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Abstract— This paper presents a mobile tracking scheme that exploits
the predictability of user mobility patterns in wireless PCS networks. In-
stead of the constant velocity fluid-flow or the random-walk mobility model,
a more realistic Gauss-Markov model is introduced, where a mobile’s ve-
locity is correlated in time to a various degree. Based on the Gauss-Markov
model, a mobile’s future location is predicted by the network based on the
information gathered from the mobile’s last report of location and veloc-
ity. When a call is made, the network pages the destination mobile at and
around the predicted location of the mobile and in the order of descending
probability until the mobile is found. A mobile shares the same predic-
tion information with the network and reports its new location whenever
it reaches some threshold distance away from the predicted location. We
describe an analytical framework to evaluate the cost of mobility manage-
ment for the proposed predictive distance-based scheme. We then compare
this cost against that of the regular, non-predictive distance-based scheme,
which is obtained through simulations. Performance advantage of the pro-
posed scheme is demonstrated under various mobility and call patterns,
update cost, page cost, and frequencies of mobile location inspections.

I. INTRODUCTION

In the operation of wireless personal communication service
(PCS) networks, mobility management deals with the tracking,
storage, maintenance, and retrieval of mobile location informa-
tion. Two commonly used standards, the EIA/TIA Interim Stan-
dard 41 in North America ([1]) and the Global System for Mo-
bile Communications in Europe ([12]), partition their coverage
areas into a number of location areas(LA), each consisting of
a group of cells. When a mobile enters an LA, it reports to the
network the information about its current new location (location
update). When an incoming call arrives, the network simultane-
ously pages the mobile (terminal paging) in all cells within the
LA where the mobile currently resides. In these standards, the
LA coverage is fixed for all users. Although dynamic LA man-
agement is possible ([16]), LA-based schemes, in general, are
not flexible enough to adapt to different and differing user traf-
fic and mobility patterns.

Dynamic mobility management schemes ([4] – [5]) discard
the notion of LA borders. A mobile in these schemes updates
its location based on either elapsed time, number of crossed
cell borders, or traveled distance. All these parameters can
be dynamically adapted to each mobile’s traffic and mobility
patterns, hence providing better cost-effectiveness than the LA
scheme. When the LA-s are not defined, upon call arrival, the
network pages the destination mobile using a selective paging
scheme ([14]), starting from the cell location where the mo-
bile last updated and outwards, in a shortest-distance-first order.
With the assumption of a random-walk mobility model, this pag-
ing scheme is the same as a largest-probability-first algorithm,

which incurs the minimum paging cost.
In particular, in the distance-based scheme, a mobile per-

forms location update whenever it is some threshold distance
away from the location where it last updated. For a system with
memoryless random-walk mobility pattern, the distance-based
scheme has been proven to result in less mobility management
cost (location update cost plus paging cost) than schemes based
on time or number of cell boundary crossings ([4]).

However, in practical systems, a mobile user usually travels
with a destinations in mind, therefore mobile’s location and ve-
locity in the future are likely to be correlated with its current
location and velocity. The memoryless nature of the random-
walk model makes it unsuitable to represent such behavior. An-
other widely used mobility model in cellular network analysis
is the fluid-flow model ([16] and [17]). The fluid-flow model
is suitable for vehicle traffic in highways, but not pedestrian
movements with frequent stop-and-go interruptions. A discrete
Markovian model is reported in ([4]). However, in this model,
the velocity of the mobiles is overly simplified and character-
ized by three states only. In this paper, we introduce a Gauss-
Markov ([15] and [13]) mobility model, which captures the
essence of the correlation of a mobile’s velocity in time. The
Gauss-Markov model represents a wide range of user mobility
patterns, including, as the two extreme cases, the random-walk
and the constant velocity fluid-flow models.

In systems with correlated velocity mobility patterns, un-
like those with random-walk mobility patterns, the largest-
probability location of a mobile is generally not the cell where
the mobile last reported. Thus a mobility management scheme
that takes advantage of the predictability of the mobiles’ loca-
tion can perform better.

In our proposed predictive distance-based mobility manage-
ment scheme, the future location of a mobile is predicted based
on the probability density function of the mobile’s location,
which is, in turn, given by the Gauss-Markov model based on its
location and velocity at the time of the last location update. The
prediction information is made available to both the network and
the mobiles. Therefore, a mobile is aware of the network’s pre-
diction of its location in time. The mobile checks its position
periodically (location inspection) and performs location update
whenever it reaches some threshold distance (update distance)
away from the predicted location. To locate a mobile, the net-
work pages the mobile starting from the predicted location and
outwards, in a shortest-distance-first order, and until the mobile
is found.
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The cost of mobility management is defined as the sum of
a mobile’s location update cost and the cost incurred in pag-
ing the mobile. We derive an analytical framework to evaluate
the mobility management cost of the predictive distance-based
scheme, which is a function of the traffic and mobility patterns,
the update distance, the relative cost of location update versus
paging, and the location inspection frequency. The cost of the
non-predictive distance-based scheme is evaluated through sim-
ulations, and is compared with the proposed predictive scheme.
We find the performance gains of the predictive scheme based
on the optimal updating distance that results in the minimum
mobility management cost.

In Section II, we describe the Gauss-Markov mobility model
and the prediction algorithm, showing that the proposed scheme
follows the rule of largest-probability-first. Section III presents
the analytical framework for evaluating the predictive scheme.
The numerical results based on the analysis are presented in Sec-
tion IV, where we compare the mobility management costs of
both schemes and show the performance gains achieved by pre-
diction. Finally, the concluding remarks are discussed in Section
V.

II. SYSTEM DESCRIPTION

A. The Gauss-Markov Mobility Model

We consider here a one-dimensional cellular system to
demonstrate the cost-effectiveness of the predictive scheme.
The multi-dimensional extension to this mobility model and the
associated analysis framework can be developed similarly by
substituting a vector of random processes for the single random
process used in this paper.

A mobile’s velocity is assumed to be correlated in time and
modeled by a Gauss-Markov process. In continuous-time, a sta-
tionary Gauss-Markov process is described by the autocorrela-
tion function ([15])

Rv��� � E�v�t�v�t � ��� � ��e��j� j � (1)

where �� is the variance, and � � � determines the degree of
memory in the mobility pattern. Equation (1) is also sometimes
called the Ornstein-Uhlenbeck solution of the Brownian motion
with zero restoring force ([13].

We define a discrete version of the mobile velocity with

vn � v�n�t� � (2)

and
� � e���t � (3)

where �t is the clock-tick period (normalized to � throughout
this paper). Then the discrete representation of (1) is ([7])

vn � �vn�� � ��� ��� �
p
�� ��xn�� � (4)

where � � � � �, � is the asymptotic mean of vn when n
approaches infinity, and xn is an independent, uncorrelated, and
stationary Gaussian process, with mean �x � � and standard

deviation �x � �, where � is the asymptotic standard deviation
of vn when n approaches infinity.

Define the initial n � � as the time when a mobile last up-
dates its location and velocity. We can recursively expand (4) to
express vn explicitly in terms of the initial velocity v�,

vn � �nv� � ��� �n���
p
�� ��

n��X
i��

�n�i��xi � (5)

Define sn as the displacement of a mobile, at time n, from its
last updated location. By definition, s� � �. Furthermore,

sn �

n��X
i��

vi � (6)

B. Mobility Tracking

In most practical systems, a mobile cannot continuously mon-
itor its location or velocity1. Assuming that each mobile per-
forms location inspection periodically, the optimal value of this
location inspection frequency is a variable, which depends on
the cost of the location and velocity checking process, which,
in turn, depend upon many other factors such as the tracking
and paging methods involved, the communication channel us-
age, and the computational power of the mobile’s CPU.

Suppose the mobile examines its location everym clock ticks.
We define

yk �

km�m��X
i�km

vi � (7)

Then

yk �
km�m��X
i�km

��iv� � ��� �i���
p

�� ��
i��X
j��

�i�j��xj�

� �km
�� �m

�� �
v� �

�
m�

�� �m

�� �

�
� (8)

�
p
�� ��

km�m��X
i�km

i��X
j��

�i�j��xj �

Since xj above is Gaussian with zero mean, for any constant v�,
yk is a Gaussian process with mean

�yk � �km
�� �m

�� �
v� �

�
m�

�� �m

�� �

�
� � (9)

Thus, a mobile’s location displacement from its last updated
location at its kth location inspection since the last location up-
date is

skm�� �

k��X
i��

yi � (10)

�We will not address in this paper the exact mechanism by which a mobile
monitors its location and velocity. One possibility is for a mobile to use base-
station beaconing signals to determine its position, and to average position dis-
placement over time to find its velocity. Other methods and related references
on mobile location and velocity determination can be found in ([9]).
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which is also a Gaussian random variable with mean

�sk �

k��X
i��

�yi � (11)

In the regular, non-predictive distance-based mobility man-
agement scheme, a mobile transmits a location update to the
PCS network at the kth location inspection if jskm��j is greater
than a distance threshold, N . When a call is made to a mobile,
the system pages the mobile in cells at and around the mobile’s
last reported location, in a shortest-distance-first order, and until
the mobile is found.

In the proposed predictive distance-based scheme, a mobile
reports both its location and velocity as part of the location up-
date process. Thus, both the PCS network and the mobile make
the same prediction of the probability distribution of skm�� for
any k. A mobile transmits a location update to the PCS net-
work at the kth location inspection if jskm�� � �sk j is greater
than a distance threshold , N . When a call is made to a mobile,
the system pages for the mobile in cells at and around �sk , in a
shortest-distance first order, and until the mobile is found. Here,
we have assumed that the call arrival intervals are much greater
than the location inspection interval, such that we can assume
that calls arrive at the end of location inspection intervals.

Let s�km�� be a random variable representing a mobile’s lo-
cation displacement, at the kth location inspection, from its last
reported location, given that the mobile has not performed lo-
cation update up to the kth location inspection. Since, with-
out consideration of location updates, skm�� is Gaussian with
mean �sk , and the location update process affects the proba-
bility density function (PDF) of a mobile’s location symmet-
rically around �sk , the optimal prediction of s�km��, in terms
of the largest probability, is still �sk . Furthermore, since the
probability density of s�km�� ramps down symmetrically around
�sk , the predictive distance-based paging scheme is a largest-
probability-first scheme, which satisfies the requirement of min-
imum cost selective paging. Therefore, we can expect the pre-
dictive scheme to incur lower mobility management cost than
the non-predictive distance-based scheme2.

In the next section, we introduce an analytical framework
to evaluate the mobility management cost of the predictive
distance-based scheme.

III. COST EVALUATION OF THE PREDICTIVE

DISTANCE-BASED MOBILITY MANAGEMENT SCHEME

A. PDF of Time Interval between Two Consecutive Autonomous
Location Updates

Since within a phone call duration, the position of a mobile is
closely monitored, a call arrival has the same effect as a mobile
location update. Here we distinguish a location update based
on distance as autonomous update. We first consider the time

�Paging delay constraints and reliability considerations are not addressed
here. For systems with paging delay constraints, the proposed scheme can be
easily extended using the methods similar to those reported in ([10], [3]), and
([14]). For reliability considerations, methods similar to those described in ([8]
could be used.

interval between two consecutive autonomous location updates
without the interruption of phone calls.

Shifting the center of the PDF of yk and skm�� to the origin,
we define

wk � yk � �yk (12)

rk � skm�� � �sk � (13)

Then, in the predictive distance-based scheme, the mobile up-
date condition at the kth location inspection becomes

jrkj � N � (14)

and the following recursive equation holds between location up-
dates:

rk � rk�� � wk�� � (15)

Next, we derive a recursive formula to find wk. Defining Ci�j

as the auto-covariance of wk,

Ci�j � E�wiwj � � (16)

the PDF of wk is completely determined by Ck�k .
Furthermore, we have the following recursive relation

wk �
Ck���k

Ck���k��
wk�� �

s
��

C�
k���k

Ck���k��Ck�k

zk�� � (17)

where zk�� is a Gaussian process, independent of wk and with
variance equal to Ck�k . Equation (17) can be justified by verify-
ing that

E�wk � � � � (18)

E�wkwk��� �
Ck���k

Ck���k��
Ck���k�� (19)

� Ck���k �

and

E�w�
k � �

C�
k���k

C�
k���k��

Ck���k�� �

�
��

C�
k���k

Ck���k��Ck�k

�
Ck�k

� Ck�k � (20)

The auto-covariance of wk in (17) can be computed as fol-
lows. Since

Ck�k � E�y�k�� ��yk (21)

� E

�
��
�
�p�� ��

km�m��X
i�km

i��X
j��

�i�j��xj

	
A
�


�� �

exchanging the order of the above double summation, and then
dividing it into two independent parts, we have

Ck�k � ��� ���E��A�B��� � (22)
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where

A �

km��X
j��

xj�
�j��

km�m��X
i�km

�i 	

B �

km�m��X
j�km

xj�
�j��

km�m��X
i�j��

�i � (23)

Since both A and B are summations of independent zero-mean
Gaussian variables,

E�A�� �

km��X
j��

�����j��

�
�km�m��X

j�km

�i

	
A
�

� (24)

and

E�B�� �

km�m��X
j�km

�����j��

�
�km�m��X

j�j��

�i

	
A
�

� (25)

Therefore,

Ck�k � ��� ����E�A�� � E�B��� (26)

� ��
���km��� �m�� �m��� ���� 
���� �m�

��� ���
�

Equation (27) suggests that Ck�k is approximately a bell-shaped
function of �, starting fromm�� when � � �, ending at 0 when
� � �, and reaching the maximum at some � � ��� ��. This fact
is useful when, in the numerical analysis section, we study the
effect of memory in a user’s mobility pattern on the cost of the
predictive scheme.

To compute Ck���k , we have

Ck���k � E�yk��yk�� �yk���yk (27)

� E

�
�
�
�p�� ��

km��X
i�km�m

i��X
j��

�i�j��xj

	
A

�
�p�� ��

km�m��X
i�km

i��X
j��

�i�j��xj

	
A


� �

Exchanging the order of the above double summations, then di-
viding each into two independent parts, we have

Ck���k � ��� ����

E

�
�
�
�km�m��X

j��

km��X
i�km�m

�i�j��xj �
km��X

j�km�m

km��X
i�j��

�i�j��xj

	
A

�
�km��X

j��

km�m��X
i�km

�i�j��xj �
km�m��X
j�km

km�m��X
i�j��

�i�j��xj

	
A


� �

Cancelling out uncorrelated products and combining the inde-
pendent Gaussian random variables, we have

Ck���k � ��� ����� �

�
�km�m��X

j��

�
km��X

i�km�m

�i�j�� �

km�m��X
i�km

�i�j��

�

�

km��X
j�km�m

�
�km��X

i�j��

�i�j�� �

km�m��X
i�km

�i�j��

	
A
	
A

� ��
��� �m����� ��km�m�

��� ���
� (28)

Defining �k �
Ck���k

Ck���k��
and uk �

r
��

C�
k���k

Ck���k��Ck�k
zk��,

from (17), we have

wk � �kwk�� � uk � (29)

Let fwk
and fuk be the PDF of wk and uk respectively. Since

uk is independent of wk��,

fwk
�w� �

�

�k
fwk��

�w��k� � fuk �w� � (30)

where � denotes one-dimensional convolution.
We further define the following functions:

� prkwk��
�r� w�: Probability that rk � r and wk�� � w, and

that there is no update up to time k � �
� qrkwk��

�r� w�: Probability that rk � r and wk�� � w, and
that there is no update up to time k
� qrkwk

�r� w�: Probability that rk � r and wk � w, and that
there is no update up to time k

� hN �r� �



1 , �N � r � N
0 , otherwise

� where N is the distance

to update
� F �k�: Probability that there is no update up to time k
� f�k�: PDF of time between two consecutive updates

The initial distribution of mobile displacement w� can be de-
termined from (9) by setting v� � �. The location distributions
at time k � � can then be found with the following iterative
steps:

Step 0. pr�w��r� w� � fw��w�	�r � w�; set k � �;
Step 1. qrkwk��

�r� w� � prkwk��
�r� w�hN �r�;

Step 2. F �k� �
R�
��

R�
�� qrkwk��

�r� w�dwdr

Step 3. qrkwk
�r� w� � �

�k
qrkwk��

�r� w
�k

� � fuk �w�

Step 4. prk��wk
�r� w� � qrkwk

�r � w�w�
Step 5. Set k � k � �, and repeat from Step 1.

The above iteration ideally goes to k � �. However, it can
be terminated when F �k� is sufficiently small.

Then, the PDF of the update time interval is given by

f�k� � F �k � ��� F �k� � (31)

Since f�k� does not depend on v�, the update time intervals are
independent and identically distributed.

B. Cost of Mobility Management

We consider location updates between two successive call ar-
rivals. As shown in Figure 1, the i.i.d. location update time in-
tervals comprise a renewal process with the probability density
function f�t�.
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�

t
call call

� �

update update

� �
�

� �
tu

Fig. 1. Renewal Process between Two Successive Call Arrivals

Let’s consider one location update. Assume that the next au-
tonomous location update is at time tu and that the next call ar-
rives at time � , where � 
 tu . The probability density function
of � given that � is less than tu is

p� j��tu�t� �
�e��tu�tu � t�

�� e��tu
� (32)

where � is the call arrival rate, and u�t� is the step function.
Thus, when a call arrives, the PDF of time elapsed since the

mobile’s last location update is

p� �t� �

Z �

�

p� j��tu�t�f�tu�dtu

� �e��t
Z �

t

f�tu�

�� e��tu
dtu � (33)

Given that a call arrives at t � � after the last location update,
the PDF of the mobile’s distance to the predicted location is

gr� �r� �

R�
��

qr�w���
�r� w�dwR N

�N

R�
�� qr�w���

�r� w�dwdr
� (34)

Using a paging scheme that searches for the mobile in cells
based on the shortest-distance-first rule, the paging cost associ-
ated with locating the mobile at distance r from the predicted
location is �
br�Sc� ��Cp, where S is the cell size, and Cp is
the cost of paging one cell. Thus, the average paging cost per
unit time is

Cpage � �Cp

Z �

�

p� ���

Z N

�N

gr� �r��
br�Sc���drd� � (35)

Next, we will find the cost associated with location updates.
Let u�t� denote the number of location updates within the time
interval of length t between two successive call arrivals. Then,

Pr�u�t� � i� � F �i��t�� F �i����t� � (36)

where

F �i����
�
�

Z �

�

f �i��t�dt � (37)

and f �i��t� is defined by the following recursive relation

f ����t� � f�t� (38)

f �i��t� � f �i����t� � f�t� � (39)

Let M�t� be the expected value of u�t�. Then,

M�t� �

�X
i��

i�F �i��t�� F �i����t��

�

�X
i��

iF �i��t��

�X
i��

�i� ��F �i��t�

�
�X
i��

F �i��t� � (40)

From (40), the average updating cost per unit time can be
obtained by

Cupdate � �Cu

Z �

�

�e��tM�t�dt � (41)

where Cu is the cost of a single autonomous location update.
Finally, the total cost of mobility management per unit time

is
Ctotal � Cupdate � Cpage � (42)

IV. NUMERICAL RESULTS AND COMPARISONS

In the following numerical analysis, we normalize all costs to
the unit of the paging cost Cp. We also normalize distance to the
unit of the cell size. We are interested in understanding how the
remaining variables, namely, the memory factor exponent �, the
average velocity �, the standard deviation �, the cost per loca-
tion updateCu, the call arrival rate �, and the location inspection
period m, affect the performance gain of the predictive scheme,
as compared with the non-predictive distance-based scheme, in
terms of the optimal Ctotal.

For the non-predictive distance-based scheme, we use com-
puter simulations to determine its cost with the above six pa-
rameters taking various combinations of values. In these sim-
ulations, we assume an infinite one-dimensional space that is
divided into cells of size 1, where a mobile travels according to
the Gauss-Markov process defined by the mobility parameters
�, �, and �. The simulations are time-driven. At the time of
initiation, the mobile is assumed to have just experienced a call
arrival. Thus, it starts from the origin (s� � �), and has ini-
tial velocity with Gaussian distribution defined by � and �. The
time of the next call arrival is randomly generated following the
exponential distribution with rate �. Until a call arrives, the
mobile inspects its position every m clock ticks. If the mobile
is N or more unit of distance away from the origin, a location
update is performed, and the origin is shifted to the current lo-
cation. When the call arrives, the paging cost is computed based
on the mobile’s distance from the origin. Also, the updating cost
is computed based on the total number of location updates per-
formed since time initiation. The above experiment is repeated
��� times, and the average is taken for each set of parameters.

For each combination of the above six parameters, the mini-
mum cost for each scheme is obtained by searching over differ-
ent update distance thresholds.

We define the performance gain of prediction as the ratio be-
tween the minimum Ctotal for the non-predictive scheme to
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the minimum Ctotal for the predictive scheme. Thus, the pre-
dictive performance gain is a function of six independent vari-
ables. Instead of attempting to plot the performance gain in the
six-dimensional space, we divide the variables into two groups,
��� �� �� and ���Cu�m�. For each group of variables, we study
the effect of these variable on mobility management cost in de-
tail, while the variables in the other group are fixed. Due to
space limitations, we show here only the plots of the perfor-
mance gain.

In Figures 2-3, we study the effect of mobility pattern,
namely, ��� �� ��, on the performance gain. The other param-
eters are set to ���Cu�m� � ������ ������ ���.

Figure 2 presents the plots of the performance gain versus
�, for various values of �, and with fixed � � ���. Here �
takes the values f����� ������� ����� ������� ���� �����g. This
corresponds to the memory factor � � e�� taking the val-
ues f����� ���
� ����� ����� ����� ����
g. For the various curves,
� takes a value from f�� ����� ������� ���� ������ ���g. These
plots demonstrate that the performance gain is a concave func-
tion of �. On the one hand, when � is small, the user mobility
has high memory level, which favors the predictive scheme. On
the other hand, when � is large, � is small, and from (27), Ck�k

reaches a local minimum, m��, at � � �. Therefore, in this
case, the disadvantage of the non-predictive scheme is mainly
determined by a mobile’s average velocity, when � is not too
small (larger than ��� in this case). Since � does not affect the
cost of the predictive scheme, the predictive performance gain
is larger for larger �, which leads to smaller Ck�k.

When � � �, the performance gain decreases from about 2
down to unity, as the memory factor of the system decreases
from ���� to ����
. In particular, for � � � and � � �, the
mobility of the mobile has the pattern of random-walk. In this
case, the predictive scheme does not have any advantage over
the non-predictive one. However, in all other cases, the predic-
tive scheme results in substantial savings. Maximum savings
are achieved when � �� �, since, in this case, the mobile mo-
bility pattern is close to the fluid-flow model, where a mobile’s
velocity and location is easily predictable. In this case, the only
cost incurred using the predictive scheme, is the cost of paging
once in the cell of the predicted location, since the mobile never
needs to update its location.

Figure 3 presents the plots of the performance gain versus �,
for various values of �, and with fixed � � ������ (� � ����).
Here � takes the values f�� ����� ������� ���� ������ ���g . For
the various curves, � takes a value from f���� ���� �� �� ��g.
These plots demonstrate that the performance gain is an increas-
ing function of �, for � not too much larger than �. When � is
much larger than �, as discussed in the previous figure, the mo-
bility pattern is close to the fluid-flow model, and the savings by
prediction are maximal and independent of the mobile’s veloc-
ity. The asymptotic standard deviation, �, represents the uncer-
tainty in a mobile’s velocity. Here we see that the performance
gain is maximum when � is small, but there is little performance
gain when the magnitude of � is close to or larger than �. For
example, when � � ��� and � � ��, a performance gain greater
than 10 is achieved, but when � � �, the performance gain is
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and � � ������ (� � ����)

unity for all � in the interval [0.1, 10].
Figure 4 shows the plots of the performance gain versus �,

for various values of �, and with fixed � � �. Here � takes
the values f���� ���� �� �� ��g. For the various curves, � takes
a value from f����� ������� ����� ������� ���� �����g. These
plots demonstrate that the performance gain is a faster-than-
exponential decreasing function of �; this observation is in
agreement with the results from the previous graph. Here we
see again that the cost gain is a concave function of �, and is
large when � is either large or small.

In Figures 5-7, we study how the parameters ���Cu�m� af-
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Fig. 4. Performance gain vs. � and � for � � ����, Cu � ��
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and � � �

fect the performance gain. We set the mobility parameters
��� �� �� � �������� ���� ����.

Figure 5 presents the plots of the performance gain versus �,
for various values of Cu, and with fixed m � �. Here � takes
the values f���	� ������� ����� ������� ����g. For the various
curves,Cu takes a value from f����� ������� ���� ������ ���� �����g.
These plots demonstrate that the predictive performance gain is
an approximately exponential decreasing function of the call ar-
rival rate. However, the rate of decrement is not very steep. For
example, with Cu � ��, the performance gain is ���, 
��, and

�
, when � � �����, � � ����, � � ���, respectively. These
plots also suggest that the predictive scheme gives larger cost
savings when the cost per location update is larger.

Figure 6 shows the plots of the performance gain versus Cu,
for the various values of m, and with fixed � � ����. Here Cu

takes the values f����� ������� ���� ������ ���� �����g. For the
various curves, m takes a value from f
� �� ��� 
�� ��g. These
plots demonstrate that, except in the extreme case when m is
very large, the predictive performance gain is an approximately
linearly increasing function of the location update cost; this ob-
servation is in agreement with the results from the last figure.
There are sharp turns in the curves with m � 
� and m � ��.
This is because, for these two values of m, when Cu is rela-
tively small, the obtained optimal update distance is 1 cell size
for both the predictive scheme and the non-predictive scheme.
In this case, since, in our analysis, the distance is quantized in
units of a cell, the exact update distance is not well defined here.
These curves also suggest that the performance gain is larger
for smaller location inspection periods. This is studied in more
detail in the next figure.

Figure 7 presents the plots of the performance gain versus m,
for the various values of �, and with fixedCu � �. Herem takes
the values f
� �� ��� 
�� ��g. For the various curves, � takes a
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and � � ����

value from f���	�����	� ������� ����g. These plots demon-
strate that the performance gain is an approximately linearly
decreasing function of the location inspection period. There-
fore, the prediction scheme favors a system where the mobiles
frequently monitor and update their locations. However, since
using prediction incurs more computation and communication
cost for each location inspection, there exists a trade-off between
the extra cost due to frequent location inspection and the amount
of performance gain, which should be considered when design-
ing the optimal location inspection frequency for the proposed
predictive system.
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V. CONCLUSIONS

Mobile users in PCS networks move with wide variety
of mobility patterns, especially in networks with multilayer
macro-cellular and micro-cellular infrastructures ([6]). The
location-area-based mobility management schemes are not flex-
ible enough to adapt to various and varying user traffic and
mobility patterns. Furthermore, most of the existing dynamic
mobility management schemes assume either random-walk or
constant-velocity fluid-flow as the user mobility model. How-
ever, neither of these mobility models can practically represent
mobiles’ movements in a PCS network. In this paper, we in-
troduce a mobility model based on the Gauss-Markov random
process, which more realistically captures the various degrees
of correlation of a mobile user velocity in time.

With the Gauss-Markov mobility model, we present a novel
predictive distance-based mobility management scheme, which
takes full advantage of the correlation between a mobile’s cur-
rent velocity and location and its future velocity and location.
An analytical framework is introduced to evaluate the perfor-
mance of the predictive scheme, which allows us to study the
effects of various parameters on the mobility management cost.
This cost is then compared with the cost of the regular, non-
predictive distance-based scheme obtained from simulations. In
the span of parameter values under consideration, the perfor-
mance improvement by the predictive scheme ranges from unity
to a factor of more than 10.

Numerical results suggest that the predictive scheme gives
better gains in systems with larger � and smaller �; i.e., when
user mobility pattern is closer to the constant-velocity fluid-flow
model. It gives the largest gain when � �� �. As an example,
with the parameter values as shown in Figure 2, when � � �
and � � ���, a cost reduction of 8.5 times is achieved.

When � is small, and � and � are large, the user mobility pat-

tern is close to the random-walk model. In this case, the predic-
tive scheme does not perform any better than the non-predictive
one. For example, when � � �, � � ���, and � � �, the
performance gain is close to unity.

When � is not very small relative to sigma (for example, with
the range of parameter values considered in our paper, when
� � ��� and � � ���), a large �, which indicates low memory
level in the user mobility pattern, not necessarily lead to low
performance gain. This is due to the non-monotonicity of Ck�k

as a function of �. As a point of reference, for � � ����, Cu �
�����,m � ��, � � �, and � � ���, the performance gain is 
��,

��, and ���, for � � ����, � � ���, and � � �, respectively.

The parameters other than those associated with the mobility
pattern also affect the performance gain. Numerical results show
that the performance gain is, approximately, an exponentially
decreasing function of the call arrival rate, a linearly increasing
function of the cost per location update, and a linearly decreas-
ing function of the mobile location inspection period. There
exists a trade-off between the extra cost due to the predictive lo-
cation inspections and the amount of performance gain, which
should be considered when designing the optimal location in-
spection frequency for the proposed predictive system.
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