ,M},
r ∈ {1, . . . , Pk}, k ∈ {1, . . . ,K}, (6)

where urk are vj are Lagrange multipliers corresponding to
constraints (1) and (2) respectively.

Constraint (6) implies that an optimal solution must satisfy

vj = max
r,k

(prk − urk) tjrk,∀j ∈ {1, . . . ,M}. (7)

In other words, given optimal u = {urk,∀r, k}, we
should assign each task j to the processor given by
argmaxr,k (prk − urk) prktjrk.

Thus, the dual problem can be rewritten as follows:
minimize
{u≥0}

D(u) (8)

where
D(u) =

K∑
k=1

Pk∑
r=1

urkL+

M∑
j=1

max
r,k

(prk − urk) tjrk. (9)

This solution is optimal for the binary-relaxed, offline version
of problem (3), and is an upper bound to the optimal online
solution. We call this solution OPT and use it in Section IV-C
to define the performance bound.

B. Online Scheduling with Partial-Task Profit Taking

Now we consider the online problem where tasks arrive
dynamically. We neither know the total number of tasks
arriving within duration T nor the processing times of the tasks
in advance. Hence, we need to dynamically learn about the
processing time characteristics, i.e., optimal u values defined

in (9). The proposed TDOT algorithm utilizes a technique that
initially performs training to learn from arriving tasks, and then
uses the information to produce profit on the remaining set of
tasks. TDOT assumes that profit can also be obtained from
partially-completed tasks within the load constraints. In other
words, if only a part of the task scheduled to a processor can
be completed before the load L is met, then we retain the
partial profit generated due to the execution of that task upto
that point. This assumption is eliminated in Section V, i.e.,
we consider a model where profits can only be obtained from
fully-completed tasks. The TDOT algorithm consists of two
phases and involves a user-defined parameter 0 < ε < 1.

1) Training: We observe the first bελT c arriving tasks,
denoted by A = {1, . . . , bελT c}. For each task j ∈ A, we
record its computing requirement and hence tjrk,∀r, k. These
tasks may be arbitrarily scheduled. For simplicity, we may
ignore for now the profit earned from these tasks and set
xjrk = 0,∀j ∈ {1, . . . , bελT c}, r, k, which is shown later not
to affect our derivations of the competitive ratios for TDOT.

If we allocate only εL load to A, then we can write the
dual problem objective (9) purely for A as follows:

D(u,A) =
K∑
k=1

Pk∑
r=1

urkεL+
∑
j∈A

max
r,k

(prk − urk) tjrk. (10)

Since the dual of an LP is also an LP, we can use any existing
LP solver to efficiently obtain u∗ = argminu≥0D(u,A).

2) Exploitation: Let Ac denote all tasks arriving after task
bελT c. Now for each arriving task j ∈ Ac, we apply weights
u∗ to obtain the scheduling decision as follows. We set

(r′, k′) = argmax
r,k

(prk − u∗rk) tjrk, (11)

if the task can be scheduled on r′ in CS k′ without violating
(1 − ε)L. Otherwise, we schedule just a fraction of the task
that can be scheduled while meeting (1− ε)L. This is because
TDOT assumes we may obtain profit from partially-completed
tasks as well. We achieve this by defining load variable lrk
for every r and k. If task j satisfies tjr′k′ < (1− ε)L− lr′k′ ,
we set xjr′k′ = 1; else we set xjr′k′ =

(1−ε)L−lr′k′
tjrk

. We then
update the variables, lr′k′ = lr′k′ +xjr′k′tjr′k′ . We stop at the
end of duration T .

After the above two phases, we obtain scheduling decision
xjrk,∀j, r, k, and the resulting profit can be calculated by∑M
j=1

∑K
k=1

∑Pk

r=1 prktjrkxjrk.

Remark 2. TDOT uses single-shot learning, which is unlike
a reinforcement learning approach, often used to solve multi-
armed bandit problems, that iteratively explores and exploits,
for each incoming task, for example. Single-shot learning is
more efficient to implement, and can be more effective if
tasks arriving within duration T have similar characteristics.
As shown below, it also has a performance bound unlike
reinforcement learning.

C. Performance Bound Analysis
The TDOT algorithm, despite its simple premise of training

and exploitation, obtains performance that is close to the

optimum. In this section, we present a performance bound for
expected profit produced by TDOT in comparison to the upper
bound offline solution. We have not included proof details here
due to lack of space.

Let S(u∗,Ac) be the profit obtained by TDOT on the non-
training set Ac. We next provide in Lemma 1 a conditional
performance bound on S(u∗,Ac) with respect to the upper
bound OPT. The following definitions are necessary. We define
R(u∗) as the profit obtained in the absence of load constraints
by applying weights u∗ to the entire set of M tasks, and
Rrk(u∗) as the contribution of processor r in CS k to R(u∗).
We further define Rrk(u∗,A) similarly to Rrk(u∗), except
over just the set of tasks A.

Lemma 1. For any given M number of tasks that arrive within
duration T , if we have

K∑
k=1

Pk∑
r=1

|Rrk(u∗,A)− εRrk(u∗)|

≤ ε2
√
λT

M
max{OPT, R(u∗)}, (12)

then S(u∗,Ac) ≥ (1− ε− ε
√

λT
M)OPT.

This lemma states that if u∗ produces an unconstrained profit
on the entire set of tasks that is proportionally close to that on
the training setA for each (r, k), then we obtain a performance
bound on the profit on the non-training set, i.e., S(u∗,Ac) for
a given M .

Lemma 1 is used in our main theorem below, for which we
need to define Pmax = maxk Pk, and cmax = maxr,k prk.

Theorem 1. If OPT
cmax

≥ KPmax
ln(K2P 2

max/ε)
ε3 , then we have

EM [E[S(u∗,Ac)|M]] ≥
(
1− 2ε− ε

√
λTEM

[
1√
M

])
OPT.

Proof. By bounding the probability of condition (12) being
met, and using Lemma 1, we can prove a performance bound
on the expected profit produced on Ac.

Note that the conclusion of Theorem 1 gives us a bound on
the expected performance of TDOT.

Remark 3. The condition on OPT
cmax

in Theorem 1 is easily met
for all practical scenarios as this is a ratio, of total profit
across all tasks and processors to the profit per unit time on
a single processor, which is generally a large value.

Furthermore, by Jensen’s inequality, we have EM
[

1√
M

]
≤√

EM [1
M]. Using this in Theorem 1, we now have

EM [E[S(u∗,Ac)|M]] ≥

(
1− 2ε− ε

√
λTEM

[
1

M

])
OPT

≥

(
1− 2ε−

√
εEM

[
ελT

M

])
OPT.

(13)

Thus, we can see that the profit performance gap depends on
EM

[
ελT
M

]
, which is the expected proportion of tasks in the

training set. Furthermore, using a lower bound on EM
[

1
M

]
if

M is Poisson [18], we have the following corollary.

Corollary 1. Assume the condition of Theorem 1 is met. If M
has a Poisson distribution with mean λT , we have

EM [E[S(u∗,Ac)|M]] ≥(
1− 2ε− ε

√
(3 + λT)(1− e−λT)

λT

)
OPT. (14)

This corollary allows precise numerical calculation. As an
example, if λ = 0.1, T = 1000s, and we choose ε = 0.15,
then EM [E[S(u∗,Ac)] ≥ 0.5 OPT.

Corollary 2. For λ→∞, (14) reduces to

EM [E[S(u∗,Ac)|M]] ≥ (1− 3ε)OPT. (15)

When the task arrival rate is high, there are enough tasks for
training so that ε can be set small. In this case, Corollary 2
suggests that TDOT can perform close to an optimal offline
algorithm.

Remark 4. Instead of a single load constraint L, we can
consider processor-dependent load constraints Lrk,∀r, k, and
rewrite equation (1) as follows:

M∑
j=1

tjrkxjrk ≤ Lrk,∀r ∈ {1, . . . , Pk}, k ∈ {1, . . . ,K}.

We note that all results can be trivially extended to this case.

Remark 5. Our performance bound is computed purely based
on the profit from the non-training set of tasks Ac, but it
is compared against the profit of an upper-bound offline
algorithm that considers the entire set of tasks. Consequently,
any additional profit we obtain on training set A is a bonus
and further improves profit performance. We note that the
value of ε we choose splits the tasks into sets A and Ac, and
consequently impacts profit performance. We study the effect
of ε on the total profit in Section VI.

D. Complexity Analysis

An LP can be solved in O(n3.5B) time where n is the
number of variables and B is the number of bits in the input
[19]. Thus, for a given M , the dual minimization during
the training phase of TDOT can be done in O((εMP)3.5B)
time where P =

∑K
k=1 Pk is the total number of processors.

On the other hand, the time complexity of the exploitation
phase is O((1 − ε)M). Thus, the time complexity of TDOT
is dominated by LP-solving in the training phase.

Remark 6. We note that |A| = εM , and hence, the above
complexity is equivalent to O((|A|P)3.5B). This is usually
small since the number of training tasks, i.e., |A|, is much
smaller relative to M .

V. MODIFIED ALGORITHM WITHOUT PARTIAL-TASK
PROFIT TAKING

The TDOT algorithm proposed in the previous section
assumes that we may obtain profit on partially-completed
tasks, if load constraint on the scheduled processor is met.
Hence, we propose a variant, namely TDOT with Greedy
scheduling or TDOT-G, for scenarios where profit can be
obtained only for tasks that have fully completed execution
while meeting the load constraints. This algorithm consists
of the same two broad phases as that of TDOT, namely, the
training phase, and the exploitation phase.

In this version, if an incoming task cannot be scheduled
on the maximum profit processor, we try to schedule it on
the second maximum profit processor, and then the third
maximum profit processor, and so on. We expect this technique
to result in better practical performance than simply discarding
a task that cannot be scheduled on the maximum profit
processor as we greedily try to ensure that the current task
is at least executed on some processor, which will produce
some profit. The following are the steps of this algorithm.
• Step 1: Observe the processing times of the set of the

first bελT c arriving tasks, A.
• Step 2: Find weights u* = argminu D(u,A).
• Step 3: For each incoming task j, we initialize P to be

the total set of processors.
– Step 3a: Schedule the task to processor (r′, k′) =

argmaxr,k∈P (prk − u∗rk) tjrk, if (1 − ε)L is not
violated on processor r′ in CS k′. If (1 − ε)L is
violated on processor r′ in CS k′, go to Step 3b.
This violation is checked by using load variables
lrk,∀r, k, similar to TDOT.

– Step 3b: Remove (r′, k′) from P and repeat Step 3a
unless P is empty, i.e., the task cannot be scheduled
on any processor.

• Step 4: Stop at the end of duration T .
The overall complexity of TDOT-G is still dominated by

the LP-solving step, and given by O((|A|P)3.5B) as shown
in Section IV-D.

VI. SIMULATION RESULTS

We investigate the performance of our proposed algorithms
with extensive simulation, using Google cluster traces with
practical parameter values.

A. Comparison Targets

We use the following comparison targets to evaluate the
performance of TDOT and TDOT-G:
• Logistic Regression (LR): We use

r′, k′ = argmax
r,k

(prk − u∗rk) tjrk

as the training labels for each task j in the training set A.
We then perform multi-class classification using logistic
regression [20] to obtain the label for each non-training
task, and schedule the task to the corresponding processor

3000 3250 3500 3750 4000 4250 4500 4750 5000
Max. Load, L (s)

1500

2000

2500

3000

3500

4000

Pr
of

it
(o

n
no

n-
tra

in
in

g
se

t)

TDOT-G
TDOT
LR-G
LR
Greedy
Upper Bound Offline

Fig. 1: Effect of max. load L on non-training set profit

as long as (1− ε)L is not violated. Else, we discard the
task.

• Greedy Algorithm: We schedule each arriving task j to
processor r in CS k that maximizes prktjrk as long as
the total load on the processor does not exceed the load
constraint. Else, we discard the task.

• Logistic Regression - Greedy (LR-G): Similar to LR,
but instead of discarding the task when the processor
assigned by LR violates (1−ε)L load, we use a technique
similar to TDOT-G. We schedule task j to processor
(r′, k′) = argmaxr,k∈P prktjrk, if (1−ε)L is not violated
on processor r′ in CS k′. If (1 − ε)L is violated, we
remove the processor from P and repeat until the task is
scheduled or all processors are exhausted.

• Upper Bound Offline: Solve formulation (5) to obtain an
upper-bound.

Based on whether we plot profit on just the non-training set Ac
or the overall set of tasks, we modify these comparison targets
accordingly. In Section VI-D, we ensure every comparison
target obtains profit on the training set as well, for fair
comparison. These details are given in Section VI-D.
B. Simulation Setup and Task Times

We consider two different CSs with two processors each.
The profits are set to p11 = 0.5, p12 = 0.7, p21 = 0.3,
and p22 = 0.3. We set default system duration D = 3000
s, maximum load L = 3500 s, and ε = 0.2. We use the task
events information from Google cluster data [13] to obtain
the task arrival times, and compute average task per unit
time λ = 1

average inter-arrival time from these values. We consider
Poisson task arrival at the controller, so that the total number
of tasks that arrive within duration T is a Poisson random
variable with mean λT .

We also use the task usage information from [13], i.e., task
start times and end times, to obtain task processing times. We
set mean task processing time mj = (task end time - task
start time). We then consider processors with different relative
speeds, α11 = 1, α12 = 2, α21 = 1.5, and α22 = 1.5, to
obtain varied processing times on different processors. In the
implementation of TDOT, while picking processor (r′, k′) =
argmaxr,k (prk − u∗rk) tjrk, we randomly tie-break if there are
multiple processors that give us the maximum value within a
tolerance of 0.001.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
ε

2000

2500

3000

3500

4000

4500

5000

5500
Pr

of
it

(o
n

en
tir

e
se

t)

TDOT-G
TDOT
LR-G
LR
Greedy
Upper Bound Offline

Fig. 2: Effect of ε on overall profit

C. Profit on Non-training Set of Tasks

In this section, we analyze the profit obtained on the non-
training set of tasks, Ac, through simulation. Figure 1 plots the
profit for different values of maximum load L. We see that the
profit increases as the load constraint is relaxed, as expected.
TDOT and TDOT-G exhibit near-optimal performance, indi-
cating the effectiveness of training. It outperforms LR, LR-G,
and greedy for the entire range of load considered.

D. Overall Profit and ε Values

Although we use the set of first bελT c tasks for training
purposes, in practice some profit can be made on these tasks.
Towards this end, we schedule each arriving task j during the
training phase to the processor (r′, k′) = argmaxr,k prktjrk,
as long as the total load on the processor does not violate εL.
Adding this profit obtained on the training set to the profit
obtained on the non-training set, from Section VI-C, gives
us the overall profit. Thus, for fair comparison, we add this
training set profit to TDOT-G, LR, and LR-G. Both greedy
and upper-bound can obtain profit on the entire set of tasks,
by definition.

For Figure 2, we plot the overall profit on the entire set
of tasks versus ε for L = 3500. We see that the upper-
bound offline and greedy solutions have performance that is
independent of ε as expected. However, a value of ε = 0.2
produces the best profit performance on average while using
TDOT-G. This suggests that using around 20% of the expected
number of tasks for training in this setting allows the algorithm
to both have enough tasks to learn well but also have enough
tasks to exploit the benefit of training. We note that TDOT
and TDOT-G still outperform the other online alternatives,
regardless of the value of ε chosen.

VII. CONCLUSION

We study the online scheduling of tasks to multiple cloud
servers with an objective to maximize profit subject to load
constraints. The processors in our model are heterogeneous
and unary-capacity, and the tasks arrive dynamically, resulting
in a challenging problem. We have proposed a polynomial-
time TDOT algorithm that consists of a training phase and an
exploitation phase to obtain effective scheduling solutions. We

provided a performance bound for TDOT under the assump-
tion that profit can also be obtained on partially-completed
tasks if the load is already met. We also proposed a modified
algorithm, TDOT-G, for implementations where profit can only
be obtained on fully-completed tasks. Through trace-driven
simulation, we saw that TDOT and TDOT-G consistently
outperforms the comparison targets and can be tuned to exhibit
near-optimal performance.

REFERENCES

[1] Y. Fang, F. Wang, and J. Ge, “A task scheduling algorithm based on
load balancing in cloud computing,” in Proc. International Conference
on Web Information Systems and Mining, 2010.

[2] J. P. Champati and B. Liang, “One-restart algorithm for scheduling and
offloading in a hybrid cloud,” in Proc. IEEE International Symposium
on Quality of Service (IWQoS), 2015.

[3] J. P. Champati and B. Liang, “Semi-online algorithms for computational
task offloading with communication delay,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 4, pp. 1189–1201, 2017.

[4] Z. Peng, D. Cui, J. Zuo, Q. Li, B. Xu, and W. Lin, “Random task
scheduling scheme based on reinforcement learning in cloud comput-
ing,” Cluster computing, vol. 18, no. 4, pp. 1595–1607, 2015.

[5] J. P. Champati and B. Liang, “Single restart with time stamps for
computational offloading in a semi-online setting,” in Proc. IEEE
Conference on Computer Communications (INFOCOM), 2017.

[6] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE
International Symposium on Information Theory (ISIT), 2016.

[7] M. Lin, Z. Liu, A. Wierman, and L. L. Andrew, “Online algorithms for
geographical load balancing,” in Proc. IEEE International Conference
on Green Computing (IGCC), 2012.

[8] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” IEEE/ACM Transactions on
Networking, vol. 21, no. 5, pp. 1378–1391, 2013.

[9] F. Nwanganga, M. Saebi, G. Madey, and N. Chawla, “A minimum-cost
flow model for workload optimization on cloud infrastructure,” in Proc.
IEEE International Conference on Cloud Computing (CLOUD), 2017.

[10] H. Goudarzi and M. Pedram, “Maximizing profit in cloud computing
system via resource allocation,” in Proc. IEEE Distributed Computing
Systems Workshops (ICDCSW), 2011.

[11] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. Lau, “Moving big
data to the cloud: An online cost-minimizing approach,” IEEE Journal
on Selected Areas in Communications, vol. 31, no. 12, pp. 2710–2721,
2013.

[12] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and Z. Gu, “Online
optimization for scheduling preemptable tasks on iaas cloud systems,”
Journal of Parallel and Distributed Computing, vol. 72, no. 5, pp. 666–
677, 2012.

[13] J. Wilkes, “More google cluster data,” Available at
https://github.com/google/cluster-data, Nov. 2011.

[14] G. Aggarwal, G. Goel, C. Karande, and A. Mehta, “Online vertex-
weighted bipartite matching and single-bid budgeted allocations,” in
Proc. ACM-SIAM Symposium on Discrete Algorithms, 2011.

[15] N. R. Devanur and T. P. Hayes, “The adwords problem: online keyword
matching with budgeted bidders under random permutations,” in Proc.
ACM Conference on Electronic Commerce, 2009.

[16] M. Chrobak, W. Jawor, J. Sgall, and T. Tichỳ, “Online scheduling of
equal-length jobs: Randomization and restarts help,” SIAM Journal on
Computing, vol. 36, no. 6, pp. 1709–1728, 2007.

[17] B. Kalyanasundaram and K. Pruhs, “Maximizing job completions on-
line,” in Proc. European Symposium on Algorithms, 1998.

[18] E. L. Grab and I. R. Savage, “Tables of the expected value of 1/x
for positive bernoulli and poisson variables,” Journal of the American
Statistical Association, vol. 49, no. 265, pp. 169–177, 1954.

[19] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proc. ACM Symposium on Theory of Computing, 1984.

[20] B. Krishnapuram, L. Carin, M. A. Figueiredo, and A. J. Hartemink,
“Sparse multinomial logistic regression: Fast algorithms and general-
ization bounds,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, no. 6, pp. 957–968, 2005.

