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ABSTRACT
Large-scale machine learning (ML) models are routinely trained in
a distributed fashion, due to their increasing complexity and data
sizes. In a shared cluster handling multiple distributed learning
workloads with a parameter server framework, it is important to
determine the adequate number of concurrent workers and param-
eter servers for each ML workload over time, in order to minimize
the average completion time and increase resource utilization. Ex-
isting schedulers for machine learning workloads involve meticu-
lously designed heuristics. However, as the execution environment
is highly complex and dynamic, it is challenging to construct an
accurate model to make online decisions. In this paper, we design
an experience-driven approach that learns to manage the cluster di-
rectly from experience rather than using a mathematical model. We
propose Chic, a scheduler that is tailored for scheduling machine
learning workloads in a cluster by leveraging deep reinforcement
learning techniques. With our design of the state space, action
space, and reward function, Chic trains a deep neural network with
a modified version of the cross-entropy method to approximate
the policy for assigning workers and parameter servers for future
workloads based on the experience of the agent. Furthermore, a
simplified version named Chic-Pair with a shorter training time
for the policy is purposed by assigning workers and parameter
servers in a pair. We compare Chic and Chic-Pair with state-of-the-
art heuristics, and our results show that Chic and Chic-Pair are
able to reduce the average training time significantly for machine
learning workloads under a wide variety of conditions.
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1 INTRODUCTION
In recent years, modern machine learning (ML) techniques, such
as deep neural networks (DNNs), have been successfully applied
to solve practical problems in areas such as image classification
and speech recognition. With accelerating growth in the volume of
training data, the time and resources needed to train DNN models
have increased substantially. It is therefore customary to train these
models in a distributed fashion with a large number of worker nodes.
Each worker node contains the entire model but only processes a
portion of the training data, and parameter server (PS) nodes are
used to facilitate the synchronization of gradients across these
worker nodes [1].

In a shared ML cluster with multiple training workloads submit-
ted over time, assigning worker nodes and PS nodes appropriately
for different workloads is the key to expedite the training process
while maximally leverage the resources. For existing ML clusters,
Google uses Borg as the scheduler [2], while Microsoft, Tencent,
and Baidu use YARN-like schedulers [3]. However, it is difficult
for existing cluster schedulers to achieve high levels of efficiency
in terms of scheduling ML workloads. First, these schedulers will
assign a fixed amount of resources to a workload upon its arrival,
and the allocation will remain the same during the training pro-
cess unless the cluster operator manually reconfigures the resource
composition, or a workload owner resubmits the workload as new.
Therefore, scheduled workloads cannot benefit from available re-
sources released by newly finished workloads during a long training
process. Second, these schedulers are designed for general resource
management and not tailored for ML workloads, leaving space for
further improvement.

Considering the limitations of existing cluster schedulers, new
schedulers tailored for ML clusters have recently been proposed,
with the objectives of improving the average completion time of
ML workloads and resource utilization. For example, Peng et al.
proposed a practical resource scheduler for ML clusters called Opti-
mus [4], which uses an online fitting method to predict the model
convergence during training, and sets up a performance model to
estimate the training speed as a function of allocated resources for
each workload. Based on these models, the authors designed a sim-
ple heuristic to allocate resources for ML workloads. The key idea
behind the heuristic is to iteratively add a worker node or a PS node
to the workload to achieve the largest marginal reduction in the
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predicted completion time. The predicted completion time is based
on the assumption that the schedule for the workload remains the
same. However, sinceOptimus has to change the schedule from time
to time to suit system dynamics, the heuristic might not be effective
in the long run. In addition, since Optimus highly depends on the
accuracy of the performance model, inaccuracies in the model may
lead to heuristics that are far from optimal.

In this paper, we propose Chic, a new scheduling policy for
scheduling ML workloads based on deep reinforcement learning
(DRL). DRL [5] provides a promising technique for enabling effec-
tive experience-driven model-free control. Complex systems and
decision-making policies could be modeled as DNNs by adopting
reinforcement learning. By continuing to learn, the agent can opti-
mize for a specific environment and work under varying conditions.
There are several successful attempts in applying DRL to solve re-
sourcemanagement problems. For example, Mao et al. employed the
policy gradient method to compute the time for jobs to be scheduled
in a cluster [6]. Mirhoseini et al. tried to apply DRL to expedite the
training of ML workloads [7] by leveraging model parallelism. Both
achieved better performance compared with handcrafted heuristics.
We believe DRL is a promising and suitable solution to our problem,
based on its features and previous successful examples.

Highlights of our original contributions in this paper are as
follows. First, we model the state space, action space, and reward
function in the case of scheduling MLworkloads in a distributed ML
cluster with the objective of minimizing the average completion
time for a DRL agent. Second, a modified version of the cross-
entropy method is proposed to train the policy network. Next, a
simplified version of the scheduler is proposed to reduce the train-
ing time. Finally, we propose a new framework to implement our
design, and conduct extensive simulations to show its effectiveness
compared with the state-of-the-art ML workload scheduler.

The remainder of this paper is organized as follows. We state the
problem of scheduling ML workloads in a distributed cluster and
point out the importance and difficulty in solving this problem in
Section 2. Preliminaries about DRL are introduced in Section 3. A
concrete design of Chic, including the framework, the components
of the DRL agent, and the training algorithm, is presented in Section
4. Our implementation details and simulation results are presented
in Sections 5 and 6, respectively. Finally, we differentiate our work
from related research efforts in Section 7 and conclude the paper in
Section 8.

2 PRELIMINARIES AND PROBLEM
STATEMENT

In this section, we first briefly present some preliminaries on dis-
tributed learning, we then present the statement of the problem
and the motivations for the design of Chic.

2.1 Distributed Learning
Distributed learning allows us to leverage multiple machines to
expedite the training process. Various ML frameworks, e.g., Ten-
sorFlow [8] and MXNet [9], support the paradigm of distributed
learning. There are two ways to distribute the workload of train-
ing a neural network across multiple worker nodes. The first is
data parallelism, in which the dataset is split among worker nodes.

Each worker node has a complete copy of the model and learns
the parameters only on a subset of the dataset. The alternative to
data parallelism is model parallelism: rather than partitioning the
dataset, the model is split across worker nodes. Each worker node
trains a part of the model across the entire dataset. Data parallelism
is more widely used for two reasons. First, it is easier and more
efficient to partition the dataset than to split the model. Second,
the memory of modern GPUs is able to store the entirety of most
ML models, eliminating the need for partitioning the model. In this
paper, we focus on ML workloads adopting data parallelism.

With data parallelism, each worker node only computes param-
eters based on a portion of the dataset. Hence, it is necessary to
combine the parameters computed by each worker node, which is
traditionally achieved by using a parameter server (PS) framework
[1]. With a PS framework, each workload needs one or more worker
nodes and PS nodes to meet the training requirement.Worker nodes
are responsible for the training on the dataset and PS nodes are used
to facilitate parameter exchanges. In the case of multiple PS nodes,
the parameters within an ML model are divided equally and each
PS node hosts one partition of the parameters. The dataset of an
ML workload is stored in a distributed storage system (e.g., HDFS).
To assign data partitions to multiple workers, a master node will
divide the dataset to equal-sized data trunks. Each worker will fetch
a data chunk upon its start and compute the gradients with the data
trunk. Each data trunk is further divided intomini-batches. Once the
worker processes onemini-batch, it will synchronize the parameters
with other worker nodes by communicating the gradients to the PS
nodes. Then, the PS node will update parameters using a formula,
such as new_parameter = old_parameter− leaning_rate · gradient.
After that, the worker node has to obtain the newly updated param-
eters from the PS nodes and begin processing the next mini-batch.
The time interval between processing mini-batches is an iteration.
An epoch is a duration when the whole dataset is trained once. An
ML workload typically requires several epochs, which is equal to
multiple iterations in total, to achieve training requirements.

Depending on whether the training progress is synchronized
among worker nodes, the training mode could be classified into
synchronous training and asynchronous training. For synchronous
training, PS nodes update the parameters after they have collected
the gradients from all worker nodes. Therefore, the amount of data
used for parameter update in each iteration, termed batch size,
is equal to the size of the mini-batch multiplied by the number
of workers. In asynchronous training, the PS nodes update the
parameters as soon as they receive the gradients from any of the
worker nodes, and use updated parameters to respond to any future
pulls. Synchronous training is more widely adopted as it typically
requires fewer epochs to converge and is more stable compared
with asynchronous training. Therefore, synchronous training is
considered within this paper.

2.2 Problem Statement
As building a computing cluster is prohibitively expensive, a cluster
is usually shared by many users. We represent the resource capacity
of a cluster with K types of resources as C = {c1, · · · , cK }, where
ck is the amount of type-k resource. A set of ML workloads with
different training models and large datasets using synchronous
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Figure 1: The distributed ML cluster.

training mode join the cluster in an online fashion. We characterize
the information of job i as si = {smi , s

B
i , s

w
i , s

p
i }, which includes

the training model smi , the remaining amount of iterations sBi to
be trained, and the current allocation of workers swi and PSs spi
for ML workload i . Each worker requires wik amount of type-k
resources, and each PS requires pik amount of type-k resources for
ML workload i , which are determined by its training model smi .

Most ML workloads nowadays need a long time to converge
even with distributed training because of the continuously growing
model complexity and dataset size. For data parallel ML workloads
with a PS framework, the number of worker nodes and PS nodes
will greatly influence the completion time. With multiple work-
loads competing for a limited amount of physical resources, it is a
significant problem how to manage the cluster and schedule the ML
workloads to expedite the training process by efficiently utilizing
the physical resources. A scheduler is needed in the cluster to deter-
mine the schedule, which is the allocation of worker nodes and PS
nodes for the ML workloads currently in the system, to minimize
the average completion time.

Assume there are I workloads in the cluster, a schedule {{sw1 , s
p
1 },

· · · , {swI , s
p
I }} indicates the number of worker nodes and PS nodes

assigned to every workload i ∈ [I ]. The schedule should not ex-
ceed the physical resource capacity, which could be represented as∑
i ∈[I ](s

w
i wik + s

p
i pik ) ≤ ck ,∀k ∈ [K]. Furthermore, A reasonable

scheduler should change the schedule from time to time to suit the
system dynamics caused by newly coming and finished workloads.
Therefore in our system, a schedule decision will be kept only until
a workload finishes, or a new workload arrives, which requires for
a new schedule decision.

Fig. 1 illustrates a simple example of a distributed ML cluster.
The cluster possesses three types of resources, and the workload
scheduler makes a scheduling decision, allocating 2 workers and 1
PS for the first workload while 1 worker and 1 PS for the second
workload. For each ML workload, the worker nodes will carry out
the computation based on the dataset assigned to them and push
the computed gradients to the PS nodes, wait for the PS nodes
updating the parameters, and then pull newly updated parameters
from the PS nodes within each iteration.

However, solving the scheduling problem in distributed ML clus-
ter is challenging. More workers and PSs do not necessarily lead

to shorter training time [4] for a single ML job. It is harder to de-
cide the number of workers and PSs for multiple workloads so
that the average completion time is minimized. Furthermore, since
ML workloads join the cluster in an online fashion, the problem
could not be solved with an offline integer linear programming
model. Though previous approaches try to solve this problem by
human-designed heuristics [4][10], they highly rely on the authors’
understanding of the underlying system, which is hard to model
accurately. The inaccuracy may lead the solution to be far from
optimum.

DRL is a promising method to solve the online scheduling prob-
lem in ML clusters. Complex systems and decision-making policies
could be modeled by neural networks, reducing the need for metic-
ulously designed heuristics and carefully built performance models.
In addition, DRL is able to deal with highly dynamic time-varying
environments, which is precisely the case of the online scheduling
problem. To the best of knowledge, we are the first to take advan-
tage of the emerging DRL technique to enable experience-driven
and model-free job scheduling in distributed ML clusters.

3 DEEP REINFORCEMENT LEARNING
In this section, we provide necessary background about DRL, which
applies a DNN as function approximator to reinforcement learning
(RL).

In the standard RL setting, an agent interacts with an environ-
ment E in an episodic case over discrete time steps [11]. At each
time step t , the agent observes some state st , and is required to take
an action at from a set of possible actions A. Following the taken
action, the state of the environment transits to st+1 and the agent
receives a reward rt . The process continues until the agent reaches
a terminal state after which the process restarts and a new episode
begins. The states, actions, and rewards the agent experienced dur-
ing one episode form a trajectory x = (s1,a1, r1, s2 · · · , sT ,aT , rT ),
whereT is the last time step in the episode. The cumulative reward
R(x) =

∑
t ∈[T ] rt measures how good the trajectory is by summing

the rewards received at each time step. The agent’s behavior is de-
fined by a policy π (at = a |st = s), mapping state s to a probability
distribution over all actions a ∈ A. In policy-based model-free RL
methods, the policy is usually parameterized with parameters θ . For
the problem of scheduling ML jobs in a cluster, an optimal policy
π (a |s;θ∗) with parameters θ∗ is the scheduling strategy we hope
to obtain.

DNNs have been used as function approximators to solve large
scale RL-tasks successfully in recent years [5][12]. One advantage of
DNNs is that they do not need handcrafted features. In our paper, we
use a DNN as the function approximator for the policy. To obtain
the parameters θ in the policy DNN, a basic but efficient cross-
entropy method could be utilized [13]. The objective is to maximize
the reward R(x) received by a trajectory x from an arbitrary set
of trajectories X. Suppose x∗ is the corresponding trajectory at
which the maximal cumulative reward is attained, and let ξ ∗ denote
the maximum cumulative reward. We thus have: R(x∗) = ξ ∗ =
maxx ∈X R(x).

Assume x has some probability density f (x ;u) with parameters
u on X. The estimation of the probability that the cumulative re-
ward of a trajectory is greater than a fixed level ξ is l = P(R(x) ≥
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ξ ) = E[1{R(x )≥ξ }], where 1{R(x )≥ξ } is the indicator function, that
is, 1{R(x )≥ξ } = 1 if R(x) ≥ ξ , and 0 otherwise. If ξ is chosen
close to the unknown ξ ∗, then l is a rare-event probability, which
requires a large number of samples to estimate the expectation
accurately. A better way is to use importance sampling. Let f (x ;v)
be another probability with parameters v such that f (x ;v) = 0
implies 1{R(x )≥ξ } f (x ;u) = 0. Using the density f (x ;v), l could be
represented as

l =

∫
1{R(x )≥ξ }

f (x ;u)
f (x ;v) f (x ;v)dx . (1)

The optimal importance sampling probability for a fixed level ξ
is given by f (x ;v∗) ∝ |1{R(x )≥ξ } | f (x ;u), which is in general diffi-
cult to obtain. The idea of the cross-entropy method is to choose
the importance sampling probability density f (x ;v) in a specified
class of densities such that the distance between the optimal im-
portance sampling density f (x ;v∗) and f (x ;v) is minimal. The
distance D(f1, f2) between two probability densities f1 and f2 is
measured by the cross-entropy as −Ex∼f1(x )[log f2(x)]. Hence, the
optimal parameters could be obtained by the maximization problem
maxv

∫
1{R(x )≥ξ } f (x ;u) log f (x ;v)dx , which can be estimated via

sampling by solving with respect to parameters v the stochastic
counterpart program:

v̂ = argmax
v

1
N

∑
n∈[N ]

1{R(xn )≥ξ }
f (xn ;u)
f (xn ;w)

log f (xn ;v), (2)

where x1, · · · ,xN are random samples from f (x ;w) for any ref-
erence parameter w . Initially, the parameters u = v̂0 are set ran-
domly. By sampling with current importance sampling distribution
in each iteration k , we create a sequence of levels ξ̂1, ξ̂2, · · · and
the corresponding sequence of parameter vector v̂0, v̂1, · · · . The se-
quence converges to the optimal performance ξ ∗ and the sequence
v̂0, v̂1, · · · converges to the optimal parameter vector. Note that ξ̂k
is typically chosen as the (1 − ρ)-quantile of the performance of
the sampled trajectories. Sampling from an importance sampling
distribution close to the theoretically optimal importance sampling
density will produce optimal or near-optimal trajectories x∗. Often
a smoothed updating rule with a smoothing parameter α is used, so
that the parameter vector ṽk within the importance sampling den-
sity f (x ;v) after k-th iteration is taken as ṽk = αv̂k + (1 − α)ṽk−1.

The probability of a trajectory x ∈ X is determined by the tran-
sition dynamics p(st+1 |st ,at ) of the environment and the policy
π (at |st ;θ ). As the transition dynamics is determined by the environ-
ment and cannot be changed, the parameters θ in policy π (at |st ;θ )
are to be updated to improve the importance sampling density
f (x ;v) of a trajectory x with high R(x). Therefore, the parameter
estimate at iteration k could be represented as

θ̂k = argmax
θk

∑
n∈[N ]

1{R(xn )≥ξk }(
∑

at ,st ∈xn

π (at |st ;θk )), (3)

where x1, · · · ,xN are sampled from π (a |s; θ̃k−1), θ̃k = αθ̂k + (1 −
α)θ̃k−1. This equation suggests maximizing the likelihood of actions
in trajectories with a high cumulative reward.

4 DESIGN
In this section, we present our design of Chic. We begin by giving
an overview of the Chic architecture. Then we describe how to
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Figure 2: The architecture of Chic.

represent the online scheduling problem in a distributed ML cluster,
as an RL task in terms of state space, action space, and reward.
Finally, we present the training algorithm of Chic.

4.1 Architecture
We first give an overview of Chic, which is illustrated in Fig. 2. The
key idea is the usage of a single DRL agent performing scheduling
decisions for workloads within the ML cluster. The most important
component of the DRL agent is the policy π ′(a |s;θ ), providing
the probability distribution over all actions given a state s . The
parameters θ in π ′(a |s;θ ) are learned from experiences collected
during the interacting with the environment E, in a way similar to
what is discussed in Section 3.

4.2 DRL formulation
No matter which specific DRL method is applied, we need to first
design the state space, action space, and reward function. This
design is the most critical step for the successful application of DRL
to a practical problem. A well designed DRL agent should capture
the key components of the problem without redundant or useless
information.
State Space. To describe the system condition correctly for the DRL
agent, the state should include the information of the ML workloads
within the cluster. Let It be the total number of ML workloads at
time step t . The DRL agent will focus on the scheduling of the first I
workloads in the cluster, where I is selected to balance the tradeoff
between learning performance and computational complexity. The
detailed information sit = {smit , s

B
it , s

w
it , s

p
it } for each ML workload

i ∈ [I ] at the beginning of time step t is revealed to the agent. The
workloads beyond the first I wait in the queue, and their number
is summarized in the backlog component of the state, which is
represented as Nt . Therefore, the state of the system at time step
t could be represented as st = {s1t , · · · , sI t ,Nt }. It contains the
detailed information for each of the first I ML workloads and the
number of ML workloads that are waiting in the queue. When there
are It ≤ I workloads in the system, st still contains the information
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of I workloads by setting sBit , s
w
it and s

p
it as 0 for i > It and keeping

Nt as 0, until new ML workloads join the system.
Action Space. The action at is designed as the increase of a worker
node or a PS node to a workload i at time step t . The action space for
a system scheduling for the first I workloads is therefore given by
A = {1, · · · , 2I , ∅}, so that at = 2i − 1 refers to allocating one more
worker node to workload i , while at = 2i refers to increasing the
allocation of PS node by one to workload i for i ∈ [I ]. Furthermore,
at = ∅ indicates the DRL agent does not wish to increase the
allocation of worker nodes and PS nodes to any of the I workloads.
We emphasize here that, though it may seem slow to change one
worker or one PS per time step, the actual time to complete the
schedule, i.e., until the physical resources are fully utilized, is short.
Further details on this are discussed in Section 4.2.
Scheduling Process. Chic schedules ML workloads with two iter-
ative phases. Initially, each workload has 0 worker node and 0 PS
node. In the subsequent time steps, the DRL agent tries to allocate
a worker or a PS to one workload i ∈ [I ] in each time step until
either of the two conditions below is achieved:

(1) Resources in the cluster are fully utilized;
(2) The per-iteration running time of workload i will not de-

crease even if a worker node or a PS node is added to any
workload i ∈ [I ].

Condition (1) means that no more workers or PSs for any workload
i ∈ [I ] could be launched with the remaining resources in the
system, and it could be formulated as

min
i
{wik ,pik } +

∑
i ∈[I ]

(switwik + s
p
itpik ) > ck ,∃k ∈ [K]. (4)

Denoting by дi (swit , s
p
it ), the per-iteration running time for a work-

load i with swit amount of worker nodes and spit amount of PS nodes
as дi (swit , s

p
it ), Condition (2) could be expressed as

min
i
{дi (s

w
it + 1, s

p
it ),дi (s

w
it , s

p
it + 1)} ≥ дi (s

w
it , s

p
it ),∀i ∈ [I ]. (5)

Reaching any of the above mentioned two conditions will yield a
schedule for the I workloads. The time interval between having 0
worker node and 0 PS node for every workload i ∈ [I ] and obtaining
a schedule is termed the decision making phase.

Upon obtaining the schedule, the system enters the job training
phase and the I workloads begin training with the allocated worker
nodes and PS nodes, till a new schedule is required. Different from
Optimus, which demands a new schedule based on fixed time inter-
vals, Chic requires a new schedule when either of the two situations
below occur:

(1) A workload i ∈ [I ] is finished;
(2) A new workload arrives when there are fewer than I work-

loads in the system.
The occurrence of either of the situations indicates the resources
in the cluster could be rescheduled to expedite the training of the
workloads currently in the system. Therefore, by changing the
schedule only when it is necessary, Chic ensures the efficient use
of resources while avoiding the extra cost caused by unnecessary
changes. When a new schedule is required, the worker node and
PS node assigned to each workload i ∈ [I ] are both reset as 0, after
which the decision making phase begins again.
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Figure 3: Time steps in the system.

Policy.Apolicy π (a |s) indicates the probability distribution over all
actions a ∈ A given a state s . Let S ′ be the subset of S that contains
the states satisfying Condition (1) or Condition (2), and the state that
indicates there is no workload currently in the cluster. At any state
s ∈ S ′, a void action ∅ should be taken, and therefore the probability
distribution for the action over the set A is (0, · · · , 0, 1). As for
the rest of the states, the action distribution is given by π ′(a |s;θ ),
which is approximated by a DNN with learned parameters θ to be
described in Section 4.3. In conclusion, the policy of Chic could be
represented as

π (a |s;θ ) =
{
π ′(a |s;θ ), s ∈ S − S ′;
(0, · · · , 0, 1), s ∈ S ′.

(6)

State Transition. After taking an action a ∈ A, the state of the
system is changed. The time steps in the system are illustrated
in Fig. 3. During one decision making phase, assume at time step
t the DRL agent takes action at = 2i − 1, i ∈ [I ], which means
increasing the allocation of worker nodes to workload i by 1. Then
swi(t+1) will transit to s

w
it + 1 if s

B
it > 0. Otherwise, swi(t+1) remains 0

if no ML workload arrives during time step t . A similar transition
is applied to spit when at = 2i, i ∈ [I ]. The duration Dt of each time
step during the decision making phase depends on the processing
time of the DRL agent, i.e., the time used by the DRL agent to give
an action at according to the input state st and update the state
to st+1. In our experiment, for a DRL agent with a DNN policy
approximator composed of 3 hidden layers build in the PyTorch
framework running on a single Intel i5 3.1 GHz CPU core, the
processing time of each time step requires no more than 0.78 ms.

The time steps proceed until either Condition (1) or Condition (2)
is reached, and then the system enters the job training phase. The
entire job training phase is counted as one time step in our system.
The duration Dt of the time step corresponding to the job training
phase is influenced by the earliest finish time of the I workloads
and the arrival time of new ML workloads. When there are no
fewer than I workloads in the cluster, Dt is determined by the
earliest finish time of the I workloads, which could be represented
as mini

sBit
дi (swit ,s

p
it )

. Otherwise, Dt is decided by the shorter duration
between the earliest completion of It workloads and the arrival of
a new ML workload.

After the job training phase, swi(t+1) and s
p
i(t+1) are reset to 0 for

each i ∈ [I ] in order to determine a new schedule in the subsequent
time steps. At this time step, the number of remaining iterations
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for the first I workloads could be expressed as

sBi(t+1) = max{0, sBit −
⌊

Dt

дi (s
w
it , s

p
it )

⌋
}. (7)

If sBi(t+1) equals zero, the i-th ML workload is finished and will be
removed. Meanwhile, the first workload waiting in the queue will
be revealed to the DRL agent at time step t + 1.
Reward. The objective of Chic is to obtain a scheduling decision
to minimize the average completion time of ML workloads. Let
R =

∑
t ∈[T ] rt denote the cumulative reward from the first time

step, where rt is the reward received after taking action at at state
st . We note that rt should be designed and chosen carefully so
that maximizing the cumulative reward R mimics achieving the
objective of Chic. We design the reward rt as the sum of three parts:
rt1, rt2, and rt3. The average completion time is reflected by rt1:

rt1 = −(
∑
i ∈[I ]

Dt 1{sBit >0} + NtDt +
∑
j ∈[Jt ]

(Dt −Aj )), (8)

where 1{sBit >0} is the indicator function and Jt denotes the number
of workloads arriving during time step t . Each workload j ∈ [Jt ]
has an arrival time Aj counting from the beginning of time step t .
Therefore, by summing the three terms and negating the value, rt1
is the negative of the sum of the time that all workloads spend in
the system in time step t .

The introduction of rt2 and rt3 is to reduce the likelihood of
unreasonable actions. Firstly, because the DRL agent should not al-
locate resources to a nonexistent workload, a punishment rt2 = −p1
is added when at = 2i − 1 or 2i , and sBit = 0. The punishment value
−p1 should be large enough to guide the DRL agent in avoiding
this action at such states. Otherwise, rt2 is set as 0. Similarly, a
situation where a workload has no fewer than 1 worker (resp. PS)
nodes but 0 PS (resp. worker) node is not favorable since it wastes
resources with no progress for that workload. Hence, a punishment
rt3 = −p2 is added when the DRL agent tries to allocate resources
for workload i for the first time. After allocating both workers and
PSs for workload i , the punishment is removed by adding rt3 = p2.
With rt2 and rt3, the cumulative reward R does not only represent
the negative of the total time that all workloads spend in the sys-
tem. But by continuing to learn, the DRL agent should decrease the
occurrence of unreasonable actions, and the reward will therefore
mainly reflect the average completion time.

4.3 Training Algorithm
The starting point of the training of Chic is the cross-entropy
method. However, we have found that directly applying the cross-
entropy method does not lead to satisfactory results. The reason is
that the initialization of the parameters θ̃0 in the DNN approximat-
ing π ′(a |s;θ ) will influence the finding of the optimal importance
sampling density. For a policy π (a |s ; θ̃0)with high probability densi-
ties on actions leading to trajectories with a low cumulative reward,
the sampling efficiency will be extremely low. In that case, obtain-
ing a sample xn with high R(xn ) typically requires a large number
of samples. However, increasing the number of samples means ex-
tending the training time. Furthermore, some actions might never
be sampled at a specific state due to the initialization π ′(a |s; θ̃0).
Since some state-action pairs never occur, the policy might be stuck

in a local optimum. Therefore, at iteration k , except N samples from
the current importance sampling density, a sample xN+1 obtained
by replacing π ′(a |s; θ̃k−1) with a uniform distribution on action
space A is introduced. In this case, the estimate is:

θ̂k = argmax
θk

[
∑

n∈[N ]

1
{R(xn )≥ξ̂k }

∑
at ,st ∈xn

π ′(at |st ;θk )

+ 1
{R(xN+1)≥ξ̂k }

∑
at ,st ∈xN+1

π ′(at |st ;θk )].
(9)

When π ′(a |s ; θ̃k−1) has a high probability for choosing the right
action a at state s , the sampled trajectories xn ,n ∈ {1, · · · ,N } are
more likely to have higher cumulative rewards and 1

{R(xN+1)≥ξ̂k }
is less likely to be 1. In this case, the second term has a higher prob-
ability to be 0 and the updating rule is the same as not introducing
xN+1. On the contrary, when the importance sampling density is far
from optimal, sampling trajectories by following policy π (a |s ; θ̃k−1)
might not provide better trajectories than choosing the action ran-
domly at each state s ∈ S − S ′. Therefore, st ,at ∈ xN+1 will have
a higher probability to be leveraged to update θ . Meanwhile, the
sample xN+1 obtained by choosing actions uniformly distributed
on action space A will decrease the likelihood that some actions
are never executed at a certain state s ∈ S − S ′.

Algorithm 1 Chic Training Algorithm

1: Randomly initialize parameter θ̃0 in π (a |s; θ̃0)
2: for iteration k = 1 to K do
3: for episode n = 1 to N do
4: Randomly select a workload arrival sequence
5: Generate xn with current policy π (a |s; θ̃k−1)
6: end for
7: Generate xN+1 by selecting actions with uniform distribu-

tion on A for each state s ∈ S − S ′

8: Calculate the cumulative reward R(xn ) for all n, and order
them from smallest to largest, R(1) ≤ · · · ≤ R(N+1)

9: Let ξ̂k = R( ⌊(1−ρ)N ⌋)

10: Calculate θ̂k by solving (9)
11: Update θ̃k as θ̃k = αθ̂k + (1 − α)θ̃k−1
12: end for

To train a policy that generalizes, we consider multiple examples
of workload arrival sequences. At the beginning of each episode, a
sequence is chosen randomly from the examples. In each iteration,
N+1 episodes are taken.We formally present the training algorithm
of the DRL-based scheduling framework Chic as Algorithm 1. The
algorithm is mainly composed of two iterative phases. At each
training iteration k , it generates N random samples of trajectories
by following the current policy π (a |s; θ̃k−1), and one trajectory
by choosing actions according to a uniform distribution on action
spaceA at each state s ∈ S − S ′, which is shown in Lines 3-7. Then,
it updates the parameters of the policy based on the ⌊(1 − ρ)N ⌋

best performing trajectories using cross-entropy minimization and
a smooth update with parameter α , which is shown in Lines 8-11.
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4.4 The Chic-Pair Simplification
A common characteristic of most DRL jobs is that the training of a
policy typically requires a substantial amount of time. A smaller
action space usually leads to a shorter training time since the range
the DRL agent has to explore is narrowed. In this section, we inves-
tigate whether the action space of Chic could be further simplified.

From the schedule given by Chic in our experiments, we found
the number of worker nodes and PS nodes assigned to a workload
is similar. Besides, setting the amount of PS nodes the same as the
number of worker nodes is not unusual in distributed learning, and
is in fact also one default case in MXNet [9]. Therefore, we propose
a simplified version of Chic, named Chic-Pair, with a simpler action
space.

Chic-Pair allocates worker nodes and PS nodes in a pair. More
specifically, the action at in Chic-Pair is designed as the ML work-
load to which a worker node and a PS node is added, so that
at = i refers to allocating both a worker node and a PS node
to ML workload i at time step t , where i ∈ [I ]. The action space for
a system scheduling for the first I workloads is therefore given by
A = {1, · · · , I , ∅}. Chic-Pair reduces the size of the action space
from 2I + 1 to I + 1 compared with Chic. Furthermore, since swit al-
ways equals spit , the state could be simplified by removing spit . Condi-
tion (1) should be changed correspondingly to there existing a type
k ∈ [K] resource such that mini (wk

i +p
k
i )+

∑
i ∈[I ] s

w
it (w

k
i +p

k
i ) > ck .

Moreover, since Chic-Pair allocates a pair of worker node and PS
node at each time step, the concern that a workload is allocated
with at least one worker (resp. PS) but zero PS (resp. worker) is
no longer present, and rt2 could be eliminated. The other design
components of Chic-Pair remain the same as those of Chic.

5 IMPLEMENTATION
We use PyTorch to implement Chic and Chic-Pair running the
modified cross-entropy method with a policy network. There are
a few hyper-parameters in the proposed scheduling framework.
To maximize its performance, comprehensive empirical training
sessions are conducted to find the best settings for them and the best
structure for the policy network. A fully connected feed-forward
neural network with 3 hidden layers serves as π ′(a |s ;θ ). The neural
network includes 64, 32, and 4 neurons in the first, second, and
third hidden layers respectively and utilizes the ReLu function for
activation. A dropout rate of 0.5 is introduced in the first hidden
layer. The output of the neural network is passed to the softmax
function to ensure the sum of output values equals to 1. We have
found that more complicated network structures with more hidden
layers and more neurons in each layer take longer time to train and
do not perform much better than the chosen structure.

During the training phase of the DRL agent, N = 35 trajectories
are sampled with the current policy in each iteration k and 0.3-
quantile of the performance of the sampled trajectories is utilized
as ξ̂k . The Adam optimizer is used with learning rate α = 0.01.
Furthermore, a validation set containing 30 workload sequences
is leveraged to find the best learned policy. Chic and Chic-Pair
go through the validation set every two iterations and record the
average completion time achieved by the current policy. At the
end of the training phase, the policy with the shortest average
completion time for the validation set is chosen for testing.

6 PERFORMANCE EVALUATION
We conduct extensive simulations of Chic and Chic-Pair to show
their effectiveness in scheduling workloads in ML clusters.

6.1 Simulation Settings
Baseline: We compare Chic and Chic-Pair with Optimus, which is
the state-of-the-art approach in the literature for scheduling ML
workloads in the cluster. Optimus schedules ML workloads with
fixed time intervals and keeps assigning one worker node or one
PS node to an ML workload based on some marginal gain until
at least one type of resource is used up, or all the marginal gains
are negative. It has been shown that Optimus outperforms DRF
and Tetris, which are general cluster schedulers but not explicitly
designed for ML workloads [4].
Workload: The arrival pattern for ML workloads follows a Pois-
son arrival process. The arrival rate is chosen between 0.9 h−1 ∼
2.7 h−1. EachMLworkload is randomly chosen from 3 types of mod-
els: ResNet-50 or VGG-16 on a downscaled ImageNet ILSVRC2012
dataset, or ResNext-110 on a part of the Cifar-10 dataset. The VGG-
16 model requires 1 GPU, 2 CPU cores, and 10GB memory for each
worker and 4 CPU cores and 10GB memory for each PS. A worker
of the ResNet-50 model requires 1 GPU, 2 CPU cores, and 8GB
memory while a PS requires 3 CPU cores and 9GB memory. For the
Resnext-110 model, a worker needs 1 GPU, 2 CPU cores, and 10GB
memory, while a PS needs 3 CPU cores and 10GB memory. Each
workload is trained for a number of iterations that is uniformly
distributed between 100 and 200, and the batch size for the gradient
update discussed in Section 2.1 is 32.
Settings: We simulate a cluster with 10 GPUs, 120 CPU cores, and
600GB memory. During the training of Chic and Chic-Pair, I is set
to be 3 by default, but we also study other choices of I . During
the training phase, the DRL agent schedulesW = 30 workloads in
each episode. The default schedule interval of Optimus is set as 600
secs, which is indicated in [4]. The reward rt1 in (8) is calculated
with a unit of 20 mins. We observe that only the relative difference
among rt1, rt2, and rt3 matter. Therefore, we have fixed rt1 and
experimented with different values of of p1 and p2 to inspect the
working conditions of Chic. Our results indicate that p1 = 1 is a
large enough punishment. Furthermore, a wide range of p2 values
is observed to work well, further demonstrating the stability of
Chic. In the following, we present simulation results with p1 and
p2 set to 5 and 1 respectively.

Our goal is to find the performance ofChic comparedwith a state-
of-the-art scheduler and the applicability of Chic under different
conditions. Furthermore, we study whether the simplified version
of Chic, i.e., Chic-Pair, could produce satisfactory results.

6.2 Simulation Results
6.2.1 Average Completion Time (ACT). First, we compare the ACT
of ML workloads achieved by Chic and Chic-Pair with Optimus. The
results are shown in Fig. 4. Each data point in Fig. 4(a) and 4(c) is
an average of 30 examples of workload sequences not used during
training. From Fig. 4(a) we can see that Chic performs the best,
reducing the ACT of Optimus by more than 400 secs in all cases.
Chic and Chic-Pair decreases the ACT by at least 12.65% and 10.08%
respectively compared with Optimus. As expected, Chic achieves
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Figure 5: The runtime and ACT of Chic, Chic-Pair, and Op-
timus.

better performance than Chic-Pair since it allows the DRL agent to
decide the allocation of both worker nodes and PS nodes. Fig. 4(b)
provides a more detailed performance comparison between Chic
and Optimus. Chic outperforms Optimus in terms of the shortest
completion time and the median completion time. In addition, Chic
is comparable to and often better than Optimus in terms of the
longest completion time.

Fig. 4(c) reveals the applicability of Chic and Chic-Pair. The policy
of Chic is re-trained under different workloads while Chic(1.8/h)
and Chic-Pair(1.8/h) are only trained once under an arrival rate
of 1.8 h−1. An interesting observation is that Chic(1.8/h) almost
performs as well as Chic when the arrival rate is not high, and the
difference in ACT is no more than 4.06%. Though the difference in
ACT obtained by Chic(1.8/h) and Chic is larger when the arrival
rate is high, it shows favorable properties of the experience-driven
approach. When there is no dramatic change in the workloads
within the cluster, it is not necessary to take extra time to re-train
the DRL agent of Chic. Furthermore, Chic-Pair(1.8/h) shows even
better adaptivity than Chic(1.8/h). The reason is that the action
space of Chic-Pair is simplified and the DRL agent only needs to
determine one dimension of the schedule. Therefore, the schedule
obtained by Chic-Pair has less variance. Combining Fig. 4(a) and
4(c) we can see that the learned policy of Chic is more accurate and
specific while the policy of Chic-Pair is more general.

We further examine the runtime of Chic and Chic-Pair. We focus
on the data point with an arrival rate of 1.8 h−1. The measurement
is conducted on a Macbook Pro laptop with 3.1 GHz Intel Core i5.
As can be seen from Fig. 5(a), the runtime of Chic to schedule 30
workloads is 3.00 times longer than Chic-Pair. Meanwhile, the run
time of Chic-Pair is similar to Optimus when the schedule interval
is set as 600 secs, the same as in [4]. However, when we decrease
the schedule interval of Optimus, Chic-Pair outperforms Optimus
in runtime. Though the best ACT achieved by Optimus is when the
schedule interval is decreased to 300 secs, as shown in Fig. 5(b),
the runtime increases while the ACT still cannot catch up with
Chic and Chic-Pair. The time Chic used to determine the schedule
is short compared with the decrease in ACT. In general, Chic is a
good choice for an ML cluster aiming for the shortest ACT while
Chic-Pair is ideal when a fast schedule is required. Furthermore,
multiprocessing or offloading to GPU servers could further decrease
the runtime of Chic and Chic-Pair.

6.2.2 Convergence Behavior. To understand the convergence be-
havior of Chic and Chic-Pair, we study in detail the training of Chic
and Chic-Pair to optimize the ACT at an arrival rate of 1.8 h−1. Fig.
6(a) plots the bound ξ̂k and the average of R(xn ) among all the
sampled 36 trajectories by the end of each iteration k during the
training of Chic. As expected, both values increase with iterations
as Chic’s policy improves. Fig. 6(b) illustrates the ACT achieved by
the learned policy of Chic at the end of each iteration k . To com-
pare, the figure also shows the ACT achieved by Optimus. From Fig.
6(b) we see that Chic improves with iteration counts. In particular,
after 19 iterations Chic is better than Optimus. The improvement in
the first several iterations is huge but gradually the change slows
down. In addition, the gap between the reward bound ξ̂k and the
average of R(xn ) among all the sampled trajectories narrows down,
meaning the model is steadily converging. Furthermore, with both
Fig. 6(a) and 6(b), we can see that higher cumulative reward, which
is what the training algorithm optimizes for, correlates to lower
ACT, which is the objective of Chic. This correlation demonstrates
that the design of our reward to achieve the optimization objective
for the scheduling of ML workloads is reasonable.

The training of each iteration in Chic is around 28.15 secs on
one core of 3.1 GHz Intel i5 CPU. The policy is only required to be
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Figure 6: The Learning Curve of Chic and Chic-Pair.

trained once to schedule ML workloads. Retraining is only needed
when the workloads change greatly as discussed in Section 6.2.1.
Similar training results are obtained for Chic-Pair as shown in Fig.
6(c) and 6(d). Moreover, Chic-Pair converges more quickly than
Chic due to the simplicity of the policy.

6.2.3 The influence ofW and I . We further discuss the influence
of the selection ofW and I . LargerW leads to a longer duration of
each episode but also increases the probability that the cluster is
in steady state during the training. Fig. 7(a) plots the influence of
W on Chic and Chic-Pair. AdoptingW = 60 yields a slightly better
result, but the training time is much longer. Therefore,W = 30 is a
suitable choice in general.

The selection of I should be combined with the arrival rate.
When the arrival rate is high but I is small, many workloads will
be waiting in the queue and the DRL agent will only focus on the
scheduling of the first several arrived workloads. In contrast, when
the arrival rate is low but I is large, the larger action space requires
the DRL agent to take more time to explore. Because the training of
Chic takes too much time, the simulation is conducted for Chic-Pair.
Fig. 7(b) plots the ACT when the size of I is 2, 3, or 4. As can be
seen from the figure, when the arrival rate is 0.9 h−1, which is not
high, the ACT achieved for different I values is similar. However,
when the arrival rate is 2.7 h−1, setting I = 2 limits the performance
of Chic-Pair since more workloads are queuing to be scheduled.
Compared with the case when the DRL agent schedules for the first
3 workloads, setting I = 4 could decrease the ACT by 71.28 secs.

7 RELATEDWORK
A growing amount of research attention has been given to dis-
tributed ML due to the increasing complexity and data sizes of
ML workloads. In a distributed ML cluster, various training work-
loads with different models and huge datasets join in an online
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fashion. As ML workloads are typically resource-intensive and
time-consuming even with distributed learning, it is important to
manage the resources in an ML cluster efficiently to satisfy training
requirements.

There has been a significant amount of effort on the study of
general cluster resource allocation to achieve different performance
objectives. Mesos [14] and YARN [3] use the DRF [15] strategy to
allocate resources. Borg [2], Fuxi [16], and Firmament [17] sup-
port policy-based scheduling. However, all of these schedulers are
designed for general purposes.

To further leverage the physical resources and expedite the train-
ing process, some researchers considered leveraging the characteris-
tics of ML workloads and designing scheduling algorithms that are
tailored for ML workloads. Bao et al. designed OASiS [10], which
assigns a changing number of worker nodes and PS nodes to an ML
workload upon its arrival based on a carefully designed price func-
tion. However, the exact value of the price could not be obtained
without full knowledge of all incoming workloads. Furthermore,
OASiS is designed with the assumption that worker nodes and
PS nodes are deployed on two different sets of physical servers,
limiting the use cases.

Zhang et al. designed SLAQ [18], a scheduling system for approx-
imating ML training workloads to maximize system-wide quality
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improvement. The authors targeted the training quality of experi-
mental ML models instead of models in production. Besides, SLAQ
only works for the single-resource case. Optimus [4] made several
further improvements in this direction. Optimus adjusts the deploy-
ment of both worker nodes and PS nodes for ML workloads with
fixed time intervals. The key idea is to iteratively add a worker node
or a PS node to the workload with the most decrease in completion
time with such resources. The predicted completion time is based
on the assumption that the schedule for the workload remains the
same. However, since Optimus has to change the schedule from
time to time to suit system dynamics, it might not be effective in
the long run. Also, it assigns at least 1 worker node and 1 PS node
to each of the workloads, causing inefficiency when there are many
workloads in the cluster. Though possessing some drawbacks, all
of these methods showed better performance compared with gen-
eral schedulers, proving the effectiveness of schedulers that are
designed specifically for ML workloads.

The success of applying DRL to play video games [5] and Com-
puterGo [19] inspired some researchers to leverage DRL to solve
resource management problems. DeepRM [6] is an attempt in this
direction by using the policy gradient method to determine the time
for a job to be scheduled. Different from our problem, DeepRM only
determines the time slots for jobs to be scheduled, and the resource
requirements and occupancy time of a job are all known conditions.
Mirhoseini et al. employed DRL to expedite the training of a single
machine learning workload [7]. Rather than data parallelism, they
dealt with the model parallelism case and let the DRL agent decide
the mapping between each part of the model and devices. These
attempts have shown the potential of utilizing DRL techniques to
solve challenging resource management problems.

8 CONCLUSION
In this paper, we have studied the scheduling of ML workloads in
cloud computing clusters. Different from previous schedulers using
heuristics to address this problem, we wondered whether an ML
cluster can learn to manage the resources by itself via leveraging its
experience. Inspired by the success of applying DRL in recent years,
we have developed a new scheduler Chic to assign worker nodes
and PS nodes to ML workloads with the objective of minimizing the
average completion time. With an appropriate design of the state,
action, and reward, Chic enables experience-driven scheduling by
learning the environment dynamics. Moreover, a simplified version
named Chic-Pair is proposed to shorten the training time. Our
extensive array of simulation results have shown clear evidence
that Chic and Chic-Pair are able to significantly outperform a state-
of-the-art heuristic, Optimus, in scheduling ML workloads under a
wide variety of conditions.
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