
Completion Time Minimization in Multi-user
Task Scheduling with Heterogeneous Processors

and Budget Constraints
Sowndarya Sundar, Jaya Prakash Champati, and Ben Liang

Electrical and Computer Engineering, University of Toronto, Ontario, Canada

Email: {ssundar, champati, liang}@ece.utoronto.ca

Abstract—We study task scheduling and offloading in a cloud
computing system with multiple users, where tasks have differ-
ent processing times, release times, communication times, and
weights. Each user may schedule a task locally or offload it
to a finite-capacity shared cloud with heterogeneous processors
by paying a price for the resource usage. Our work aims at
identifying a task scheduling decision that minimizes the weighted
sum completion time of all tasks, while satisfying the users’
budget constraints. We propose an efficient solution framework
for this NP-hard problem. As a first step, we solve an integer-
relaxed problem and use a rounding technique to obtain an
integer solution that is a constant factor approximation to the
minimum weighted sum completion time. This solution violates
the budget constraints, but the average budget violation decreases
as the number of users increases. Thus, we develop a scalable
Single-Task Unload for Budget Resolution (STUBR) algorithm,
which resolves budget violations and orders the tasks to reduce
the weighted sum completion time. Our trace-driven simulation
shows that STUBR exhibits robust performance under practical
scenarios and outperforms several alternatives.

I. INTRODUCTION

Computational offloading is one of the key features that led

to the development of Mobile Cloud Computing (MCC) and

Mobile Edge Computing (MEC) systems, where mobile de-

vices may offload their computational tasks to cloud resource

providers. Each mobile user may need to pay a monetary

cost for the computational resource usage. Furthermore, as in

cloudlets and fog computing, MCC and edge computing are

often characterized by multiple heterogeneous helper proces-

sors that are of diverse capabilities.

Motivated by these systems, we study a problem of task

scheduling and offloading in a heterogeneous cloud computing

system to minimize the computational delays of multiple

users’ tasks. Several existing works study the offloading prob-

lem only for the single-user scenario [1]–[5], while the multi-

user scenario was studied in [6]–[10]. In this work, we focus

on practical constraints in the multi-user scenario including

finite-capacity user devices, finite-capacity cloud consisting of

heterogeneous servers, and budget limitation for the users.

We consider tasks that may have different processing times,

release times, communication times, and weights. A task

This work has been funded in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

may be executed locally on the user’s device or offloaded to

a finite-capacity cloud server. The servers at the cloud are

heterogeneous processors with different speeds. The users are

required to pay a certain monetary price based on the usage

time of a processor at the cloud. Each user has a specific

budget which determines the monetary cost that the user is

willing to spend for offloading tasks to the cloud.
Our objective is to identify the task scheduling decision that

minimizes the sum of weighted completion times of all tasks

subject to user budget constraints. The problem is NP-hard

since minimizing the sum of weighted completion times of

jobs with release times on a single processor is NP-hard [11].

For a special case of our problem where there is a single user

and no budget constraint, an efficient solution was proposed

in [12]. However, extending their solution approach is non-

trivial even for the case of a single user with budget constraint.

We will see later that having budget constraints for multiple

users makes the problem much more challenging.
Our main contributions are summarized below:

• For our problem, we formulate an interval-indexed ILP,

inspired by [12]. Using a relaxed LP-solution, we obtain

an integer solution that is shown to provide a constant-

factor approximation to the minimum weighted sum

completion time. Even though this integer solution vi-

olates the budget constraints of the original problem, we

make an interesting observation that the average budget

violation decreases with respect to the number of users.

Consequently, when the number of users is sufficiently

large, the average cost incurred across all users meets the

average budget.

• Based on the above observation, we propose the Single

Task Unload for Budget Resolution (STUBR) algorithm.

In addition to finding a relaxed LP-solution for the above

ILP, STUBR resolves budget violations in the rounded in-

teger solution and then uses greedy task ordering on each

processor to further reduce the weighted sum completion

time. We also derive the computational complexity of

STUBR.

• Our trace-driven simulation shows that STUBR performs

consistently better than the alternatives. It exhibits maxi-

mum performance gains of 40% for the chess application

and 43.4% for compute-intensive applications [13] in978-1-5386-2542-2/18/$31.00 c©2018 IEEE

comparison with a Weighted Shortest Processing Time

(WSPT) scheme [14]. Finally, our simulation results

demonstrate that STUBR is highly scalable with respect

to the number of users in the system.

The rest of the paper is organized as follows. In Section II,

we present the related work. Section III describes the system

model and the problem formulation. In Section IV, we propose

the STUBR algorithm and provide performance guarantees.

Section V presents the simulation results, and we conclude

the paper in Section VI.

II. RELATED WORK

The problem of computational offloading and scheduling

in the mobile cloud environment has received much recent

attention. Existing works that investigate this problem for a

multi-user multi-task system often tend to view the cloud as

a single entity [7]–[10]. Unlike these studies, we account for

the heterogeneity and finite-capacity of the cloud resource by

considering a finite number of cloud processors that must be

shared by all users.
For general cloud or multi-processor task scheduling prob-

lems, many studies have focused on energy consumption [1],

[3], [4], [9] or makespan [15], [16]. However, in practice,

the sum completion time is also an important performance

metric, as it represents the processing delay incurred by

individual tasks. The objective of weighted sum completion

time enhances this feature further by allowing us to express

the relative priorities of the tasks. However, few works in the

literature have considered the same objective to schedule tasks

in a cloud environment [12], [17]. Both [12] and [17] assume

a single user with multiple tasks. While [17] employs an ant-

colony heuristic and simulation based performance evaluation,

[12] further considers release times on parallel processors and

presents an 8-approximation algorithm. Our solution approach

is inspired by [12]. However, our problem also accounts for

multiple users, individual user budget constraints, and task

communication times, which renders it more challenging than

those addressed in [12].
Some existing works also consider the expense incurred

by users to utilize the resources at the cloud. A majority of

these works address this problem by minimizing some form

of usage cost (e.g., [5], [6]), while few aim to maximize

the benefit to users under budget constraints [18], [19]. In

[18], the authors considered the problem of maximizing the

service quality for a multi-task application with a single budget

constraint. In [19], the authors investigated the case where

jobs are scheduled onto virtual machines with an objective

of minimizing the response time subject to budget constraints

on individual tasks. In our problem, in addition to a different

optimization objective, we further consider the more general

case of multiple users and per-user budget constraints, where

each user may have multiple tasks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

1) Tasks: We consider a system with N user devices,

possibly mobile. Each user i ∈ {1, . . . , N} wishes to complete

a finite set of independent tasks, denoted by Ji. Each task j is

released or becomes available for processing at time tRj . The

processing time for each task j ∈ Ji on user i’s local processor

is bounded and denoted by tj . Additionally, each task may

require input data that need to be communicated if the task

is to be executed at the cloud. Towards this end, we assume

communication times cj for task j. We also consider a weight

wj associated with each task. The inclusion of these weights

allows a more generic model that assigns different priorities

to users and/or tasks. In this work, we proceed assuming that

such information is already given.

2) Processors: The system includes a finite-capacity cloud

consisting of a number of heterogeneous processors that run

at different speeds. Each processor at the cloud is assumed

to be unary, i.e., it can execute only one task at a time.

This assumption is without loss of generality, as allowing

multiple tasks to share a unary processor simultaneously will

not provide any improvement to the sum completion time

objective. In addition to the cloud processors, each user has

its own unary local processor. The user can execute its tasks

either locally or remotely at one of the cloud processors.

The speed-up factor for each cloud processor r is αir, so

that the processing time for task j at processor r is αirtj . Let

Ri denote the set of processors to which user i can offload

its tasks, i.e., its own local processor and cloud processors.

Let C be the set of cloud processors, and R be the set of all

processors (including all users’ local processors).

3) User Budget: The users are required to pay a certain

price per unit time to use the processors at the cloud, but no

price to execute tasks locally on their own device. Let βr be

the cost per unit time for executing a task on processor r. Each

user i has a budget Bi that determines the total expense that

the user is willing to incur for offloading tasks to the cloud.

B. Problem Formulation

We wish to identify the task scheduling decision that

minimizes the weighted sum completion time of all tasks

subject to user budget constraints. We formulate the proposed

problem by using an interval-indexing method proposed in

[12]. Towards this end, we divide the time axis into intervals

indexed by l ∈ {1, . . . , L}, where L is the smallest integer

such that
2L−1 ≥ max

j
tRj +

∑

j

(tj + cj).

This means that 2L−1 is a sufficiently large time horizon for
the scheduling of all given tasks since it accounts for the

largest release time maxj t
R
j and worst-case completion time

∑

j(tj+cj). Let τ0 = 1 and τl = 2l−1, for all l ∈ {1, . . . , L}.

Each interval l corresponds to the time slot (τl−1,τl). The task

scheduling decision determines the processors where each task

should be scheduled, as well as the order of the tasks. We

define decision variables {xjrl} where xjrl = 1 if and only

if task j finishes execution on processor r in time interval

l ∈ {1, . . . , L}. As shown in [12], such an approach reduces

the number of variables in our formulation in comparison

with a time-indexed formulation with constant-size intervals,

making it computationally tractable, with a small penalty in

the precision of quantifying the optimization objective.

The optimization problem is defined below.

min
{xjrl}

N
∑

i=1

∑

j∈Ji

wj

∑

r∈Ri

L
∑

l=1

τl−1xjrl, (1)

s.t.

L
∑

l=1

∑

r∈Ri

xjrl = 1, ∀i ∈ {1, . . . , N}, j ∈ Ji, (2)

N
∑

i=1

∑

j∈Ji

αirtjxjrl ≤ τl, ∀r ∈ R, l ∈ {1, . . . , L}, (3)

∑

j∈Ji

L
∑

l=1

∑

r∈Ri

βrαirtjxjrl ≤ Bi, ∀i ∈ {1, . . . , N},

(4)

xjrl = 0, if τl < tRj + αirtj + cj ,

∀i ∈ {1, . . . , N}, j ∈ Ji, r ∈ C, l ∈ {1, . . . , L},
(5)

xjrl = 0, if τl < tRj + tj ,

∀i ∈ {1, . . . , N}, j ∈ Ji, r /∈ C, l ∈ {1, . . . , L},
(6)

xjrl = 0, if Bi < βrαirtj ,

∀i ∈ {1, . . . , N}, j ∈ Ji, r ∈ R, l ∈ {1, . . . , L},
(7)

xjrl ∈ {0, 1},

∀i ∈ {1, . . . , N}, j ∈ Ji, r ∈ R, l ∈ {1, . . . , L}.
(8)

The objective (1) is to minimize the weighted sum completion

times of tasks across all users by utilizing interval bound

τl−1 for tasks that finish in interval l. Constraint (2) ensures

that every task is assigned to exactly one processor and one

interval. Constraint (3) enforces that for each interval l, the

total load on every processor r cannot exceed τl. Equation (4)

enforces the budget constraints for each user. Equations (5)-

(7) ensure that individual tasks do not exceed the τl interval

deadline and the budget. Constraint (8) forces the decision

variables to take on binary values. This optimization problem

can be solved by a central scheduler, for example, residing at

the cloud.

IV. THE STUBR ALGORITHM

The aforementioned problem is NP-hard since a special case

of this problem, involving just a single user with no budget

constraints, is NP-hard [12]. Consequently, in this section, we

present the polynomial-time STUBR algorithm, as a heuristic

solution to problem (1). We then prove some guarantees

and properties of this algorithm, to better understand it’s

functionality and performance.

STUBR has the following steps:

1) Relax the integer constraints in problem (1) and obtain a

relaxed solution.

2) Round this solution to obtain an integer solution that gives

an objective value that is no higher than 8 times the op-

timal objective value of problem (1). While this rounded

solution is expected to violate the budget constraints, we

prove that for a large number of users, the average cost

incurred meets the average user budget.

3) We resolve any budget violation by strategically moving

some tasks to the local device.

4) WSPT ordering is optimal for our objective for a single

processor and jobs without release times [14]. Hence, on

each processor, we reorder the tasks allocated to it by

utilizing a modified version of WSPT ordering to further

improve the total weighted completion time.

These steps are explained in detail in the following sections.

A. Relaxed Solution

For each user i ∈ {1, . . . , N}, j ∈ Ji, and r ∈ Ri, let pjr,

tRjr, and bjr be the processing times, release times and costs

for scheduling task j on processor r. Then we have

pjr :=

{

αirtj if r ∈ C,

tj otherwise,
(9)

tRjr :=

{

tRj + cj if r ∈ C,

tRj otherwise,
(10)

bjr :=

{

βrαirtj if r ∈ C,

0 otherwise.
(11)

We may reformulate the optimization problem in Section

III-B with pjr, rjr, and bjr for simplicity, and relax the integer

constraints to obtain a linear program. This linear program

can be solved efficiently in polynomial-time to obtain a re-

laxed solution to the proposed problem. This formulation also

resembles the LP-relaxed version of the problem minimizing

the weighted sum completion time in a system of unrelated

machines with release times formulated in [12]. However, our

formulation has additional budget constraints, (4) and (7), that

need to be met for each user. It also accommodates multiple

users unlike the formulation in [12]. These aspects render our

formulation a more complex one requiring more sophisticated

techniques, for recovering an integer solution and resolving

budget overage.

B. Rounded Solution

In this section, we produce an initial integer solution, by

extending a technique used in [12], and applying the rounding

technique proposed in [20] to our relaxed solution. We also

provide worst-case performance and incurred cost guarantees.

Additionally, we study the behavior of the average incurred

cost as the number of users increases in the system.

1) Rounding technique: We first label each processor-

interval pair (r, l) as a single virtual processor r′, and denote

the collection of such virtual processors as R′. We then convert

the LP-solution xjrl to xjr′ for each r′ ∈ R′. We now

summarize the rounding method proposed in [20], and its

application to our problem. The rounding technique consists

of two basic steps: (1) ordering tasks, and (2) constructing

a bipartite matching. The first step lists the tasks in non-

increasing order of pjr′ , for r′ ∈ R′. It may be noted that

pjr′ = pjr, since the processing time for a task only depends

on the processor it is executed on and not the interval it is

executed in.

In the second step, to construct a bipartite matching, we

first define task nodes uj , for j ∈ Ji, i ∈ {1, . . . , N}, and

machine nodes vr′s, for r′ ∈ R′, s ∈ {1, . . . , kr′}, and

kr′ = ⌈
∑

j xjr′⌉. We require a fractional matching between

the task nodes and machine nodes, denoted by f (vr′s,uj),

which assigns each task partially to multiple machine nodes,

such that all allocated fractions for a particular task node

should sum up to 1. Let E be the set of edges in the bipartite

graph representing this fractional matching. The fractional

matching is constructed in accordance with the following:

xjr′ =
∑

s∈S′

f(vr′s, uj), ∀r′ ∈ R′, j ∈ Ji, i = {1, . . . , N},

where S ′ = {s : (vr′s, uj) ∈ E}, and

∑

j∈J ′

f(vr′s, uj) = 1, ∀r′ ∈ R′, s = {1, . . . , (kr′ − 1)},

where J ′ = {j : (vr′s, uj) ∈ E} is the set of tasks

connected to machine node vr′s. This fractional matching is

then converted to a minimum cost integer matching where each

task is assigned to a single machine node. For our problem,

this would be equivalent to a weighted sum completion time

integer matching. We call this integer solution x = {xjrl}.

2) Interval deadline violation and performance guarantee:

We first establish a lemma that provides a bound on the

violation of the interval deadline constraints, and then use it to

obtain a performance guarantee on the objective. We present

the results here and omit the proofs due to page limitation.

Lemma 1. With the rounded solution, the total processing

time of all tasks for every r ∈ R and interval l ∈ {1, . . . , L}
cannot be worse than 2τl, i.e., constraint (3) is violated by at

most τl.

Theorem 1. The objective value of the rounded solution

obtained from the integer matching x cannot be worse than 8

times the optimal objective of problem (1).

3) Multiple users and incurred cost guarantees: One must

note that the above rounded solution still violates the user bud-

get constraints. The following theorem quantifies the amount

of budget violation.

Theorem 2. With the rounded solution, the sum of the incurred

cost of all users cannot be worse than (|R′| + 1) times the

sum of user budgets.

The following conclusions follow directly from Theorem 2.

Corollary 1. If bjr is independent of task j, let br = bjr. We

further define S = {r ∈ R′ : ∃ j, xjr = 1}. Then, we have

N
∑

i=1

∑

j∈Ji

∑

r∈R

L
∑

l=1

brxjrl ≤

N
∑

i=1

Bi +
∑

r∈S

br. (12)

Corollary 2. If Ci is the incurred cost for user i,

1

N

N
∑

i=1

Ci ≤
1

N

N
∑

i=1

Bi +
1

N
|R′|Bmax, (13)

where Bmax = maxi Bi, and for the specific case from Corol-

lary 1,

1

N

N
∑

i=1

Ci ≤
1

N

N
∑

i=1

Bi +
1

N

∑

r∈S

br. (14)

From this corollary, we obtain the following property of the

rounded solution.

Corollary 3. As N → ∞, the average cost incurred across

all users meets the average budget.

Thus, the average user cost performance improves as the

number of users in the system increases. This property indi-

cates that the proposed algorithm is highly scalable and is a

suitable choice for multi-user systems.

C. Dealing with Budget Violation

Even if the budget constraints are met on average, the budget

constraints for each individual user could still be violated. In

cases where the users expect strict budget constraints, we need

to identify a technique by which this rounded solution can

be modified to ensure that each user’s budget is met, while

not significantly affecting the weighted sum completion time.

Since it does not cost a user to execute tasks on its local

device, we propose the following technique to move certain

tasks to the local device in the event of a budget violation:

1) Check if budget is violated for user i.
2) If so, sort all its offloaded tasks, {j ∈ Ji : xjrl = 1, ∀r ∈

C, l ∈ {1, . . . , L}}, in non-decreasing order of wjtj . We

do this as we expect a task with smaller weight and

smaller local processing time to do less damage to the

weighted sum completion time objective when transferred

to the local device.

3) Start with the first task (with least wjtj) and schedule it

on the local device. Update the incurred cost of user i by

subtracting the previously incurred cost of this task.

4) If the incurred cost now meets the budget, stop. If not,

repeat Steps 2 and 3 until user i’s budget is met.

5) Repeat for all users.

D. Modified WSPT Ordering

From the above, we obtain a scheduling decision for every

task that specifies on which processor the task should be

executed. Some processors will be assigned multiple tasks.

We know that the WSPT ordering is optimal for the weighted

sum completion time objective for a single processor and

jobs without release times [14]. Thus, we perform a modified

version of WSPT ordering on the tasks allocated to a particular

processor to further improve our objective value. In order to

accommodate the task release times, we apply our modified

WSPT as follows:

1) Obtain the task scheduling decision, i.e., the processor on

which each task should be scheduled.

2) On each processor r ∈ R, order the scheduled tasks in

the non-decreasing order of
tRjr+pjr

wj
. This ensures that

tasks with smaller weights and longer completion times

(without accounting for wait times) are scheduled earlier.

3) Modify the task completion times correspondingly, and

obtain the new objective value.

E. Feasibility and Complexity Analysis

It can be readily noted that the STUBR algorithm provides

a feasible solution. In other words, the user budgets are always

met, and all the tasks are always scheduled. Thus, in the worst

case with extremely tight budgets, the algorithm will execute

all tasks locally.
The time complexity of STUBR is dominated by the LP-

solving step (in Section IV-A) and the rounding step (in

Section IV-B) that involves finding the weighted sum comple-

tion time fractional matching. For a fixed number of decision

variables, a linear program can be solved in O(n) time where

n is the number of constraints. For our problem, this implies

that solving the LP is upper bounded by O(P |R|L), where

P =
∑N

i=1
|Ji| is the total number of tasks. On the other

hand, the bipartite matching can be solved in cubic time in

the number of vertices by utilizing the Hungarian algorithm

[21]. If P > |R|, the time complexity of this step would be

upper bounded by O(P 3). Thus, we see that the overall worst-

case time complexity of STUBR is O(P 3 + P 2L).

V. TRACE-DRIVEN SIMULATION

In this section, we investigate the performance of STUBR,

using trace-driven simulation. In [13], the authors conducted

experiments on several applications, and provided task char-

acteristics in terms of input data, computation need, and

arrival rates. Additionally, they considered different mobile

devices with varying computational capacities. We use traces

corresponding to (1) chess application and (2) compute-

intensive application from this paper. We obtain the necessary

information from the traces as follows:

1) We take the computation need and input data given in

[13] as mean, and allow a maximum of ±50 % variation.

In other words, we randomly pick values from a uniform

distribution in (0.5 mean, 1.5 mean).

a) We calculate the mean local processing time tj of the

tasks as computation need of task (in MFLOPs)
computation capacity of device (in MFLOPS)

.

b) We calculate the mean communication time as
input data (in MBytes)

20 Mbps
, where the available data rate as-

signed to each user is 20 Mbps from [13].

2) We pick the release time values from a uniform distribu-

tion in the range (0, number of tasks
arrival rate (in task/sec)

).

3) We pick the task weights from a uniform distribution in

the range (0,1).

4) We run multiple randomized iterations (for different val-

ues of input data and computation) for each parameter

setting, and take the average among them to plot each

point on the graph.

We run our simulation using MATLAB, and utilize the CVX

programming package to solve our linear programs.

We use the following targets for comparison with STUBR

algorithm:

• Rounded solution: This is the solution obtained from

Section IV-D, without dealing with budget violation. We

also perform the modified WSPT, proposed in Section

IV-D, on this solution. Hence, this solution may violate

the user budget and can be viewed as a lower bound to

STUBR.

• Greedy WSPT: All tasks are sorted in the non-decreasing

order of tj/wj for all j, and each task is scheduled in this

order onto the processor where it meets its user’s budget

and has the fastest processing time.

• Greedy Weighted Longest Processing Time (WLPT):

Same as Greedy WSPT except tasks are sorted in the

non-increasing order of tjwj for all j.

• Local m-WSPT: All tasks are scheduled locally, and

sorted based on the modified WSPT proposed in Section

IV-D. This would illustrate the benefits of offloading

using our algorithm.

• Comm. sensitive: Same as Greedy WSPT except tasks are

sorted in the non-decreasing order of cj for all j. This

method tries to offload the tasks that have shorter commu-

nication times thereby decreasing the overall contribution

of communication time to the objective.

In Figures 1a and 1b, we consider three Galaxy S5 users

[13] and the chess application. We consider a five-processor

cloud with speed-up factors αi1 = 0.5, αi2 = αi3 = 0.1, and

αi4 = αi5 = 0.2 for every user i. We set the processor prices

as β1 = 0.5, β2 = β3 = 3, and β4 = β5 = 2. This parameter

setting ensures that the users will have to pay a higher price

to use a faster processor.
For Figure 1a, we consider users with equal budget, and

constant number of tasks |J1| = 5, |J2| = 5, and |J3| = 10.

We see that as the user budget increases, the weighted sum

completion time decreases as expected. We also see that the

STUBR curve appears to plateau beyond a particular value of

budget that is large enough to offload all tasks to the fastest

processors. On the other hand, for tighter values of budget, we

see that the STUBR curve coincides with the local execution

curve. Additionally, we also note that the gap between STUBR

and the rounded solution decreases with increasing budget

until eventually the STUBR curve meets the rounded solution

curve. This illustrates that the amount of budget violation

decreases with increasing budget, and consequently, STUBR

approaches the rounded solution.
In Figure 1b, we observe the impact of the number of tasks

per user, for user budgets B1 = B2 = B3 = 5. The total

weighted completion time increases with increasing number

of tasks per user (and total number of tasks) as expected.

We see that the performance gap between STUBR and other

schemes increases with increasing number of tasks, indicating

that STUBR is more scalable.
In Figures 1c and 1d, we consider three Nexus 10 users

[13] running the compute-intensive application. We consider

the same five-processor simulation setup as that of Figures 1a

and 1b. For Figure 1c, we consider constant number of tasks

0 2 4 6 8 10

User budget

40

60

80

100

120

140

160

180

T
o

ta
l
w

e
ig

h
te

d
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

STUBR

Local m-WSPT

Greedy WSPT

Greedy WLPT

Comm. sensitive

Rounded solution

(a) Effect of user budget for chess
application on Galaxy S5.

5 6 7 8 9 10 11 12

Number of tasks per user

0

50

100

150

200

250

300

350

T
o

ta
l
w

e
ig

h
te

d
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

STUBR

Local m-WSPT

Greedy WSPT

Greedy WLPT

Comm. sensitive

Rounded solution

(b) Effect of the number of tasks per
user for chess application on Galaxy
S5.

0 5 10 15 20 25 30

User budget

100

150

200

250

300

350

400

450

500

T
o

ta
l
w

e
ig

h
te

d
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

STUBR

Local m-WSPT

Greedy WSPT

Greedy WLPT

Comm. sensitive

Rounded solution

(c) Effect of user budget for
compute-intensive application on
Nexus 10.

5 6 7 8 9 10 11 12

Number of tasks per user

0

100

200

300

400

500

600

700

800

900

T
o

ta
l
w

e
ig

h
te

d
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
)

STUBR

Local m-WSPT

Greedy WSPT

Greedy WLPT

Comm. sensitive

Rounded solution

(d) Effect of the number of tasks per
user for compute-intensive applica-
tion on Nexus 10.

Fig. 1: Comparison between STUBR and alternatives.

|J1| = 5, |J2| = 5, and |J3| = 10. For Figure 1d, we set

B1 = B2 = B3 = 20. We again see that STUBR provides

superior performance and scales well.

VI. CONCLUSION

We have studied a multi-user computational offloading

problem, for a system consisting of a finite-capacity cloud with

heterogeneous processors. The offloaded tasks incur monetary

cost for cloud resource usage, and each user has a budget

constraint. We have formulated a problem to minimize the

weighted sum completion time subject to the user budget

constraints. The proposed STUBR algorithm relaxes, rounds,

and resolves budget violations, and it sorts the tasks to obtain

an effective solution. The underlying rounded solution is

shown to have the interesting property that at most a single task

on each virtual processor needs to be removed to satisfy the

total budget constraint regardless of the number of users in the

system. This renders our proposed algorithm highly scalable

with respect to the number of users in the system. Through

simulation using real-world application traces, we have ob-

served that STUBR is scalable and substantially outperform

the existing alternatives especially for larger systems.

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proc. ACM International Conference on Mobile

Systems, Applications, and Services (MobiSys), pp. 49–62, 2010.
[2] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling policy

for collaborative execution in mobile cloud computing,” in Proc. IEEE

International Conference on Computer Communications (INFOCOM),
pp. 190–194, 2013.

[3] B. Y.-H. Kao and B. Krishnamachari, “Optimizing mobile computational
offloading with delay constraints,” in Proc. IEEE Global Communication

Conference (Globecom), pp. 8–12, 2014.
[4] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation

task scheduling for mobile-edge computing systems,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1451–1455,
2016.

[5] S. Pandey, K. K. Gupta, A. Barker, and R. Buyya, “Minimizing cost
when using globally distributed cloud services: A case study in analysis
of intrusion detection workflow application,” Cloud Computing and
Distributed Systems Laboratory, University of Melbourne, Australia,
Tech. Rep, 2009.

[6] Y. Kim, J. Kwak, and S. Chong, “Dual-side dynamic controls for cost
minimization in mobile cloud computing systems,” in Proc. Interna-

tional Symposium on Modeling and Optimization in Mobile, Ad Hoc,

and Wireless Networks (WiOpt), pp. 443–450, 2015.

[7] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions

on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.
[8] V. Cardellini, V. D. N. Personé, V. Di Valerio, F. Facchinei, V. Grassi,

F. L. Presti, and V. Piccialli, “A game-theoretic approach to computation
offloading in mobile cloud computing,” Mathematical Programming,
vol. 157, no. 2, pp. 421–449, 2016.

[9] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision and
resource allocation for multi-user multi-task mobile cloud,” in Proc.

IEEE International Conference on Communications (ICC), pp. 1–6,
2016.

[10] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Stochastic joint radio
and computational resource management for multi-user mobile-edge
computing systems,” arXiv preprint arXiv:1702.00892, 2017.

[11] P. Crescenzi and V. Kann, “Approximation on the web: A compendium
of np optimization problems,” in Proc. International Workshop on

Randomization and Approximation Techniques in Computer Science, pp.
111–118, 1997.

[12] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, “Scheduling to
minimize average completion time: Off-line and on-line approximation
algorithms,” Mathematics of Operations Research, vol. 22, no. 3, pp.
513–544, 1997.

[13] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,” in
IEEE Proc. International Conference on Cloud Computing (CLOUD),
pp. 9–16, 2015.

[14] W. E. Smith, “Various optimizers for single-stage production,” Naval

Research Logistics, vol. 3, no. 1-2, pp. 59–66, 1956.
[15] W. Lin, C. Liang, J. Z. Wang, and R. Buyya, “Bandwidth-aware

divisible task scheduling for cloud computing,” Software: Practice and

Experience, vol. 44, no. 2, pp. 163–174, 2014.
[16] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks for

computation-intensive applications in mobile cloud computing,” in Proc.

IEEE INFOCOM Workshop on Mobile Cloud Computing, pp. 352–357,
2014.

[17] C. Mateos, E. Pacini, and C. G. Garino, “An ACO-inspired algorithm
for minimizing weighted flowtime in cloud-based parameter sweep
experiments,” Advances in Engineering Software, vol. 56, pp. 38–50,
2013.

[18] Q. Zhu and G. Agrawal, “Resource provisioning with budget constraints
for adaptive applications in cloud environments,” in Proc. ACM Inter-

national Symposium on High Performance Distributed Computing, pp.
304–307, 2010.

[19] M. Mao and M. Humphrey, “Scaling and scheduling to maximize
application performance within budget constraints in cloud workflows,”
in Proc. International Symposium on Parallel & Distributed Processing

(IPDPS), pp. 67–78, 2013.
[20] D. B. Shmoys and É. Tardos, “An approximation algorithm for the

generalized assignment problem,” Mathematical Programming, vol. 62,
no. 1-3, pp. 461–474, 1993.

[21] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval

Research Logistics, vol. 2, no. 1-2, pp. 83–97, 1955.

