
One-Restart Algorithm for Scheduling and
Offloading in a Hybrid Cloud

Jaya Prakash Champati and Ben Liang

Department of Electrical and Computer Engineering, University of Toronto

{champati,liang}@comm.utoronto.ca

Abstract—The hybrid cloud architecture utilizes both privately
owned cloud servers and rented instances from public cloud
providers, to offer flexible services that are particularly suited
to enterprise computing. The task scheduler at a hybrid cloud
decides both the selection of tasks to be offloaded to the public
cloud and the scheduling of the remaining tasks on the processors
at the private cloud. In this work, we consider the problem
of minimizing a weighted sum of the makespan at the private
cloud and the offloading cost to the public cloud. In contrast to
prior works, we do not assume that the task processing times
are known a priori. We show that the original problem can be
solved by the same algorithms designed toward minimizing the
maximum between the makespan and the weighted offloading
cost, only with doubling of the competitive ratio. Furthermore,
the latter problem can be equivalently transformed into a
makespan minimization problem with unrelated processors. In
the case where all tasks arrive at time zero, we propose a Greedy-
One-Restart (GOR) algorithm based on online estimation of
the unknown processing times, and one-time cancellation and
rescheduling of tasks that turn out to require long processing
times. We derive its competitive ratio and show that it is upper
bounded on the order of the square root of the number of
private processors, which is a substantial improvement over
the best known algorithms in the literature. We present also
a tight constant competitive ratio for the special two-processor
case. In the case where tasks arrive dynamically with unknown
arrival times, we extend GOR to Dynamic-GOR (DGOR) and
find its competitive ratio. Further simulation results demonstrate
that GOR and DGOR are favorable also in terms of average
performance, in comparison with the well-known list scheduling
algorithm and idealized offline algorithms.

I. INTRODUCTION

Cloud computing has emerged as a vital technology used by

many enterprises and individuals. The cloud infrastructure can

be classified into three types: the private cloud is owned by

an enterprise and is operated solely to serve its own purposes;

in contrast, the public cloud offers services that are open for

public usage; finally, the hybrid cloud supports the usage of

both private and public cloud services.
The hybrid cloud is attractive to many medium and large

enterprises [1]. They already have significant investment in

their own private data centers. Together with the additional

options provided by computing instances from larger public

cloud centers, they offer flexibility, efficiency and expediency

over solely using either the private or public cloud alone. It has

been predicted that 61% of the enterprises will use a hybrid

cloud platform by the end of 2016, and this percentage is

expected to increase to 90% [2], [3]. Major vendors such as

Public Cloud

VM 1

VM 2

VM m

Scheduler

Private Cloud

Tasks

Offloaded tasks

Enterprise

Fig. 1. Hybrid cloud abstract model

Amazon, VMware, IBM, and Rackspace are already providing

services to build a hybrid cloud.

Joint scheduling and offloading of tasks submitted by users

to a hybrid cloud is an important and non-trivial problem. We

consider the hybrid cloud model presented in Figure 1. The

private cloud consists of m identical processors, or virtual

machines, to serve the incoming tasks. Further, the tasks

can also be offloaded to a more powerful public cloud with

purchased computing instances. Therefore, the scheduler in

the enterprise has two important decisions to make: 1) which

tasks are to be offloaded to the public cloud, and 2) how to

efficiently schedule the remaining tasks on processors at the

private cloud. In this work we address these two questions

jointly.

We consider makespan as the efficiency measure for

scheduling tasks. A scheduler may reduce makespan by of-

floading the tasks to the public cloud. However, each task

offloaded to the public cloud incurs a cost, which may include

multiple factors such as network bandwidth usage and the

price paid for the computing instances. Since the objectives

of makespan and offloading cost are conflicting, in this work

we study the joint optimization problem toward minimizing a

weighted sum of the makespan and the offloading cost. For

tractable analysis, we assume that the makespan of process-

ing offloaded tasks at the public cloud is smaller than the

makespan at the private cloud and hence can be ignored, so

that the offloading cost is the only limiting factor in using the

public cloud. This is a mild assumption when there are many

powerful computing instances available at the public cloud.

The problem of minimizing the weighted sum of makespan

and the offloading cost, which is denoted by Psum, is known to

be NP-hard in general, and approximation algorithms exist [4].978-1-4673-7113-1/15/$31.00 ©2015 IEEE

However, to the best of our knowledge, all previous studies

assume that the processing times of the tasks are known

a priori [5]–[7]. This assumption is impractical, since the

scheduler generally does not have information about the task

processing time until a task is executed to completion [8].

Therefore, we study the problem without this assumption,

which is challenging as it requires online estimation of the

processing times.

Our general approach to solve this problem is as follows.

We first consider a problem of minimizing the maximum of

the makespan on the m private processors and the weighted

offloading cost to the public cloud, which is denoted by

Pmax. We observe that Pmax is equivalent to a problem of

scheduling independent tasks on m + 1 parallel processors

with the objective of minimizing the makespan, where the task

processing time on the (m+1)-th processor, which represents

the public cloud, is equal to its weighted offloading cost. We

then show that any θ-competitive algorithm for Pmax results

in a 2θ-competitive algorithm for Psum. This key property

motivates us to first focus on the makespan minimization

problem.

The makespan minimization problem is also known to be

NP-hard [9]. Further, we show that any algorithm with a pre-

determined scheduling order to solve Pmax has a competitive

ratio of at least n
m

− 1, where n is the number of tasks. The

O(n) factor in the competitive ratio is due to the makespan

penalty incurred by unknowingly scheduling tasks with very

large processing times into the private cloud. Therefore, the

key to solving Pmax is to identify such tasks and offload them

to the public cloud, provided that their offloading cost is not

too high. This forms the basis of the proposed Greedy-One-

Restart (GOR) algorithm, which identifies those tasks, cancels

them, and reschedules them. To identify those tasks, GOR uses

an estimation factor η and the known cost of offloading the

tasks. A salient feature of GOR is that its competitive ratio is

a function of η.

The main contributions of our work are the following:

• When all tasks arrive at the scheduler at time zero, we

propose the GOR algorithm and show that its competitive

ratio for Pmax is a convex function of the estimation

factor η, given by

f(η) = 1 +
(2m+ 1)

m
η +

m

η
.

Its competitive ratio for Psum is 2f(η).
• We show that, for m ≥ 2, the minimum of f(η) is 1 +

2
√
2m+ 1 for η = m√

2m+1
. Hence, GOR is an O(

√
m)-

competitive algorithm for both Pmax and Psum, which

is an improvement over the previously known O(log n)-
competitive algorithm given in [10] for Pmax.

• For the case m = 1, we derive an even lower competitive

ratio of 4 for GOR. We show that this competitive ratio

is tight. We further note that when m = 1, Pmax is

equivalent to minimizing makespan on two unrelated

processors. While there exists offline algorithms [11] and

online algorithms [10] for this problem, to the best of

our knowledge, GOR is the first algorithm to solve the

semi-online version, where the processing times on one

processor are known and those on the other processor are

unknown.

• We further consider the weighted sum minimization prob-

lem where tasks arrive dynamically in time and their

arrival times are unknown a priori, which is denoted by

Pr
sum. Adopting a general approach in [10], we extend

GOR to Dynamic-GOR (DGOR) to accommodate this

case and show that it has 4f(η) competitive ratio.

• Our simulation results suggest that, in terms of average

performance, GOR provides 30 − 40% improvement

over the celebrated list scheduling algorithm [12], while

DGOR provides 50 − 90% improvement. They remain

competitive compared with idealized offline algorithms.

The rest of the paper is organized as follows. In Section II,

we present the related work. The system model is given

in Section III. In Section IV, we provide some preliminary

analysis essential to later derivations. The GOR algorithm is

presented in Section V, and its competitive ratio is derived in

Section VI. In Section VII, we consider the special case of

m = 1. In Section VIII we present DGOR for dynamic tasks

with unknown arrival times. We present simulation results in

Section IX and conclude in Section X.

II. RELATED WORK

In this section we present prior works related to the

weighted sum minimization problem Psum and the min-

max/makespan-minimization problem Pmax.

A. Minimizing Makespan Plus Weighted Offloading Cost

The general problem of makespan plus weighted penalty

is of practical interest in operations research [4], mainly due

to its applicability to highly loaded make-to-order production

systems. In such a system, accepting all the tasks may result

in a delay in the completion orders, so the production firm

may reject some tasks at penalty and aim to minimize the

makespan plus penalty.

The problem was first studied in [5], under the assump-

tion that processing times are known a priori. The authors

considered two cases, all tasks available at time zero and

tasks arriving dynamically in time. They proposed a (2− 1
m

)-

approximation algorithm for the former case, and a Rejection-

Total-Penalty (RTP) algorithm that has
√
5+3
2 competitive ratio

for the latter case. Further, they showed that this is the best

competitive ratio any algorithm can achieve. The authors in

[6] proposed a 1+
√
3

2 -competitive algorithm for the problem

with the assumption that all the tasks have unit processing

time. The authors in [7] studied the problem with m = 2.

They proposed 3
2 -competitive algorithms for two variants of

the problem.

We emphasize that all these previous works assumed that

the task processing times are known a priori, while in our work

the processing time of a task is not known until the completion

of its execution.

B. Minimizing Makespan on Parallel Processors

In the offline setting, where the task processing times are

known a priori and all tasks are available at time zero, the

problem of scheduling independent tasks on parallel proces-

sors to minimize the makespan has been well studied in the

literature [13] [9] [14]. In contrast, in the online setting,

works are sparse. The celebrated list scheduling [12] is a

greedy algorithm that selects a task from the given set in

an arbitrary order and assigns it to whichever processor that

becomes idle first. It does not require a priori knowledge of

the processing times of the tasks. For m identical parallel

processors, it has (2 − 1
m
) competitive ratio. For the case

where the processors are unrelated, i.e., the processing times

of a task on different processors are independent, an O(log n)-
competitive algorithm was proposed in [10].

Our min-max/makespan-minimization problem Pmax is a

special case of minimizing the makespan on m + 1 unre-

lated parallel processors. To the best of our knowledge, the

O(log n)-competitive algorithm of [10] is the only one that

solves our problem with a provable competitive ratio. In our

work, the proposed GOR algorithm is O(
√
m)-competitive.

This is a significant improvement noting the fact that, espe-

cially in the enterprise cloud environment, the number of tasks

n is generally much larger than the number of processors m.

C. Other Hybrid Cloud Models

In the literature, the hybrid cloud architecture has also been

studied under various system models [1], [15]–[19]. In these

works, the makespan of the tasks was not considered in the

design objective. Even though some of them considered the

delay in the processing of individual tasks [15] [16], we note

that such delay values do not provide a means to compute

the makespan since tasks are processed in parallel. Therefore,

none of the solutions provided in these works are applicable

to our problem.

III. SYSTEM MODEL

We consider a hybrid cloud system model as illustrated in

Figure 1. The private cloud of the enterprise consists of m
identical processors or virtual machines, indexed by i ∈ Q =
{1, . . . ,m}. The enterprise also has access to a more powerful

public cloud. The tasks are submitted by different users to a

scheduler. The scheduler may choose to schedule a task on

one of the processors or offload it to the public cloud.

Initially, we focus on the case where all n tasks are available

at time zero. In Section VIII, we will extend this to the case of

dynamic task arrivals with unknown arrival times. The tasks

are independent and non-preemtible. Let T = {1, . . . , n} be

the set of task indices. The processing time of task j ∈ T on

processor i ∈ Q is given by uj and is unknown. We assume

that there are many powerful computing instances available at

the public cloud, so that the makespan of processing offloaded

tasks can be ignored. However, when a task j is offloaded

to the public cloud it incurs a cost âj . It may be viewed as

an aggregation of various penalties, e.g., transmission energy

loss, network bandwidth usage, and price paid for purchased

computing instances. We assume that this cost is known for

each task before it is processed.

A natural objective for the enterprise is to minimize the

makespan of the tasks scheduled on processors 1 to m. The

makespan can be reduced by offloading tasks to the public

cloud, but offloading a task incurs some cost. Hence, we

consider the makespan and the offloading cost jointly, by

combining them using a weight parameter w, so that we may

tune it to emphasize one objective over the other.

Let s denote a schedule and S denote the set of all possible

schedules. The schedule s decides whether to offload a task

to the public cloud or process it on one of the processors

in Q. Let Ti(s) be the set of tasks scheduled on processor

i ∈ Q under schedule s. Given the set of tasks at time 0, the

makespan of a schedule s on processors 1 to m is defined as

the time when the processing of the last task from ∪i∈QTi(s)
is completed. It equals maxi∈Q{Ci(s)}, where Ci(s) is the

completion time of the last task assigned to processor i. Note

that the schedule does not know Ci(s) a priori, since uj are

unknown. Let Tm+1(s) denote the set of tasks offloaded to

the public cloud under schedule s. The offloading cost of the

tasks is given by Γ(s) =
∑

j∈Tm+1(s)
âj . We define Υ(s) ,

maxi∈Q{Ci(s)}+ wΓ(s) as the total cost of schedule s. We

are interested in the following sum cost minimization problem

Psum:
minimize

s∈S
Υ(s).

In the offline setting, all parameter values of the tasks

are known at time 0. In this case, let s̄
∗ denote an optimal

schedule. It is known that the offline version of Psum is NP-

hard [5]. In practice, however, the processing time required

for a task generally is unknown without first processing it.

Therefore, we are interested in the semi-online setting, where

uj , ∀j, are not known a priori but âj , ∀j, are known.

The efficacy of an online algorithm is often measured by

its competitive ratio in comparison with the optimal offline

algorithm. We use the same measure for semi-online algorithm

as well. Let P be a problem instance of Psum, s(P) be

the schedule given by an online algorithm and s̄
∗(P) be the

schedule given by an optimal offline algorithm. The online

algorithm is said to have a competitive ratio θ if and only if

max
∀P

Υ(s(P))

Υ(s̄∗(P))
≤ θ.

Furthermore, θ is said to be tight for the online algorithm if

∃P such that Υ(s(P)) = θΥ(s̄∗(P)).
For convenience of notation, we define aj , wâj , ∀j.

IV. PRELIMINARY ANALYSIS

We note that the authors in [5] have proposed a (2 − 1
m
)-

approximation algorithm to solve Psum in the offline setting.

However, to the best of our knowledge, the online or semi-

online version of this problem has not been studied under any

scenario.

In this work, instead of solving Psum directly, we first

minimize the maximum of the makespan on the m processors

and the weighted offloading cost to the public cloud. This

problem is denoted by Pmax:

minimize
s∈S

Cmax(s),

where Cmax(s) , max{maxi∈Q{Ci(s)}, wΓ(s)}. In the

offline setting, let s
∗ denote the optimal schedule for Pmax

and C∗
max denote the optimal objective value.

Further, consider a hypothetical processor m+ 1 on which

the processing time of a task j is aj = wâj . Let Cm+1(s)
denote the completion time on processor m+1. It is given by

Cm+1(s) =
∑

j∈Tm+1(s)

aj = wΓ(s).

Now, Cmax(s) can be written as Cmax(s) =
maxi∈Q∪{m+1}{Ci(s)}. In other words, Cmax(s) can

be viewed as the makespan of the tasks from T when they

are scheduled on m + 1 processors, where the processing

time of task j on processor i ∈ Q is uj , and its processing

time on processor m + 1 is aj . This leads to the following

conclusion:

Proposition 1. Pmax is equivalent to the problem of minimiz-

ing the makespan of the tasks from T when they are scheduled

on m+ 1 processors, where the processing time of task j on

processor i ∈ Q is uj and its processing time on processor

m+ 1 is aj .

Note that, if aj = uj, ∀j, then Pmax is equivalent to

minimizing makespan on m+1 identical processors, which is

an NP-hard problem [9]. Therefore, Pmax is NP-hard.

In the following proposition we establish a relation between

the problems Psum and Pmax.

Proposition 2. Any θ-competitive algorithm for Pmax is a

2θ-competitive algorithm for Psum.

Proof. The proof is given in the Appendix.

We therefore conclude that an effective solution to Pmax is

suitable for Psum as well. Hence, we next focus on designing

an algorithm for Pmax with a provable competitive ratio. We

note that list scheduling [12] has (2− 1
m+1) competitive ratio,

for scheduling on m+1 identical parallel processors. In Pmax

we have m + 1 parallel processors with m of them identical

and the (m+1)th processor unrelated to the other processors,

i.e., aj on processor m+1 is independent of uj on processors

1 through m. Therefore, the (2 − 1
m+1) competitive ratio is

not applicable when list scheduling is used to solve Pmax. In

fact, in the following theorem we show that list scheduling,

or any other simple deterministic semi-online algorithm, has

at least O(n) competitive ratio.

Theorem 1. The competitive ratio of any semi-online algo-

rithm with a pre-determined scheduling order is at least n
m
−1.

Proof. We consider a family of problem instances where uj =
1, ∀j ∈ {1, . . . , n−m}, uj = n2, ∀j ∈ {n−m+1, . . . , n}, and

aj = n2

n−m
, ∀j. Since uj are unknown, any algorithm using

some pre-determined order to schedule the tasks can only use

500 1000 1500 2000 2500

4

5

6

7

8

9

10
x 10

4

Mean processing time

A
v

er
ag

e
m

ak
es

p
an

List scheduling

Shmoys’ algorithm

Fig. 2. Comparison of Shmoys’ algorithm and list scheduling for varying
mean processing time

the knowledge of aj . However, since all aj are equal, the tasks

cannot be differentiated by such an algorithm. Therefore, this

may lead it to schedule the m tasks with processing time n2

on processors 1 through m, with one task on each processor

and all the other tasks on processor m+1. This will result in

a makespan of n2. However, the optimal makespan is mn2

n−m
,

which is achieved by executing tasks {n − m + 1, . . . , n}
on processor m and performing simple list scheduling for

the other tasks on processors 1 through m. This results in

a competitive ratio of n
m

− 1.

V. GREEDY-ONE-RESTART ALGORITHM

In this section we first present our design considerations for

the proposed algorithm, then describe the algorithm details,

and finally provide a sample case study.

A. Design Considerations

The problem Pmax is related to minimizing makespan on

unrelated parallel processors where the processing times of

tasks on none of the processors are known. For this fully online

version of the problem, Shmoys et. al. in [10] have proposed

an O(log n)-competitive algorithm. We will call it Shmoys’

algorithm. It estimates the processing times of the tasks and

then uses an offline algorithm to schedule them. Tasks that

are not completed in the estimated time are cancelled and

rescheduled using the same offline algorithm. The procedure

is repeated until all tasks are executed to completion.

In Figure 2, we present the average makespan achieved by

Shmoys’ algorithm and list scheduling, to solve Pmax for the

case m = 1, where uj and aj are generated from an expo-

nential distribution with mean 1500. The average is computed

over 5000 problem instances. The 3
2 -approximation algorithm

given by Potts in [11] is used as the offline component in

Shmoys’ algorithm.
We observe that, despite its higher than O(n) competitive

ratio, list scheduling gives a shorter average makespan than

Shmoys’ algorithm. We conjecture that this is due to Shmoys’

algorithm using crude estimates of the unknown processing

times, which results in multiple restarts of some tasks. Al-

though restarting the tasks paves the way to obtain an O(log n)

competitive ratio, it penalizes the makespan on average, as the

time already spent in processing a cancelled task is wasted.

This motivates us to combine the virtues of both algorithms

in a new semi-online design.

Neither list scheduling nor Shmoys’ algorithm utilizes the

known processing times on processor m + 1. In contrast,

we design the GOR algorithm to judicially utilize the known

processing times, while allowing at most one restart for any

task. The idea behind one restart is that, the tasks that are

scheduled on processors 1 to m and have large uj compared

with aj are identified, cancelled, and rescheduled, so that they

may be scheduled on processor m + 1 in the new schedule.

Cancelling a task with large uj on some processor in Q may

allow some tasks that have smaller uj values to be scheduled

on that processor. At the same time, we avoid the wastage

of time in cancelling a task more than once. A more detailed

description of the GOR algorithm is given below.

B. Algorithm Description

The GOR algorithm initially estimates that the processing

time of any task j on a processor in Q is ηaj , where η is an

estimation factor. We form a list according to the ascending

order of aj . Tasks from the start of the list are executed one

by one on processor m+1. From the end of the list, they are

scheduled on the processors in Q using list scheduling. A task

j that is scheduled on any processor in Q and is not finished

within the estimated processing time ηaj is cancelled and set

aside. In this work we consider η ≥ 1 so that a task is not

cancelled until at least it is processed for a duration equivalent

to its weighted offloading cost.

After going through all tasks in the above iteration, those

that are cancelled are again sorted and a list is formed in

the ascending order of aj . In the next iteration, the list is

scheduled using the same procedure as above, but this time

we do not cancel any task, except the last one. Note that in

both iterations the last task is scheduled on both processor

m+1 and some processor in Q. In such a case we cancel the

task on one processor if it is either finished or cancelled on

another processor first.

The details of the algorithm are presented in Algorithm 1.

We note that GOR runs in O(n logn) time due to the need for

sorting n tasks. We use s
GOR to denote the resultant schedule.

C. Case Study

We demonstrate the working of GOR using the family of

problem instances given in the proof of Theorem 1, i.e., uj =
1, ∀j ∈ {1, . . . , n −m}, uj = n2, ∀j ∈ {n −m + 1, . . . , n}
and aj =

n2

n−m
, ∀j. For now we simply use η = 1. Later, we

will study in detail how to choose η. As aj are the same for

all tasks, GOR cannot differentiate the tasks. Therefore, in the

first iteration, the schedule given by GOR is equivalent to list

scheduling with the exception that the last task is scheduled

both on processor m + 1 and one of the processors in Q.

Another exception is that, in the first iteration, the processing

time of any task before cancellation on processors 1 through

m is n2

n−m
(since η = 1). Therefore, any task j ∈ {n−m +

Algorithm 1: Greedy-One-Restart (GOR) Algorithm

1: l = 1, T (l) = T
2: while l ≤ 2 do

3: j1 = 1, j0 = |T (l)|+ 1
4: Sort T (l) in the ascending order of aj . WLOG,

re-index tasks such that a1 ≤ a2 ≤ . . . ≤ a|T (l)|.
5: Start processing task j1 on processor m+ 1
6: for k = 1 to min{m, |T (l)|} do

7: j0 = j0 − 1
8: Start processing task j0 on processor k.

9: if l = 1 then

10: Cancel task j0 if its execution time

exceeds ηaj0 and include it in T (l+1)

11: end if

12: end for

13: while j0 6= j1 do

14: Wait until next event E occurs

15: if E = a task is cancelled or finished on some

processor i ∈ Q then

16: j0 = j0 − 1
17: Start processing task j0 on processor i.
18: if l = 1 then

19: Cancel task j0 if its execution time exceeds

ηaj0 and include it in T (l+1)

20: end if

21: else if E = a task is finished on processor m+ 1
then

22: j1 = j1 + 1
23: Start processing task j1 on processor m+ 1
24: end if

25: end while

26: q(l) = j0 = j1
27: Task q(l) is scheduled both on processor m+ 1 and

some processor î ∈ Q. If task q(l) is finished on

processor m+ 1 first, cancel its execution on

processor î. Similarly, if task q(l) is finished or

cancelled on processor î first, cancel its execution on

processor m+ 1.

28: l = l + 1
29: end while

1, . . . , n} scheduled on a processor in Q will be cancelled

after being processed for duration n2

n−m
. Also, any task j ∈

{1, . . . , n − m} will be finished in the first iteration since it

will be cancelled if scheduled on a processor in Q, as n2

n−m
>

1 = uj, ∀j ∈ {1, . . . , n − m}. In the second iteration any

cancelled task j ∈ {n − m + 1, . . . , n} will be finished on

processor m+ 1.

Next, to illustrate how restarting tasks with large processing

times improves the worst case bound, we find a simple upper

bound for the makespan achieved by GOR for the above family

of problem instances. In the worst case, GOR may schedule

tasks n − m + 1 through n on some processor i ∈ Q. Each

of them will be cancelled in the first iteration after being

processed for duration n2

n−m
. Therefore, mn2

n−m
time is elapsed

on processor i. In this duration, m tasks will be finished on

processor m + 1. Now, the rest of the n − 2m tasks can

be executed in at most n−2m
m−1 + 1 time. This is because the

processing time of those tasks on processors 1 through m is

1. In the second iteration all the tasks n − m + 1 through n
will be scheduled on processor m+1. Therefore, the duration

of execution of these tasks will be mn2

n−m
.

From the above analysis, a simple upper bound for Cmax(s)
is

Cmax(s
GOR) ≤ mn2

n−m
+

n− 2m

m− 1
+ 1 +

mn2

n−m

⇒ Cmax(s
GOR)

C∗
max

≤ n−m

mn2

(

2mn2

n−m
+

n−m

m− 1

)

≤ 2 +
(1−m/n)2

m(m− 1)
.

Therefore, the competitive ratio of GOR for this family of

problem instances is O(1), which is a huge improvement over

the competitive ratio n
m
−1 as shown in the proof of Theorem

1 for algorithms with pre-determined scheduling order.

VI. COMPETITIVE RATIO ANALYSIS

In this section, we first derive a competitive ratio for GOR

as a function of the estimation factor η. We then find η that

minimizes the competitive ratio.

A. Competitive Ratio for General η

We refer to the time to process the set of tasks T (l) in

iteration l as the schedule length of this iteration, denoted by

C
(l)
max. In the following lemma we give a bound for C

(1)
max.

Lemma 1.

C(1)
max ≤

(

2m+ 1

m

)

ηC∗
max.

Proof. The proof is given in the Appendix.

We note that, a task j scheduled in the second iteration of

GOR should have been scheduled on some processor i ∈ Q in

the first iteration and was cancelled as uj ≥ ηaj . Therefore,

for task j scheduled in the second iteration we know some

information about its processing time uj . This insight forms

the basis for deriving a bound for C
(2)
max, which is stated in

the following lemma.

Lemma 2.

C(2)
max ≤

(

1 +
m

η

)

C∗
max

Proof. The proof is given in the Appendix.

As a direct consequence of Lemmas 1 and 2, since

Cmax(s
GOR) = C

(1)
max + C

(2)
max, in the following theorem we

give a competitive ratio for GOR.

Theorem 2.
Cmax(s

GOR)

C∗
max

≤ f(η),

where

f(η) = 1 +
(2m+ 1)

m
η +

m

η
.

Remark: We note that the proofs of Lemmas 1 and 2

does not require the tasks to be ordered in the ascending

order of their costs. Therefore, GOR without the sorting

step will still have O(
√
m) competitive ratio. However, we

observed that for problem instances generated randomly from

typical distributions, sorting helps in reducing the total cost

on average.

B. Minimizing the Competitive Ratio

One interesting feature of GOR is that the competitive ratio

of the algorithm can be tuned by choosing an appropriate

value for η. By using a large η, in the first iteration, we allow

the tasks to run for a longer duration before cancellation and

the worst case bound for C
(1)
max increases. On the other hand,

using a small η value results in aggressive cancellation of the

tasks in the first iteration and the worst case bound for C
(2)
max

increases. Next, we find the optimal η∗ ≥ 1 that minimizes

the competitive ratio f(η).
Note that f(η) is a convex function as its second derivative

f ′′(η) = 2m
η3 is positive for η ≥ 1. Therefore, we find η∗ by

equating the derivative f ′(η) to zero.

f ′(η) =
2m+ 1

m
− m

η2
= 0

⇒ η =
m√

2m+ 1
.

We note that the solution η = m√
2m+1

is undesirable for the

case m = 1, since η = 1√
3

< 1. Therefore, for the case

m = 1 we proceed as follows. Observe that for m = 1, f(η) =
3
2 − 1

η2 which is positive for η ≥ 1. This implies f(η) is a

non-decreasing function for m = 1. Therefore, the minimum

occurs at η = 1. We summarize the solution below.

η∗ =

{

1 m = 1
m√

2m+1
m ≥ 2.

This leads to our main theorem below.

Theorem 3. GOR is O(
√
m)-competitive for Pmax and Psum.

Proof. Substituting η = m√
2m+1

for m ≥ 2 in Theorem 2, we

have
Cmax(s

GOR)

C∗
max

≤ 1 + 2
√
2m+ 1 .

Therefore, GOR is O(
√
m)-competitive for Pmax. It has the

same competitive order for Psum by Proposition 2.

VII. TIGHT COMPETITIVE RATIO FOR m = 1

For m = 1, we have η∗ = 1 and f(1) = 5. In the following

theorem, we observe that an even lower competitive ratio of

4 can be proved. Further, the competitive ratio is tight.

Theorem 4. For m = 1 and choosing η = 1, GOR is 4-

competitive for Pmax. This competitive ratio is tight.

Proof. The proof is given in the Appendix.

The significance of Theorem 4 is the following. When

m = 1, Pmax is a semi-online version of the problem of

minimizing the makespan on two unrelated parallel processors.

For the offline version of the problem, where the processing

times of the tasks on both the processors are known, the

authors in [11] gave a 3
2 -approximation algorithm. Further,

3
2 is the lower bound on the approximation ratio that any

polynomial-time algorithm can achieve, unless P=NP [20].

On the other extreme, in the fully online version of the

problem, where the processing times of the tasks on neither

processors are known, an O(log n)-competitive algorithm was

given in [10]. To the best of our knowledge, GOR is the

first constant-competitive algorithm to solve the semi-online

version of the problem, where the processing times of the

tasks on one processor are known and those on the other

processor are unknown. We observe substantial improvement

in the achievable competitive ratio when the processing times

on one processor become available. Further, the competitive

ratio 4 compares well with the lower bound 3
2 in the offline

case.

VIII. GOR FOR DYNAMIC TASK ARRIVALS

So far we have assumed that all n tasks are available to

be scheduled at time zero. In practice, the tasks may arrive

dynamically in time, and their arrival times may not be known

a priori. We consider Psum and Pmax under such dynamic task

arrivals, and relabel them as Pr
sum and Pr

max, respectively.

Given a θ-competitive algorithm for Pmax, we may adopt

the general approach proposed in [10] to extend the algorithm

to one that has a 2θ competitive ratio for Pr
max. The extended

GOR algorithm, termed Dynamic-GOR (DGOR), is described

as follows. Without loss of generality, suppose there is at least

one task available at time 0. Let T (0) be the set of tasks

available at time 0. Schedule T (0) using GOR. Accumulate

the tasks that arrive while waiting for the time when the last

task scheduled on processors 1 to m from T (0) is finished.

Then schedule the accumulated tasks using GOR. Again,

accumulate tasks and repeat the above procedure until no more

tasks are available to be scheduled.

Furthermore, we note that Proposition 2 holds for prob-

lems Pr
sum and Pr

max as well. Therefore, such an extended

algorithm has a 4θ competitive ratio for Pr
sum. Since GOR

is f(η)-competitive for Pmax, DGOR is 2f(η)-competitive

for Pr
max and 4f(η)-competitive for Pr

sum. Therefore, it is

O(
√
m)-competitive for both Pr

max and Pr
sum.

IX. AVERAGE PERFORMANCE OF GOR

In addition to the proven competitive ratios presented in the

previous sections, we next study the average performance of

GOR and DGOR over randomly generated problem instances.

We provide comparison with the celebrated list scheduling

algorithm [12]. Further, in order to establish a benchmark,

we also present results for the two algorithms from [5] as

described in Section II, which require a priori task processing

times.

400 600 800 1000 1200 1400
0

500

1000

1500

2000

Number of tasks n

A
v
er

ag
e

to
ta

l
co

st

List scheduling

GOR

Offline-2-approx

Fig. 3. Effect of varying number of tasks. All tasks at time zero.

A. All Tasks Available at Time Zero

In the following simulation results, both the processing

times uj and offloading cost aj are chosen from an expo-

nential distribution, with default means 60 sec and 60
m

sec,

respectively. Note that, even though we have chosen parameter

values from an exponential distribution, similar results are

observed when other distributions are used. The other default

parameters are as follows: number of tasks n = 1000, number

of processors m = 50, and weight factor w = 1. We generate

over 5000 problem instances for each data point and compare

the average total cost achieved by different algorithms.

Figures 3, 4, 5, and 6 present the average total cost with

varying number of tasks, mean processing time, number

of processors, and weight factor, respectively. We label the

(2− 1
m
)-approximation offline algorithm from [5] as ”Offline-

2-approx.” It can be observed that GOR outperforms list

scheduling and provides a reduction of 30−40% in the average

total cost. Another important observation is that, as the number

of tasks increases, the gap between GOR and list scheduling

increases. This suggests that GOR will perform far better than

list scheduling in an enterprise where the number of tasks is

large.

At the same time, we observe that GOR incurs about

50% higher cost than the best known offline algorithm. It

is impractical to know the exact processing time of tasks

before they are processed. However, this result suggests an

interesting future research direction on how to use some

available statistical information about the task processing times

to further improve the average performance of GOR.

B. Dynamic Task Arrivals

We next simulate dynamic task arrivals and observe the

average performance of DGOR. We compare it with list

scheduling and the RTP algorithm in [5]. The tasks are

generated with inter arrival times chosen from an exponential

distribution with mean 100 ms. All the other parameter values

are the same as described in the previous subsection. We

simulate for over 105 task arrivals for each data point.

20 40 60 80 100
0

500

1000

1500

2000

2500

Mean processing time (sec)

A
v

er
ag

e
to

ta
l

co
st

List scheduling

GOR

Offline-2-approx

Fig. 4. Effect of varying mean processing time. All tasks at time zero.

20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

Number of processors m

A
v

er
ag

e
to

ta
l

co
st

List scheduling

GOR

Offline-2-approx

Fig. 5. Effect of varying number of processors. All tasks at time zero.

In Figures 7, 8, and 9, we present the total cost of the

algorithms with varying mean processing time, number of

processors, and weight factor, respectively. We observe that

DGOR provides a reduction of 50 − 90% in the total cost

compared with list scheduling. Furthermore, its performance is

competitive with the RTP algorithm, even though RTP requires

that task processing times are known a priori.

X. CONCLUSION

We have studied joint scheduling and offloading in a hy-

brid cloud. We have formulated an optimization problem to

minimize the weighted sum of the makespan on m identical

processors and the offloading cost to the public cloud. We

propose a GOR algorithm to solve this problem under the

challenging yet practical semi-online setting where the task

processing times are not known a priori. We show that GOR

is O(
√
m)-competitive, which is a significant improvement

over previously known algorithms.

Further analytical improvement indicates that GOR has a

tight competitive ratio of 4 for minimizing the makespan on

two unrelated processors. We have also extended GOR to

DGOR to accommodate dynamic task arrivals. We show that

0 2 4 6 8 10
0

500

1000

1500

2000

2500

Weight factor w

A
v
er

ag
e

to
ta

l
co

st

List scheduling

GOR

Offline-2-approx

Fig. 6. Effect of varying weight factor. All tasks at time zero.

20 40 60 80 100
0

0.5

1.0

1.5

2.0

2.5

Mean processing time (sec)

T
o
ta

l
co

st

List scheduling

DGOR

RTP, known proc. time

x10
5

Fig. 7. Effect of varying mean processing time. Dynamic task arrival.

DGOR has the same O(
√
m) scaling of competitive ratio.

Our simulation results further demonstrate that both GOR and

DGOR provide substantial savings in average performance

over list scheduling, and they are competitive with algorithms

where the task processing times are assumed to be known a

priori.

XI. ACKNOWLEDGEMENT

This work has been supported in part by a grant from

the Natural Sciences and Engineering Research Council of

Canada.

XII. APPENDIX

A. Proof of Proposition 2

Let s′ be the computed schedule of a θ-competitive algo-

rithm for solving Pmax. We have the following inequalities.

Υ(s′) = max
i∈Q

{Ci(s
′)}+ wΓ(s′)

≤ 2max{max
i∈Q

{Ci(s
′)}, wΓ(s′)}

≤ 2θmax{max
i∈Q

{Ci(s
∗)}, wΓ(s∗)}

20 40 60 80 100
0

1.0

2.0

3.0

3.0

4.0

6.0

Number of processors m

T
o
ta

l
co

st

List scheduling

GOR

RTP, known proc. time

x10
5

Fig. 8. Effect of varying number of processors. Dynamic task arrival.

0 2 4 6 8 10
0

0.5

1.0

1.5

2.0

2.5

Weight factor w

T
o

ta
l

co
st

List scheduling

GOR

RTP, known proc. time

x10
5

Fig. 9. Effect of varying weight factor. Dynamic task arrival.

≤ 2θmax{max
i∈Q

{Ci(s̄
∗)}, wΓ(s̄∗)}

≤ 2θ[max
i∈Q

{Ci(s̄
∗)}+ wΓ(s̄∗)]

= 2θΥ(s̄∗).

Hence the result.

B. Proof of Lemma 1

Let C
(l)
i and T (l)

i denote the schedule length and the set of

tasks scheduled, respectively, on processor i in iteration l. Let

γj = min(uj , ηaj). Noting that η ≥ 1, we have

C∗
max ≥ 1

m+ 1

n
∑

j=1

min(uj , aj)

=
1

η(m+ 1)

n
∑

j=1

min(ηuj , ηaj)

≥ 1

η(m+ 1)

n
∑

j=1

γj . (1)

Also ∀j,

C∗
max ≥ min(uj , aj)

≥ 1

η
min(ηuj , ηaj)

≥ 1

η
γj.

(2)

We also note that, in the first iteration of GOR, a task j
scheduled on processor i ∈ Q is processed for γj duration.

We now consider the following cases.

Case 1: C
(1)
max = C

(1)
m+1. For this case, from Line 27 of

Algorithm 1, task q(1) should have been scheduled on some

processor î ∈ Q, but its processing was completed first on

processor m+1. In other words, processing q(l) on processor

î to completion would have increased the schedule length.

Therefore, we have

C(1)
max ≤

∑

j∈T (1)

î

γj + γq(1) . (3)

Also, at time C
(1)
max−γq(l) , all the processors i ∈ Q\{î} should

have been busy executing some task, otherwise GOR would

have scheduled task q(l) on processor i ∈ Q\{î} which is idle

at that time. Therefore,

C(1)
max − γq(l) ≤

∑

j∈T (1)

î

γj + γq(1) , ∀i ∈ Q\{î}. (4)

From (3) and (4) we have

C(1)
max − γq(1) ≤

∑

j∈T (1)
i

γj , ∀i ∈ Q (5)

⇒ C(1)
max − γq(1) ≤

1

m

∑

j∈∪i∈QT (1)
i

γj

⇒ C(1)
max ≤ η(m+ 1)

m
C∗

max + γq(1)

⇒ C(1)
max ≤

(

2m+ 1

m

)

ηC∗
max.

In the third inequality above, we have used (1) and in the last

inequality we have used (2).

Case 2: C
(1)
max 6= C

(1)
m+1. Let C

(1)
max = C

(1)

î
for some î ∈ Q.

In this case task q(1) should have been scheduled both on

processor î and processor m + 1 but either was cancelled

or was completed processing on processor î first. Again, at

time C
(1)
max − γq(1) any processor i ∈ Q\{î} should be busy

executing some task. Otherwise, scheduling task q(1) on some

processor i ∈ Q\{î} that is idle by that time will result in

a smaller schedule length and, GOR would have done so.

Therefore,

C(1)
max − γq(1) ≤

∑

j∈T (1)
i

γj , ∀i ∈ Q.

The result follows as the above inequality is the same as (5).

C. Proof of Lemma 2

Let C
(2)∗
max denote the optimal schedule length of the tasks

from T (2) with the assumption that the processing time of task

j ∈ T (2) on processor i ∈ Q is ηaj and on processor m+1 is

aj . Also, let C
(2)∗
i,max denote the corresponding schedule length

on processor i. We have uj > ηaj , ∀j ∈ T (2). Therefore,

C
(2)∗
max ≤ C∗

max. We know that

1

η

m
∑

i=1

C
(2)∗
i,max + C

(2)∗
m+1,max =

|T (2)|
∑

j=1

aj

⇒
{

1 +
m

η

}

C(2)∗
max ≥

|T (2)|
∑

j=1

aj

⇒
{

1 +
m

η

}

C∗
max ≥

|T (2)|
∑

j=1

aj . (6)

Now, C
(2)
max cannot be greater than the schedule length of tasks

from T (2) when all of them are processed on processor m+1.

This implies C
(2)
max ≤

∑|T (2)|
j=1 aj . Therefore, the result follows

from (6).

D. Proof of Theorem 4

Since η = 1, in the first iteration the processing time of task

j scheduled on processor 1 is γj = min(uj , aj).

C(1)
max ≤

n
∑

j=1

min(uj, aj),

since the schedule given by GOR in first iteration is always

better than scheduling all tasks on processor 1. Substituting

m = 1 and η = 1 in (1) we get

C∗
max ≥ 1

2

n
∑

j=1

min(uj , aj).

Therefore, C
(1)
max ≤ 2C∗

max. Substituting m = 1 and η = 1

in Lemma 2, we get C
(2)
max ≤ 2C∗

max. Therefore, Cmax =

C
(1)
max + C

(2)
max ≤ 4C∗

max.

To show that the competitive ratio is tight we provide the

following problem instance for which the competitive ratio is

achieved by GOR. Consider n = 8 and the task processing

times are as follows:

aj =

{

10− δ j = 1, 2, 3, 4
10 j = 5, 6, 7, 8,

uj =







δ j = 1, 2, 3, 4
40 j = 5
10 + δ j = 6, 7, 8,

where δ is a positive real number close to 0. GOR lists

the tasks in the ascending order of aj . The tasks 1 through

4 are scheduled on processor 2 and tasks 5 through 8 are

scheduled on processor 1 in the first iteration. Since uj >
aj , ∀j ∈ {5, 6, 7, 8}, all the tasks scheduled on processor

1 will be cancelled. Therefore, the schedule length in the

first iteration is 40 − 4δ. Tasks 5 through 8 have same aj .

Therefore, in the second iteration GOR cannot differentiate

the tasks and may schedule task 5 on processor 1 and tasks 6
through 8 on processor 2. In this case the schedule length

in the second iteration is 40. This results in a makespan

Cmax(s
GOR) = 80− 4δ.

The optimal schedule s
∗ is the following. Schedule tasks

1, 2, 3, 4, 6, 7 on processor 1 and tasks 5, 8 on processor 2. The

optimal maskespan is C∗
max = 20+6δ. Since δ can be chosen

arbitrarily close to 0, the competitive ratio 4 is achieved.

REFERENCES

[1] T. Guo, U. Sharma, P. Shenoy, T. Wood, and S. Sahu, “Cost-aware cloud
bursting for enterprise applications,” ACM Trans. Internet Tech., vol. 13,
no. 3, pp. 10:1–10:24, May 2014.

[2] IBM, http://www.ibm.com/cloud-computing/us/en/private-cloud.html.
[3] VMware, http://www.vmware.com/ca/en/cloud-computing/hybrid-cloud.
[4] D. Shabtay, N. Gaspar, and M. Kaspi, “A survey on offline scheduling

with rejection,” J. Scheduling, vol. 16, no. 1, pp. 3–28, 2013.
[5] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and

L. Stougie, “Multiprocessor scheduling with rejection,” SIAM J. Discrete

Math., vol. 13, no. 1, pp. 64–78, 2000.
[6] C. Miao and Y. Zhang, “On-line scheduling with rejection on identical

parallel machines,” J. Systems Science & Complexity, vol. 19, no. 3, pp.
431–435, 2006.

[7] X. Min, Y. Wang, J. Liu, and M. Jiang, “Semi-online scheduling on two
identical machines with rejection,” J. Comb. Optim., vol. 26, no. 3, pp.
472–479, 2013.

[8] A. Fiat and G. Woeginger, Eds., Online Algorithms: the State of the Art,
ser. Lecture notes in computer science. New York: Springer, 1998.

[9] M. Drozdowski, Scheduling for Parallel Processing. Springer Publish-
ing Company, 2009.

[10] D. B. Shmoys, J. Wein, and D. P. Williamson, “Scheduling parallel
machines on-line,” SIAM J. Comput., vol. 24, no. 6, pp. 1313–1331,
Dec. 1995.

[11] C. N. Potts, “Analysis of a linear programming heuristic for scheduling
unrelated parallel machines,” Discrete Applied Mathematics, vol. 10,
no. 2, pp. 155–164, 1985.

[12] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM

Journal on Applied Mathematics, vol. 17, pp. 416–429, 1969.
[13] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rin-

nooy Kan, “Optimization and approximation in deterministic sequencing
and scheduling: a survey,” Annals of discrete mathematics, vol. 5, no. 2,
pp. 287–326, 1979.

[14] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms, 1st ed. New York, NY, USA: Cambridge University Press,
2011.

[15] X. Qiu, W. L. Yeow, C. Wu, and F. C. M. Lau, “Cost-minimizing
preemptive scheduling of mapreduce workloads on hybrid clouds,” in
Proc. IEEE IWQoS, 2013, pp. 213–313.

[16] S. Li, Y. Zhou, L. Jiao, X. Yan, X. Wang, and M. R. Lyu, “Delay-aware
cost optimization for dynamic resource provisioning in hybrid clouds,”
in Proc. IEEE International Conference on Web Services, ICWS, 2014,
pp. 169–176.

[17] R. Van Den Bossche, K. Vanmechelen, and J. Broeckhove, “Online
cost-efficient scheduling of deadline-constrained workloads on hybrid
clouds,” Future Gener. Comput. Syst., vol. 29, no. 4, pp. 973–985, Jun.
2013.

[18] M. Rahman, X. Li, and H. N. Palit, “Hybrid heuristic for scheduling
data analytics workflow applications in hybrid cloud environment,” in
Proc. IEEE IPDPS Workshops, 2011, pp. 966–974.

[19] M. Shifrin, R. Atar, and I. Cidon, “Optimal scheduling in the hybrid-
cloud,” in Proc. IFIP/IEEE International Symposium on Integrated
Network Management, 2013, pp. 51–59.

[20] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algorithms
for scheduling unrelated parallel machines,” Math. Program., vol. 46,
no. 3, pp. 259–271, Feb. 1990.

