
1

Robust Online Learning against Malicious
Manipulation and Feedback Delay with Application

to Network Flow Classification
Yupeng Li, Member, IEEE, Ben Liang, Fellow, IEEE, and Ali Tizghadam

Abstract—Malicious data manipulation reduces the effective-
ness of machine learning techniques, which rely on accu-
rate knowledge of the input data. Motivated by real-world
applications in network flow classification, we address the prob-
lem of robust online learning with delayed feedback in the pres-
ence of malicious data generators that attempt to gain favorable
classification outcome by manipulating the data features. When
the feedback delay is static, we propose online algorithms termed
ROLC-NC and ROLC-C when the malicious data generators are
non-clairvoyant and clairvoyant, respectively. We then consider
the dynamic delay case, for which we propose online algorithms
termed ROLC-NC-D and ROLC-C-D when the malicious data
generators are non-clairvoyant and clairvoyant, respectively. We
derive regret bounds for these four algorithms and show that they
are sub-linear under mild conditions. We further evaluate the
proposed algorithms in network flow classification via extensive
experiments using real-world data traces. Our experimental
results demonstrate that the proposed algorithms can approach
the performance of an optimal static offline classifier that is
not under attack, while outperforming the same offline classifier
when tested with a mixture of normal and manipulated data.

I. INTRODUCTION

We consider the problem of robust online learning against
malicious manipulation with delayed feedback. In this prob-
lem, each data sample belongs to a specific class, and the
task of an online classifier is to estimate the classes of a
sequence of data samples that arrive over time. Malicious
data generators may exist, which can manipulate their data
features to best respond to the classification model used by
the classifier while incurring some manipulation cost, e.g.,
we will see in Sec. VI that malicious flow generators can
manipulate their flow features to increase the likelihood of
a certain classification outcome so as to increase their own
utility. Our objective is to decide a sequence of classification
models over time, given some delayed feedback on the true
class labels of the data samples, such that the classification
accuracy is maximized, even in the presence of malicious data
generators.

Many real-world applications motivate this problem, e.g.,
traffic flow classification in computer networking and credit

Y. Li is with Hong Kong Baptist University, Kowloon Tong, Hong
Kong (e-mail: ivanypli@gmail.com). B. Liang is with the Department of
Electrical and Computer Engineering, University of Toronto, Toronto, On-
tario M5S 1A1, Canada (e-mail: liang@ece.utoronto.ca). A. Tizghadam is
with TELUS Communications, Toronto, Ontario M5A 1P4, Canada (e-mail:
ali.tizghadam@telus.com). This is an extended version of a prior conference
paper in the IEEE INFOCOM [1]. This work was partially done when Y. Li
was with the University of Toronto.

card fraud in banking. We take network flow classification as
an example, which is essential to modern network management
[2]. The success of machine learning (ML) techniques for
flow classification depends on having reliable knowledge of
the flow feature values [2]–[4]. However, malicious network
flow generators may manipulate their flow features to game
the classifier, or to evade detection [5]. Here we consider the
scenario where each traffic flow has a specific required quality
of service (QoS) level [6]. The task is to classify flows that
arrive online into multiple classes corresponding to different
QoS requirements. The classifier inspects the sequence of
flows one-by-one as they arrive and decides a classification
model in each round. When a flow arrives, it observes the
presented features and assigns to the arriving flow a predicted
label denoting its QoS level. A flow generator may be an
application, a user, or some other entity that is concerned
about the QoS level of the flow. Each flow is allocated network
resource based on the classifier’s estimation of its QoS level.
Malicious flow generators may exist, which can manipulate
their flow features to best respond to the classification model
to increase the likelihood of a certain outcome so as to increase
their own utility, e.g., to be prioritized for network resource
allocation [7]–[10]. Such malicious behavior can render the
conventional statistics-based methods ineffective.

To counter the attacks against ML systems, defensive strate-
gies have been proposed, generally termed adversarial learning
[11]. Most of them are offline strategies [12]. However, in
many applications the training data are generated over time
(e.g., traffic flows in computer networks), so online learning
is often desirable [13]. Furthermore, since the malicious data
generators can manipulate the data features to best respond
to the latest classification model employed by the classifier,
it is important to update the classification model over time
to counter such malicious attacks [14], [15]. Finally, online
learning can limit the amount of memory required to store
the training data, and it allows dynamic adaptation to new
malicious behavior patterns.

It is challenging to address the problem of robust online
learning against malicious feature manipulation. First, online
optimization implies that the algorithms make decision with
no information about data in the future. Second, the fea-
ture manipulation by a malicious data generator may be the
best response to the classification model, so that the feature
presented might be a function of the model, which further
complicates the design space. Third, the classifier depends on
the feedback of the true labels to adjust the classification model

2

TABLE I: Comparison of Proposed Algorithms

Proposed Algorithms Data Generator Feedback Delay
ROLC-NC (Sec. IV-A) Non-Clairvoyant Static
ROLC-C (Sec. IV-B) Clairvoyant Static

ROLC-NC-D (Sec. V-A) Non-Clairvoyant Dynamic
ROLC-C-D (Sec. V-B) Clairvoyant Dynamic

to dynamically adapt to malicious behavior patterns as well as
the normal ones. However, such feedback often is delayed,
making learning difficult.

In this work, we propose online classification algorithms for
the cases where the malicious generators are non-clairvoyant
and clairvoyant. A non-clairvoyant data generator is one
that can observe the classification model committed by the
classifier only after some delay, while, representing the worst-
case challenge, a clairvoyant data generator is one that can
observe the classification model as soon as it is changed. For
each of these cases of the malicious generators, we consider
both static and dynamic feedback delay over time. To evaluate
the performance of these four algorithms, we analyze their
regret. The regret is the cumulative cost difference between
the considered algorithm and an offline oracle that chooses
the best static classification model given all information of
the future [16]. Specifically, the major contributions of our
work are summarized as follows:

• We study the problem of robust online learning against
malicious feature manipulation with delayed feedback.
We consider a detailed system model of online linear
classification, which captures practical issues including
the delay for the data generators to observe the classifier’s
classification model (denoted by ξ) and the delay for the
classifier to receive the feedback of the true label, which
is either static (denoted by τ) or dynamic (denoted by τt
for round t).

• When the feedback delay is static, we propose a robust
online classification algorithm termed ROLC-NC when
the malicious data generators are non-clairvoyant (i.e.,
ξ > 0) and another algorithm termed ROLC-C when the
malicious data generators are clairvoyant (i.e., ξ = 0).
ROLC-NC requires knowledge only of the observed fea-
tures of arriving data samples (regardless whether they
are manipulated) and the delayed feedback of true labels,
while ROLC-C requires further knowledge of the cost
function of the malicious data generators. We prove that
both algorithms have a regret bound that is sub-linear
in time under mild conditions, which implies that the
largest possible difference between the average costs of
the classifier and the offline oracle vanishes as the time
horizon goes to infinity. We further consider a more
general scenario where the feedback delay is dynamic.
We extend the above results to this scenario and propose
two additional online classification algorithms termed
ROLC-NC-D and ROLC-C-D. We develop a new delay
aggregation method to derive sub-linear regret bounds
for these two algorithms as well. Table I summarizes the
characteristics of the proposed algorithms.

• We consider the application of network flow classification

and conduct extensive experiments with real-world data
traces. Our results demonstrate the effectiveness of the
proposed algorithms. For example, with 50% clairvoyant
malicious flow generators and feedback delay τ = 10,
ROLC-NC can achieve 0.91 accuracy and F1 score, while
ROLC-C can achieve 0.93 accuracy and F1 score, in
steady state. Keeping the same setting, and choosing
the dynamic τt uniformly randomly from {0, 1, · · · , 20},
ROLC-NC-D can achieve 0.88 accuracy and F1 score,
while ROLC-C-D can achieve 0.93 accuracy and F1

score, in steady state. Furthermore, under a wide range
of experiment settings, our algorithms can approach the
performance of an optimal static offline classifier that is
not under attack (Offline-Norm), and they outperform
the same offline classifier when tested with a mixture of
normal and manipulated flows (Offline). Our evalu-
ation also sheds light on how to choose an appropriate
loss function and tune the parameters in the classification
model.

The rest of the paper is organized as follows. We first
discuss the related work in Sec. II. We propose the system
model and formulate the robust online classification problem
in Sec. III. We develop ROLC-NC and ROLC-C and derive
their regret bounds in Sec. IV. Then, we extend the problem
to the dynamic delay case, and develop ROLC-NC-D and
ROLC-C-D and derive their regret bounds in Sec. V. This
is followed by performance evaluation with an application to
robust online network flow classification based on real-world
data traces in Sec. VI. Finally, we make concluding remarks
in Sec. VII.

II. RELATED WORK

A. Robust Online Learning

There are three main types of adversarial attacks in ML:
data poisoning (DP), reverse engineering (RE), and test-time
evasion (TTE) [17]–[22]. The malicious feature manipulation
in our work belongs to the family of TTE attacks. Most TTE
attacks seek to simply degrade a classifier’s accuracy with-
out additional benefit to the data generator. Correspondingly,
robust classification aims to correctly classify the samples
generated under TTE, which is usually achieved by modifying
the training process, through, for example, feature obfuscation
[23], [24] and robust training [25], [26]. Anomaly detection of
the TTE attacks is also a common defense strategy [27]. All
of the above works study offline strategies, while our work
considers an online setting.

There is a paucity of prior art on online adversarial learning.
Abramson [14] discussed, in general, the scenarios where an
attacker seeks to evade a classifier or modify an online learning
algorithm. This position paper did not present a formulated

3

problem or a detailed solution approach. Barreno et al. [15]
introduced a DP attack in online learning with an aim to alter
the training process through influence over the training data
on the fly. They did not propose any defense against such
attacks. Kloft and Laskov [28] studied online centroid anomaly
detection in the presence of DP attacks, where the goal of the
considered attack was to force the learning model to accept a
set of targeted data samples as normal. Different from [28],
we consider a kind of TTE attack. Specifically, the malicious
data generators, after observing the committed learning model,
manipulates the data features aiming at increase the likelihood
of certain classification outcome. Sethi and Kantardzic [29]
proposed an unsupervised drift detection approach against
TTE through adversarial drift in streaming data. The main idea
of their approach was to detect the drift according to the dis-
agreements between two orthogonal classifiers, each trained on
a disjoint subset of the features of the data. Different from [29],
our proposed methods require no detection of malicious data
before classifying the data sample. Furthermore, in addition
to the differences in problem setting, our proposed algorithms
have provable performance guarantee in terms of their regret
bounds, which is not available in [28] or [29].

In [1], we considered only the case of static delay for the
online classifier to receive the feedback of the true label of
a data sample. In this extension, we generalize the problem
to one with dynamic feedback delay to accommodate more
practical scenarios. We propose two additional online clas-
sification algorithms ROLC-NC-D and ROLC-C-D for this
problem. Further, we develop a new analytical approach to that
both algorithms have provable performance guarantee in terms
of a sub-linear regret bound. Finally, we conduct additional
trace-driven experiments to evaluate the performance of these
algorithms.

There is another line of research using the word “adversar-
ial” to mean an internal non-malicious mechanism to challenge
and improve the design of a learning system, e.g., Generative
Adversarial Networks (GANs) [30] and other works related to
online learning [31], [32]. These works have no relevance to
our work.

B. Network Flow Classification

Network traffic classification enables proper assignment
of network resource (e.g., bandwidth) to applications with
different service requirements (e.g., delay). Thus, it is essential
to modern network management [2].

Due to the ineffectiveness of traditional port-based or
payload-based approaches, especially for encrypted traffic,
statistics-based approaches have emerged [2]–[4], [7], [33]–
[42]. These methods usually employ machine learning tech-
niques, which can be categorized as supervised, such as CNN
[6], [35], unsupervised, such as K-means [39] and DBSCAN
[43], and semi-supervised [40]. However, these methods are
offline, based on prior collection of training data, rendering
them unsuitable for our online flow classification problem.

Online flow classification methods have been proposed to
generate timely networking decisions on incoming flows [44]–
[47]. To improve the performance of online flow classification,

Jin et al. [47] proposed a light-weight modular architecture
with several linear binary classifiers. Hullar et al. [44] used
only the first few bytes of the first few packets to recognize
P2P applications. Yan et al. [46] proposed a co-training algo-
rithm for online traffic classification, which takes the packet
sizes and inter-packet times of the first packets of a traffic
flow as the features. However, none of these online solutions
consider malicious feature manipulation.

There are a few recent works on robust flow classification
[3], [48]–[50]. Wang et al. [48] proposed a flow classifier that
is robust to the unclean flow data, i.e., mislabelled training
samples, which incorporates noise elimination and suspected
noise reweighting. Zhang et al. [3] addressed the problem of
zero-day applications in traffic classification, and proposed a
robust binary classifier that can identify flows of zero-day
applications and accurately discriminate predefined application
classes. To identify flows from known or unknown applica-
tions, Erman et al. [49] integrated a set of supervised training
data with unsupervised learning. Wang et al. [50] proposed
to combine flow clustering based on application signatures.
These works studied robust flow classification from angles
different from our work. None of these work takes into account
malicious feature manipulation. Closer to our work, Li et
al. [7] considered an offline setting and studied the problem of
robust flow classification under malicious feature manipulation
and proposed a solution framework based on Stackelberg
games. To the best of our knowledge, no existing work studies
the problem of robust online network flow classification with
delayed feedback.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and formulate
the problem of robust online learning against malicious feature
manipulation with delayed feedback.

A. Online Classification Model

We consider a learning model where the data samples each
has M features, represented by x ∈ RM , and each sample has
a truthful class k ∈ K = {1, 2, · · · ,K}. For example, in the
application of network flow classification presented in Sec. VI,
the features may include packet lengths, packet inter-arrival
times, etc., and k may represent the level of delay sensitivity.
Let y ∈ RK be a one-hot vector denoting the data sample’s
true class. We denote the k-th element of y by y(k). Suppose
the true label is k∗, then y(k∗) = 1 and y(k) = 0,∀k 6= k∗.
Thus, each data sample is associated with a tuple (x,y).

Time is slotted by rounds. In each round t ∈ {0, 1, ..., T},
the classifier decides its classification model, and then some
data sample (xt,yt) arrives. The classifier observes xt and
needs to estimate yt. We consider a linear classifier with a
decision function hc(xt) = arg maxk ŷ

(k)
t , where ŷt = AT

t xt,
and matrix At ∈ H ⊆ RM×K . We assume the feasible
set H is convex. We further assume that At ∈ H has
Frobenius norm bounded by ZH. In the optimization literature,
in particular the literature of online convex optimization (e.g.,
[13], [16]), researchers have used general assumptions in the
system model in order to enable tractable analysis. In practice,

4

the bounded Frobenius norm assumption implies that, given
limited hardware capacity, the values of the parameters in our
classifier cannot be too large.

In cases where data are not linearly separable, non-linear
feature transformation can be applied, so that the resulting
transformed data features become linearly separable [51], [52].
That is, in case {(xt,yt)} is not linearly separable we can use
some non-linear function φ : VM → Φ to transform xt ∈ RM
to some φ(xt) ∈ Φ so that the data {(φ(xt),yt)} is linearly
separable. Thus, our consideration of linear classification can
be generalized. For more complex non-linear classifiers, e.g.,
neural networks [35]. Due to the challenge of non-convex
optimization, to achieve some performance guarantee, different
solutions rather than the ones proposed in Secs. IV and V may
be required. This is out of the scope of this paper and is left
for future work. Furthermore, linear classifiers are beneficial,
especially for online classification, as they can be executed
efficiently. They are commonly used in practice for network
traffic classification [47], [53], since they can quickly process a
large volume of traffic. Our evaluation results of network flow
classification based on real-world data, presented in Sec. VI,
further demonstrate that a linear classifier can achieve high
classification accuracy.

Let Lc(ŷt,yt) be the loss function of the classifier with
respect to the data sample (xt,yt). The loss function in this
work is general and may include, for example, the commonly
used Hinge Loss (HL) and Categorical Cross-Entropy Loss
(CEL) [51]. We refer the readers to Sec. VI for more details.
To lessen the chance of overfitting, we use a regularizer
Rc(At) =

∑
i

∑
j A

2
i,j , which is a standard technique when

training a classification model. Therefore, the classifier’s cost
function is Cc(At,yt, ŷt) = Lc(ŷt,yt) + γcRc(At), where
γc ≥ 0 controls the trade-off of the regularizer against the loss.
Since ŷt is a function of xt, we can write Cc(At,yt, ŷt) =
Cc(At,yt,xt) when the context is clear.

B. Feature Manipulation

The generator of data sample (xt,yt) receives some utility
based on the classifier’s decision hc(xt). For example, in
network traffic classification, a flow may be allocated network
resource based on the classifier’s estimation of its delay
sensitivity. Without loss of generality, we assume that the data
generator has some preference for the output of the classifier,
e.g., to be classified as high-priority traffic, as expressed by
the general loss function Lg(ŷ) = bT ŷ where b ∈ RK .
A malicious data generator has the incentive to manipulate
the features of its data, in order to game the classifier and
receive higher utility. In this work, we allow the simultaneous
existence of both normal and malicious data generators.

Feature manipulation incurs some cost to the malicious
data generator. For example, in Sec. VI-A, we discuss several
options for feature manipulation and their associated cost in
network flow classification. Here, we consider a general model
where the malicious data generator suffers a manipulation cost
Cm(x̂t,xt) = ‖α ◦ (x̂t − xt)‖2, when the feature is changed
from xt to x̂t, where α is a vector representing the weights

of manipulating each feature.1 Without loss of generality, in
our analysis of the proposed algorithms, we normalize the
feature values such that α is an all-ones vector. Thus, the
cost function corresponding to the data sample (xt,yt) is
Cg(At,xt,yt, x̂t, ŷt) = Lg(ŷt) + γgCm(x̂t,xt), where g
denotes the data generator, while γg ≥ 0 controls the trade-off
of the manipulation cost against the loss.

C. Clairvoyant and Non-Clairvoyant Data Generators

We assume that a malicious data generator can gain knowl-
edge about the classification model. For example, the generator
may observe the classification result from the past and use it to
detect the classification model through training a local model
on its own side, i.e., via reverse engineering attacks [19], [24].
Since detecting the classification model takes time, we assume
that, at time t, the generator t can only observe the model At′

for t′ ≤ t − ξ, for some non-negative integer ξ. This setting
is general. Note that it does not rule out the possibility of
ξ = 0, which represents the case where the data generator at
any time t can accurately predict the classification model At.
In this case, we say that the data generator is clairvoyant. In
the case ξ > 0, the data generator is called non-clairvoyant.
Note that At−ξ is the most up-to-date classification model
that the data generator in round t can observe. A malicious
data generator can then manipulate its features from xt to
x̂t = arg minx Cg(At−ξ,xt,yt,x, ŷt) which best responds to
At−ξ. For a normal data generator, we have x̂t = xt.

D. Model Updating Based on Delayed Feedback

At time t, after receiving a data sample with observed
features x̂t, which may be different from the true features xt,
the online classifier computes the predicted scores ŷt = AT

t x̂t.
Under a general online learning setup, the classifier receives
delayed feedback of the true label yt, which it can use
to estimate the accuracy of ŷt and adaptively update the
classification model over time [13]. Detecting the true label
for data samples takes time. For example, in Sec. VI-A, we
discuss how various techniques can be used to obtain the
true labels in online network flow classification. Initially, for
clarity of presentation, we assume the classifier can observe
the true label only after τ rounds, for some τ ≥ 0 that is
fixed over time. That is, yt is known to the classifier after
t′ ≥ t + τ . Later, in Sec. V, we extend this to the case of
dynamic feedback delay.

E. Robust Online Learning Problem Formulation

The classifier aims at minimizing its cumulative cost∑T
t=1 Cc(At,yt, ŷt) to learn an accurate classification model

while making prediction on the fly. During this process, the
classifier has to be robust to feature manipulation by the mali-
cious data generators. Such a learning process typically incurs
an increase in the obtained cumulative cost compared with an

1Here, ‖·‖ is the Euclidean norm and “◦”denotes element-by-element
multiplication. The manipulation cost in practical systems can be more
complex and dependent on how the features are extracted. In that case, our
formula serves only as an approximation.

5

offline oracle, defined as arg minA

∑T
t=1 Cc(A,yt, ŷt). Note

that the offline oracle chooses the best static classifier with
full knowledge of the whole sequence of data, including their
features x̂t and their true labels yt. The regret at time T is
thus defined as [16]

Reg(T) =

T∑
t=1

Cc(At,yt, ŷt)−min
A

T∑
t=1

Cc(A,yt, ŷt). (1)

Our objective is to design an online algorithm to choose
the classification parameters At,∀t ∈ {0, 1, ..., T}, such that
the regret is minimized. Note that minimizing the regret is
equivalent to minimizing the cumulative cost. We call the
regret sub-linear if it grows sub-linearly with the number
of rounds T , which implies that the difference between the
average cost 1

T

∑T
t=1 Cc(At,yt, x̂t) of the classifier and the

average cost of the offline oracle vanishes as T goes to infinity.

IV. ROBUST ONLINE CLASSIFICATION WITH DELAYED
FEEDBACK

We present algorithms ROLC-NC and ROLC-C for the
cases where the malicious data generators are non-clairvoyant
(Sec. IV-A) and clairvoyant (Sec. IV-B) respectively. We show
that both of them have provable performance guarantee in
terms of a sub-linear regret bound.

A. Non-Clairvoyant Malicious Data Generators

Non-clairvoyant malicious data generators have ξ > 0. For
this case, we propose the ROLC-NC algorithm, whose pseudo
code is shown in Algorithm 1. The algorithm uses gradient de-
scent, which is widely adopted in machine learning [51], [54],
and combines it with delayed feedback information. A unique
property of ROLC-NC is that it decides the classification model
in each round, by leveraging only the data features presented
in each round (regardless whether they are manipulated) and
the delayed feedback of the true labels of some previously
arrived data sample. Note that ROLC-NC does not require
any additional information, e.g., whether the data sample is
from a malicious or normal generator, the cost function of
the malicious data generators, or the generator’s delay ξ in
observing the classification model.

1) Algorithm Design: ROLC-NC learns from the history
and deploys a classification model parameterized by At in
each round t ∈ {1, · · · , T} to predict the label for the
corresponding data sample (xt,yt).

As the feedback is delayed for τ rounds, the algorithm first
initializes At, for t ∈ {1, · · · , τ+1}, to some randomly picked
A0 (Line 1). We recall that the parameters At are known to
the data generators only after ξ rounds; that is, at time t, each
data generator only knows the matrix At′ for t′ ≤ t − ξ, for
some positive integer ξ. Therefore, in rounds t = 1, · · · , ξ, the
malicious data generators manipulate the features arbitrarily.
In each round t, ROLC-NC first commits to At. Then a data
sample (xt,yt) arrives. If the data generator is malicious
(but non-clairvoyant), it manipulates its data features to x̂t
to obtain the best response to the latest model it observes
At−ξ; otherwise, x̂t = xt. The classifier then observes x̂t and
predicts a label ŷt with the model At (Line 3). In this round,

Algorithm 1: ROLC-NC: Robust OnLine
Classification with Non-Clairvoyant Malicious
Data Generators

Input: Data {(xt,yt)}Tt=1, step size η, and delay τ for
receiving feedback

Output: Models parameterized by {At}Tt=1

1 Initialization: Select A0 ∈ H randomly and set
A1, ...,Aτ ,Aτ+1 = A0.

2 for t = τ + 1 to T do
3 Commit to At, observe x̂t, predict ŷt.
4 Observe yt−τ (and suffer the cost

Cc(At−τ ,yt−τ , x̂t−τ)).
5 Set gt−τ ∈ ∂ACc(A,yt−τ , x̂t−τ) at At−τ .
6 At+1 = arg minA∈H‖A− (At − ηgt−τ)‖2.

the delayed true label yt−τ is known to the classifier, based
on which the cost Cc(At−τ ,yt−τ , x̂t−τ) from the prediction
in that round is revealed (Line 4). This cost function is
used to update the classification model in the next round.
Then, ROLC-NC computes the (sub)gradient gt−τ of the cost
function chosen at A = At−τ (Line 5). Finally, the algorithm
updates the classification parameters At+1 = At − ηgt−τ
for the next round, i.e., by taking a step proportional to the
negative of the (sub)gradient, where η is the step size set by
the algorithm (Line 6).

2) Performance Analysis: In this part, we analyze the
performance of ROLC-NC. Specifically, we show in Theorem
1 that ROLC-NC has a sub-linear regret bound.

We first note that a function f(x) : X → Y is called Q-
Lipschitz over x in X if there exists a real constant Q ≥ 0
such that, for all x and x′ in X , ‖f(x)−f(x′)‖≤ Q‖x−x′‖.

Theorem 1. Assume that, in any round t, the cost function
Cc(A,yt, x̂t) is convex over A and Q-Lipschitz over A in H.
With step size η = ZH

Q
1√

(1
4+τ)T

, ROLC-NC has regret bound

RegROLC-NC(T) ≤ ρ
√
T , where ρ = 2QZH

√
1 + 4τ .

Proof. A matrix can be converted to a column vector through
vectorization.2 For ease of presentation, we assume A, At and
gt, for all t, are vectors in this proof.

Let A∗ ∈ arg minA

∑T
t=1 Cc(A,yt, x̂t). Then, due to the

convexity of Cc, we have

RegROLC-NC(T) =

T∑
t=1

[Cc(At,yt, x̂t)− Cc(A∗,yt, x̂t)]

≤
T∑
t=1

gTt (At −A∗),

where gt ∈ ∂ACc(A,yt, x̂t) at At. In this paper, we denote
the transpose of any vector p as pT .

2The vectorization of a matrix is a linear transformation which converts
the matrix into a column vector. Specifically, the vectorization of a m × n
matrix W is the mn× 1 column vector obtained by stacking the columns of
the matrix W on top of each other.

6

For t > τ , since At+1 is the result of projecting At−ηgt−τ
onto the convex set H, we have

‖At+1 −A∗‖2−‖At −A∗‖2

≤η2‖gt−τ‖2−2ηgTt−τ [(At−τ −A∗) + (At −At−τ)]. (2)

Now we expand gTt−τ (At −At−τ) as follows.

gTt−τ (At −At−τ) =

τ∑
j=1

gTt−τ (At−(j−1) −At−j)

=

min(t−(τ+1),τ)∑
j=1

[−ηgTt−τ−jgt−τ−cj], (3)

where cj = gTt−τ [(At−j − ηgt−τ−j)−At−(j−1)].
The proof will continue after the following lemma.

Lemma 1. ‖(At−j − ηgt−τ−j)−At−(j−1)‖≤ ‖ηgt−τ−j‖.

Proof. Since H is convex and At−j ,At−(j−1) ∈ H, we have
(1−α)At−j+αAt−(j−1) ∈ H, for all 0 ≤ α ≤ 1. By the fact
that At−(j−1) is the result of projecting (At−j − ηgTt−τ−j)
onto H, we have, for all 0 ≤ t ≤ 1,

‖(At−j − ηgt−τ−j)−At−(j−1)‖
≤‖(At−j − ηgt−τ−j)− [(1− α)At−j + αAt−(j−1)]‖.

Set α = 0, and we have

‖(At−j − ηgt−τ−j)−At−(j−1)‖≤ ‖ηgt−τ−j‖.

The Lipschitz property of Cc(A,yt, x̂t) gives ‖gt‖≤ Q,∀t.
Thus, by Lemma 1, we have

cj ≤ ‖(At−j − ηgt−τ−j)−At−(j−1)‖·‖gt−τ‖≤ ηQ2.

By (3), we have

gTt−τ (At −At−τ) ≥
min(t−(τ+1),τ)∑

j=1

[−ηgTt−τ−jgt−τ−ηQ2].

Substituting the above into (2), we have

gTt−τ (At−τ −A∗)

≤η
2
‖gt−τ‖2+

‖At −A∗‖2−‖At+1 −A∗‖2

2η

+

min(t−(τ+1),τ)∑
j=1

[ηgTt−τ−jgt−τ+ηQ2]. (4)

Due to the Lipschitz properties of Cc(A,yt, x̂t), we have
‖gt‖≤ Q. Furthermore, by the Cauchy–Schwarz inequality,
we have gTt−τ−jgt−τ ≤ ‖gt−τ−j‖·‖gt−τ‖= Q2. Hence we
have

T+τ∑
t=τ+1

min(t−(τ+1),τ)∑
j=1

ηgTt−τ−jgt−τ

≤
T+τ∑
t=τ+1

min(t− (τ + 1), τ)ηQ2

=[

2τ∑
t=τ+1

(t− (τ + 1)) +

T+τ∑
t=2τ+1

τ]ηQ2

=[
τ(τ − 1)

2
+ (T − τ)τ]ηQ2

=(Tτ − τ2

2
− 1

2
)ηQ2.

Summing up (4) over t = τ + 1 to T + τ yields

T+τ∑
t=τ+1

gTt−τ (At−τ −A∗)

≤η
2

T+τ∑
t=τ+1

Q2 +
‖Aτ+1 −A∗‖2

2η

+

T+τ∑
t=τ+1

min(t−(τ+1),τ)∑
j=1

ηgTt−τ−jgt−τ+

T+τ∑
t=τ+1

τηQ2.

Therefore,

RegROLC-NC(T) ≤η
2
TQ2 +

1

2η
4Z2
H + (Tτ − τ2

2
− 1

2
)ηQ2+τTQ2η

≤(
1

2
+ τ)ηTQ2 +

2

η
Z2
H+τTQ2η

=(
1

2
+ 2τ)TQ2η +

2

η
Z2
H.

We pick the step size η = ZH
Q

1√
(1
4+τ)T

so that

RegROLC-NC(T) ≤ 2QZH
√

1 + 4τ
√
T .

B. Clairvoyant Malicious Data Generators

In this section, we consider the case where data generators
are clairvoyant (i.e., ξ = 0). This represents the worst-case
challenge to the classifier. Note that the proposed ROLC-NC
can be applied to classify the data when ξ = 0. However, to
obtain guaranteed sub-linear regret in this case, the classifier
requires more information. Thus, we extend ROLC-NC to
propose ROLC-C. The pseudo code of ROLC-C is shown in
Algorithm 2.

1) Malicious and Normal Rounds: We recall here that
normal and malicious data co-exist. Let ot indicate whether the
data sample (xt,yt) is normal (i.e., if normal, ot = 1; other-
wise, ot = 0). We call a round malicious round (resp. normal
round) if ot = 0 (resp. ot = 1).

We first analyze how a clairvoyant malicious data gener-
ator affects the classifier. Different from the non-clairvoyant
data generators, a clairvoyant data generator can predict the
classification model adopted by the classifier in the current
round accurately. Therefore, after observing At committed by
the classifier, the clairvoyant malicious generator manipulates
its data features from xt to x̂t that gives the best response
to At. Thus, x̂t is a solution of minx Cg(At,xt,yt,x, ŷt).
That is, minx Lg(ŷt(x)) + γgCm(x,xt), where xt and yt
are the data features and true label of the data sample
respectively. We observe that, for any fixed At and xt,
the cost function Cg(At,xt,yt,x, ŷt) is convex in x. Ac-
cording to the Karush–Kuhn–Tucker (KKT) conditions, we

7

Algorithm 2: ROLC-C: Robust OnLine Classification
with Clairvoyant Malicious Data Generators

Input: Data {(xt,yt)}Tt=1, step size η and delay τ
Output: Models parameterized by {At}Tt=1

1 Initialization: Select A0 ∈ H randomly and set
A1, ...,Aτ ,Aτ+1 = A0.

2 for t = τ + 1 to T do
3 Commit to At, observe x̂t, predict ŷt.
4 Observe yt−τ , ot−τ and the cost

Cc(At−τ ,yt−τ , x̂t−τ).
5 if ot−τ = 1 then
6 Set xt−τ = x̂t−τ and
7 gt−τ ∈ ∂AC(n)

c (A,yt−τ ,xt−τ) at At−τ .
8 else
9 Set xt−τ = x̂t−τ + 1

2γg
At−τb and

10 gt−τ ∈ ∂AC(m)
c (A,yt−τ ,xt−τ) at At−τ .

11 At+1 = arg minA∈H‖A− (At − ηgt−τ)‖2.

have ∇x̂tCg(At,xt,yt, x̂t, ŷt) = Atb + 2γg(x̂t − xt) = 0.
Therefore, x̂t is uniquely defined as

x̂t = xt −
1

2γg
Atb. (5)

In the same round, the classifier aims to minimize its cost
function Cc(At,yt, x̂t) by choosing an At.

By substituting x̂t = xt − 1
2γg

Atb into the classifier’s
cost function, we can identify the actual cost function that
the classifier should optimize in the malicious round, which
we denote as C(m)

c (At,yt,xt). That is, C(m)
c (At,yt,xt) =

Lc(ŷt(x̂t),yt) + γcRc(At) = Lc(ŷt(xt − 1
2γg

Atb),yt) +

γcRc(At) = Lc(ŷt(xt) − 1
2γg

AT
t Atb,yt) + γcRc(At). In

contrast, in the normal round, the classifier’s cost func-
tion is C(n)

c (At,yt,xt) = Lc(ŷt(x̂t),yt) + γcRc(At) =
Lc(ŷt(xt),yt) + γcRc(At).

2) Algorithm Design: As discussed above, to compute
the actual cost function of the classifier requires additional
information on the data generator, including the cost function
of the classifier corresponding to normal and malicious data
generators, i.e., C(n)

c (At,yt,xt) and C(m)
c (At,yt,xt), and ot.

However, we recall that, because of feedback delay, the true
label yt, and hence also ot, are known to the classifier only
in round t′ ≥ t+ τ . Therefore, ROLC-C is designed to utilize
such delayed information.
ROLC-C first initializes At,∀t ∈ {1, · · · , τ + 1}, to some

randomly picked A0 (Line 1). In each round t, ROLC-C first
commits to At. Then a data sample (xt,yt) arrives, and the
features presented to the classifier is x̂t. If it is a malicious data
sample, x̂t is the best response to At; otherwise, x̂t = xt. The
classifier observes x̂t and predicts a label ŷt with the model
At (Line 3). In the same round t, the true label yt−τ and
the indicator ot−τ become known to the classifier, based on
which the cost Cc(At−τ ,yt−τ , x̂t−τ) from the prediction in
that round is revealed (Line 4). Then the classifier chooses
the cost function and computes its (sub)gradient to update
the classification model in the next round (Line 5 to 10)

according to ot−τ . If round t − τ is a normal round (Line
5), the algorithm sets the feature xt−τ = x̂t−τ as observed
at time t − τ (Line 6) and computes the gradient gt−τ of
the cost function C(n)

c (A,yt−τ ,xt−τ) at A = At−τ (Line
7); otherwise, it sets xt−τ = x̂t−τ + 1

2γg
At−τb according

to (5) (Line 9), and computes the gradient gt−τ of the
cost function C(m)

c (A,yt−τ ,xt−τ) at A = At−τ (Line 10).
Finally, the algorithm computes the classification parameters
At+1 = At − ηgt−τ for next round (Line 11).

3) Performance Analysis: In this part, we analyze the
performance of ROLC-C. Specifically, we show in Theorem 2
that ROLC-C has a sub-linear upper bound on regret.

When the context is clear, we write C(n)
c (At,yt,xt)

(resp. C(m)
c (At,yt,xt)) as C(n)

c (resp. C(m)
c) for simplicity.

Theorem 2. Assume that, in any round t, the cost functions
of A, C(n)

c (A,yt,xt) and C(m)
c (A,yt,xt), are convex over

A in H, and Qn-Lipschitz and Qm-Lipschitz over A in H
respectively. With step size η = 2ZH√

TκQ2
n+T (1−κ)Q2

m+4TτB
,

ROLC-C has regret bound RegROLC-C(T) ≤ ρ
√
T , where

ρ = 2ZH
√
κQ2

n + (1− κ)Q2
m + 4τB, κ is the fraction of

normal data over the time interval from 1 to T , and B =
max(Q2

n , QnQm, Q
2
m).

Proof. Similar to the proof of Theorem 1, for ease of presen-
tation, we assume A, At and gt, for all t, are vectors in this
proof.

For a fixed A, we have
T∑
t=1

[Cc(At,yt, x̂t)− Cc(A,yt, x̂t)]

=
∑
t:ot=1

[C(n)
c (At)− C(n)

c (A)] +
∑
t:ot=0

[C(m)
c (At)− C(m)

c (A)].

By convexity, for gt′ ∈ ∂C(n)
c (A,yt,xt) at At in round t, we

have
C(n)
c (At)− C(n)

c (A) ≤ gt
′T (At −A),

and, for gt′′ ∈ ∂C(m)
c (A,yt,xt) at At in round t, we have

C(m)
c (At)− C(m)

c (A) ≤ gt
′′T (At −A).

Let A∗ ∈ arg minA

∑T
t=1 Cc(A,yt, x̂t). Then, by (1),

we have RegROLC-C(T) ≤
∑T
t=1 g

T
t (At − A∗), where

gt ∈ ∂AC(n)
c (A,yt, x̂t) at At if ot = 1; and gt ∈

∂AC(m)
c (A,yt, x̂t) at At if ot = 0. For t > τ , since At+1

is the result of projecting At− ηgt−τ onto the convex set H,
we have

‖At+1 −A∗‖2−‖At −A∗‖2

≤η2‖gt−τ‖2−2ηgTt−τ [(At−τ −A∗) + (At −At−τ)]. (6)

Now we expand gTt−τ (At −At−τ) in (6) as follows.

gTt−τ (At −At−τ) =

min(t−(τ+1),τ)∑
j=1

gTt−τ (At−(j−1) −At−j)

=

min(t−(τ+1),τ)∑
j=1

−ηgTt−τ−jgt−τ−cj . (7)

8

where cj = [(At−j − ηgTt−τ−j)−At−(j−1)]gt−τ .
Note that the Lipschitz property of C(n)

c (A,yt,xt) and
C(m)
c (A,yt,xt) give ‖gt‖≤ Qn,∀t: ot = 1, and ‖gt‖≤
Qm,∀t: ot = 0. Thus, we have ‖gTt−τ−j‖·‖gt−τ‖≤ B. Due
to Lemma 1 and the Lipschitz property of C(n)

c (A,yt,xt) and
C(m)
c (A,yt,xt), we have

cj ≤ ‖(At−j − ηgt−τ−j)−At−(j−1)‖·‖gt−τ‖≤ ηB.

This inequation and (7) give

gTt−τ (At −At−τ) ≥
min(t−(τ+1),τ)∑

j=1

[−ηgTt−τ−jgt−τ−ηB].

Substituting the above into (6), we have

gTt−τ (At−τ −A∗)

≤η
2
‖gt−τ‖2+

‖At −A∗‖2−‖At+1 −A∗‖2

2η

+

min(t−(τ+1),τ)∑
j=1

[ηgTt−τ−jgt−τ+ηB]. (8)

Summing up (8) over t = τ + 1 to T + τ yields

T+τ∑
t=τ+1

gTt−τ (At−τ −A∗)

≤η
2

T+τ∑
t=τ+1

‖gt−τ‖2+
‖Aτ+1 −A∗‖2

2η

+

T+τ∑
t=τ+1

min(t−(τ+1),τ)∑
j=1

ηgTt−τ−jgt−τ+

T+τ∑
t=τ+1

τηB.

Next we bound the second last term in the right hand
side of the above inequation. Since gTt−τ−jgt−τ ≤
‖gTt−τ−j‖·‖gt−τ‖≤ B, we have

T+τ∑
t=τ+1

min(t−(τ+1),τ)∑
j=1

ηgTt−τ−jgt−τ

≤
T+τ∑
t=τ+1

min(t− (τ + 1), τ)ηB

=(Tτ − τ2

2
− 1

2
)ηB.

Therefore, we have

RegROLC-C(T)

≤η
2

[TκQ2
n + T (1− κ)Q2

m] +
2

η
Z2
H + 2τTBη.

We pick the step size η = 2ZH√
TκQ2

n+T (1−κ)Q2
m+4TτB

. Then,

we have

RegROLC-C(T) ≤ ZH
√
κQ2

n + (1− κ)Q2
m + 4τB

√
T .

Algorithm 3: ROLC-NC-D: Robust OnLine
Classification with Non-Clairvoyant Malicious
Data Generators and Dynamic Delay

Input: Data {(xt,yt)}Tt=1, step size η, delay τ t for
receiving feedback

Output: Models parameterized by {At}Tt=1

1 Initialization: Select A1 ∈ H randomly
2 for t = 1 to T do
3 Commit to At, observe x̂t, predict ŷt.
4 if Dt = {w ∈ {1, · · · , T} : w + τw = t} 6= ∅ then
5 for u ∈ Dt do
6 Observe yu (and suffer the cost

Cc(Au,yu, x̂u)).
7 Set gu ∈ ∂ACc(A,yu, x̂u) at Au.

8 At+1 =
arg minA∈H‖A− (At − η

∑
u∈Dt gu)‖2.

9 else
10 At+1 = At.

V. EXTENSION TO DYNAMIC FEEDBACK DELAY

In the previous section, we have proposed two online
classification algorithms under the assumption that the feed-
back delay τ is static over time. However, in many practical
systems, the feedback information may require a variable
amount of processing or transmission time to be observed by
the classifier. In this section, we extend our algorithms for
both non-clairvoyant and clairvoyant data generators to the
scenarios where the classifier receives feedback after dynamic
delay, which varies over time and is unknown a priori. We
assume that the feedback delay for information of the data
sample that arrives in round t is τt,∀t. That is, the true label
yt in round t is known to the classifier only at time t′ ≥ t+τt.

Similar to Sec. IV, we propose two algorithms,
ROLC-NC-D and ROLC-C-D, for the cases when malicious
data generators are non-clairvoyant (Sec. V-A) and clairvoyant
(Sec. V-B), respectively. We show that both of them have
provable performance guarantee in terms of a sub-linear
regret bound.

A. Non-Clairvoyant Malicious Data Generators

Recall that this is the case when malicious data generators
have ξ > 0. For this case, we propose the ROLC-NC-D algo-
rithm, whose pseudo code is shown in Algorithm 3. Similar to
ROLC-NC (Algorithm 1), it decides the classification model
in each round by leveraging only the data features presented
in each round (regardless whether they are manipulated) and
the delayed feedback(s) of true label(s) of some previously ar-
rived data sample(s). Note that ROLC-NC-D does not require
additional information, e.g., whether the data sample is from a
malicious or normal generator, the cost function of a malicious
data generator, or the generator’s delay ξ in observing the
classification model.

1) Algorithm Design: ROLC-NC-D first initializes A1 for
t = 1 (Line 1). In each round t, ROLC-NC first commits to At.

9

Then a data sample (xt,yt) arrives. If the data generator is a
(non-clairvoyant) malicious one, it manipulates its data feature
to x̂t to obtain the best response to the latest model it observes
At−ξ; otherwise, x̂t = xt. The classifier then observes x̂t
and predicts a label ŷt with the model At (Line 3). Here,
Dt = {w ∈ {1, · · · , T} : w + τw = t} is the set of rounds
in which the feedbacks of the previously arrived data samples
are observed in round t (Line 4). In round t, feedbacks may
arrive, i.e., Dt 6= ∅. Different from ROLC-NC and ROLC-C,
more than one feedbacks (corresponding to multiple previously
arrived data samples) may arrive in a round, i.e., |Dt| can be
greater than one. Based on the arrived feedback(s), the cost
Cc(Au,yu, x̂u) ∀u ∈ Dt, from the prediction in corresponding
rounds are revealed (Line 6). Then, the algorithm computes the
(sub)gradient gu of the cost function Cc(A,yu, x̂u) chosen
at A = Au (Line 7). Finally, the algorithm updates the
classification parameters At+1 = At−η

∑
u∈Dt gu used in the

next round, i.e., by taking a step proportional to the negative
of the summation of all (sub)gradients computed in this round,
where η is the step size set by the algorithm (Line 8). If
Dt = ∅, the algorithm sets At+1 = At for the next round
(Line 10).

2) Performance Analysis: In this part, we analyze the per-
formance of ROLC-NC-D. Specifically, we show in Theorem
3 that ROLC-NC-D has provable performance guarantee in
terms of a sub-linear regret bound.

Let τmax = maxt∈{1,···,T} τt, i.e., the maximum delay
among all rounds. Note that |Dt|≤ τmax for all t ∈ {1, · · · , T}.
Let DT =

∑T
t=1 τt, i.e., the sum of delay over time T .

Theorem 3. Assume that the cost function Cc is convex, and
Q-Lipschitz over A in H. Further assume that T−|∪Tt=1Dt|=
O(1). With step size η = ZH

Q
1√

Tτmax
4 +DT

, we have regret

bound RegROLC-NC-D(T) ≤ 2ZHQ
√
Tτmax + 4DT+O(1).

Proof. For ease of presentation, we assume A, At and gt, for
all t, are vectors.

Let A∗ ∈ arg minA

∑T
t=1 Cc(At,yt, x̂t). Then, we have

RegROLC-NC-D(T) =

T∑
t=1

[Cc(At,yt, x̂t)− Cc(A∗,yt, x̂t)].

We fix some t ∈ {1, · · · , T}. Suppose Dt is nonempty.
Let Dt,u = {r ∈ Dt : r < u},∀u ∈ Dt, At,u = At −
η
∑
r∈Dt,u gr, and u′ = maxDt (i.e., the largest round index

in Dt). We recall that gu ∈ ∂Cc(A,yu, x̂u) at Au, for all
u = 1, · · · , T . Since At+1 is the result of projecting At −
η
∑
u∈Dt gu onto the convex set H, we have

‖At+1 −A∗‖2−‖At,u′ −A∗‖2

≤‖At,u′ − ηgu′ −A∗‖2−‖At,u′ −A∗‖2

=η2‖gu′‖2−2ηgTu′(At,u′ −A∗).

Then, we have

‖At+1 −A∗‖2−‖At −A∗‖2

=‖At+1 −A∗‖2−‖At,u′ −A∗‖2

+ ‖At,u′ −A∗‖2−...− ‖At −A∗‖2

≤η2
∑
u∈Dt

‖gu‖2−2η
∑
u∈Dt

gTu (At,u −A∗).

For each u ∈ Dt, by convexity, we have

− gTu (At,u −A∗)

=gTu (A∗ −At,u)

=gTu (A∗ −Au + Au −At,u)

≤Cc(A∗,yu, x̂u)− Cc(Au,yu, x̂u) + gTu (Au −At,u).

Due to the Lipschitz properties of Cc(A,yt, x̂t), we have
‖gt‖≤ Q,∀t. Then, we have

‖At+1 −A∗‖2−‖At −A∗‖2

≤η2|Dt|Q2 + 2η
∑
u∈Dt

[Cc(A∗,yu, x̂u)− Cc(Au,yu, x̂u)

+ gTu (Au −At,u)].

Thus, we have

RegROLC-NC-D(T)

=

T∑
t=1

∑
u∈Dt

[Cc(Au,yu, x̂u)− Cc(A∗,yu, x̂u)]

+
∑

u′′ 6∈∪Tt=1Dt

[Cc(Au′′ ,yu′′ , x̂u′′)− Cc(A∗,yu′′ , x̂u′′)]

≤2

η
Z2
H +

η

2
TτmaxQ

2 +

T∑
t=1

∑
u∈Dt

gTu (Au −At,u)

+
∑

u′′ 6∈∪Tt=1Dt

2QZH. (9)

Since T − |∪Tt=1Dt|= O(1), we have
∑
u′′ 6∈∪Tt=1Dt

2QZH =

O(1).
By the Cauchy-Schwartz inequality, the second last term in

the above inequality is bounded by

T∑
t=1

∑
u∈Dt

gTu (Au −At,u) ≤
T∑
t=1

∑
u∈Dt

‖gTu ‖·‖Au −At,u‖

≤Q
T∑
t=1

∑
u∈Dt

‖Au −At,u‖. (10)

Recall that, when Dt is nonempty, Dt,u = {r ∈ Dt : r <
u},∀u ∈ Dt. By the triangle inequality, we have

‖At,u −Au‖≤‖At,u −At‖+‖At −Au‖

≤η
∑

r∈Dt,u

‖gr‖+

t−1∑
v=u

‖Av+1 −Av‖. (11)

Since Av+1 is the result of projecting Av − η
∑
l∈Dv gl onto

the convex set H, we have

‖Av+1 −Av‖≤ ‖
∑
l∈Dv

gl‖≤
∑
l∈Dv

‖gl‖. (12)

Substituting (11) and (12) into (10), we have

T∑
t=1

∑
u∈Dt

gTu (Au −At,u)

10

≤Q
T∑
t=1

∑
u∈Dt

(η
∑

r∈Dt,u

‖gr‖+ η

t−1∑
v=u

∑
l∈Dv

‖gl‖)

≤ηQ2
T∑
t=1

∑
u∈Dt

(|Dt,u|+
t−1∑
v=u

|Dv|). (13)

For any t and u ∈ Dt, either ∪t−1v=uDv∪Dt,u 6= ∅ or ∪t−1v=uDv∪
Dt,u = ∅. If ∪t−1v=uDv ∪ Dt,u = ∅, |Dt,u|+

∑t−1
v=u|Dv|= 0.

Next, we focus on the case in which ∪t−1v=uDv ∪ Dt,u 6= ∅.
For any k ∈ ∪t−1v=uDv ∪ Dt,u, to capture the two cases,
k > u and k ≤ u, over all rounds, we denote a round with
different notations k′ and u′ in the analysis. For any round
r = 1, · · · , T , we have

|{k′ : k′ > r and k′ ∈ ∪t−1v=rDv ∪ Dt,r,∀t}|< τr − 1, (14)

and |{u′ : r ≤ u′ and r ∈ ∪t−1v=u′Dv ∪ Dt,u′ ,∀t}|≤ τr. (15)

Summing up (14) and (15) over T rounds yields
T∑
t=1

∑
u∈Dt

(|Dt,u|+
t−1∑
v=u

|Dv|) ≤
T∑
t=1

2τt.

Substituting the above inequality into (13), we have
T∑
t=1

∑
u∈Dt

gTu (Au −At,u) ≤ 2ηQ2
T∑
t=1

τt.

Therefore, we have

RegROLC-NC-D(T) ≤2

η
Z2
H +

η

2
TτmaxQ

2 + 2ηQ2
T∑
t=1

τt+O(1).

We then pick the step size η = ZH
Q

1√
Tτmax

4 +DT
, where DT =∑T

t=1 τt, and we have

RegROLC-NC-D(T) ≤ 2ZHQ
√
Tτmax + 4DT+O(1).

B. Clairvoyant Malicious Data Generators

We now consider the case where data generators are clair-
voyant (i.e., ξ = 0). As we discussed in Sec. III, this represents
the worst-case challenge to the classifier. Similar to how we
extend ROLC-NC to ROLC-C, we propose another online
algorithm called ROLC-C-D, whose pseudo code is shown
in Algorithm 4.

Our analysis in Sec. IV-B shows that, to obtain guaranteed
sub-linear regret, the classifier in the case when ξ = 0
requires additional information including the cost function
of classifiers corresponding to normal and malicious data
generators, i.e., C(n)

c (A,yt,xt) and C(m)
c (A,yt,xt), and ot,∀t,

indicating whether the data sample is from a malicious or
normal generator. However, we recall that, because of feedback
delay, the true label yt, and hence also ot, are known to the
classifier only at time t′ ≥ t + τt. Therefore, ROLC-C-D
is designed to utilize such delayed information. Same as
ROLC-NC-D, ROLC-C-D does not require the information of
the feedback delay before the corresponding feedback arrives.

Algorithm 4: ROLC-C-D: Robust OnLine
Classification with Clairvoyant Malicious Data
Generators and Dynamic Delay

Input: Data {(xt,yt)}Tt=1, step size η and delay {τt}
Output: Models parameterized by {At}Tt=1

1 Initialization: Select A1 ∈ H randomly
2 for t = 1 to T do
3 Commit to At, observe x̂t, predict ŷt.
4 if Dt = {w ∈ {1, · · · , T} : w + τw = t} 6= ∅ then
5 for u ∈ Dt do
6 Observe yu, ou and the cost

Cc(Au,yu, x̂u).
7 if ou = 1 then
8 Set xu = x̂u and
9 gu ∈ ∂AC(n)

c (A,yu,xu).
10 else
11 Set xu = x̂u + 1

2γg
Aub and

12 gu ∈ ∂AC(m)
c (A,yu,xu).

13 At+1 =
arg minA∈H‖A− (At − η

∑
u∈Dt gu)‖2.

14 else
15 At+1 = At.

1) Algorithm Design: ROLC-C-D first initializes A1 for
t = 1 (Line 1). In each round t, ROLC-C-D first commits
to At. Then a data sample (xt,yt) arrives. If it is from a
malicious data generator, the data features are manipulated
to x̂t to best respond to At; otherwise, for the normal data
sample, x̂t = xt (see the analysis in Sec. IV-B1). The classifier
then observes x̂t and predicts a label ŷt with the model At

(Line 3). Recall that Dt is the set of rounds in which the
feedbacks of the previously arrived data samples are observed
in round t (Line 4). In this round, feedbacks may arrive, i.e.,
Dt 6= ∅ (Line 4). Note that, in one round, more than one
feedbacks (corresponding to one or more previously arrived
data samples) may arrive. The feedback from prediction in
one previous round u ∈ Dt includes the true label yu and
the indicator ou. Based on the arrived feedbacks, the cost
Cc(Au,yu, x̂u) ∀u ∈ Dt, from the prediction in corresponding
rounds are revealed (Line 6). Next, the classifier chooses
the cost function and computes its (sub)gradient to update
the classification model in the next round (Line 7 to 12)
according to ou. Specifically, if round u is a normal round
(Line 7); the algorithm sets xu = x̂u as it observed in
round u (Line 8) and computes the (sub)gradient gu of the
cost function C(n)

c (A,yu,xu) chosen at A = Au (Line 9);
otherwise, it sets xu = x̂u + 1

2γg
Aub according to the

closed form (5) of the manipulated feature for a malicious
data generator (Line 11), and computes the (sub)gradient gu
of the cost function C(m)

c (A,yu,xu) at A = Au (Line 12).
Finally, the algorithm computes the classification parameters
At+1 = At − η

∑
u∈Dt gu in the next round (Line 13). If

Dt = ∅, no feedback arrives in this round, and the algorithm
sets At+1 = At for the next round (Line 15).

11

2) Performance Analysis: In this part, we analyze the
performance of ROLC-C-D. Specifically, we show in Theorem
4 that ROLC-C-D has a sub-linear regret bound.

Theorem 4. Assume that the cost functions of A,
C(n)
c and C(m)

c , are convex over A in H, and Qn-
Lipschitz and Qm-Lipschitz over A in H respectively.
Further assume that T − |∪Tt=1Dt|= O(1). With
step size η = 2ZH√

TτmaxκQ2
n+Tτmax(1−κ)Q2

m+4BDT
,

we have regret bound RegROLC-C-D(T) ≤
2
√

2ZH
√
TτmaxκQ2

n + Tτmax(1− κ)Q2
m + 4BDT+O(1),

where κ is the fraction of normal datas over the time horizon
from 1 to T , and B = max(Q2

n , QnQm, Q
2
m).

Proof. Again, for ease of presentation, we assume A, At and
gt, for all t, are vectors.

Let A∗ ∈ arg minA

∑T
t=1 Cc(At,yt, x̂t). Then, we have

RegROLC-C-D(T) =

T∑
t=1

[Cc(At,yt, x̂t)− Cc(A∗,yt, x̂t)].

We fix a t ∈ {1, · · · , T}. According to Line 9 and 12 in
ROLC-C-D, we have gt ∈ ∂AC(n)

c (A,yt, x̂t) at At if ot = 1;
and gt ∈ ∂AC(m)

c (A,yt, x̂t) at At if ot 6= 1. Similar to the
proof of Theorem 3, we have

‖At+1 −A∗‖2−‖At −A∗‖2

≤η2
∑
u∈Dt

‖gu‖2−2η
∑
u∈Dt

gTu (At,u −A∗).

For each u ∈ Dt, by convexity, we have

− gTu (At,u −A∗)

≤Cc(A∗,yu, x̂u)− Cc(Au,yu, x̂u) + gTu (Au −At,u).

Then, we have

‖At+1 −A∗‖2−‖At −A∗‖2

≤2η
∑
u∈Dt

(Cc(A∗,yu, x̂u)− Cc(Au,yu, x̂u)

+ gTu (Au −At,u)) + η2
∑
u∈Dt

‖gu‖2.

Thus, we have

RegROLC-C-D(T)

≤2

η
Z2
H +

η

2
[TτmaxκQ

2
n + Tτmax(1− κ)Q2

m]

+

T∑
t=1

∑
u∈Dt

gTu (Au −At,u) +
∑

u′′ 6∈∪Tt=1Dt

2QmaxZH,

where Qmax = max{Qn, Qm}. Since T − |∪Tt=1Dt|= O(1),
we have

∑
u′′ 6∈∪Tt=1Dt

2QmaxZH = O(1).
By the Cauchy-Schwartz inequality, the second last term in

the above inequality is bounded by
T∑
t=1

∑
u∈Dt

gTu (Au −At,u)

≤
T∑
t=1

∑
u∈Dt

‖gu‖·(η
∑

r∈Dt,u

‖gr‖+η
t−1∑
v=u

∑
l∈Dv

‖gl‖) ≤ 2ηB

T∑
t=1

τt.

Thus, we have

RegROLC-C-D(T)

≤2

η
Z2
H +

η

2
[TτmaxκQ

2
n + Tτmax(1− κ)Q2

m] + 2ηBDT+O(1).

We pick the step size η = 2ZH√
TτmaxκQ2

n+Tτmax(1−κ)Q2
m+4BDT

,

and we have

RegROLC-C-D(T)

≤2
√

2ZH
√
TτmaxκQ2

n + Tτmax(1− κ)Q2
m + 4BDT+O(1).

VI. APPLICATION TO NETWORK FLOW CLASSIFICATION

In this section, we present an application of the proposed
robust online learning algorithms to network flow classifica-
tion. We evaluate their performance by experimenting with
real-world traffic data traces.

A. Robust Online Network Flow Classification

We consider the problem of network flow classification
where malicious flow generators may exist, which can manip-
ulate their flow features to best respond to the classification
model to increase the likelihood of a certain outcome so as to
increase their own utility, e.g., to be prioritized for network
resource allocation.

There is a cost to manipulate flow features. In a high-speed
network, it is generally expensive to build hardware for packet
flow manipulation at line rate. On the other hand, software-
based packet flow manipulation requires frequent interaction
with the memory (e.g., read and write operations) [8]. Fur-
thermore, some manipulation such as changing header fields
requires more complex operation [10]. Therefore, software-
based manipulation at line rate is non-trivial and often reduces
the performance of the flow. Here we adopt the general cost
model as explained in Sec. III-B. In addition, often it may
take some time for a malicious flow generator to detect the
classification model through reverse engineering attacks [19],
[24]. We consider both the non-clairvoyant (i.e., ξ > 0) and
clairvoyant (i.e., ξ = 0) cases as defined in Sec. III-C.

An online learning approach requires comparison between
the true and predicted labels of a previously arrived and classi-
fied flow. For online network flow classification, the true label
can be obtained, for example, through deep packet inspection
(DPI), or by a sophisticated robust classifier residing in some
powerful remote server, which is trained using sufficient data
to give accurate prediction in spite of the altered features. Both
options incur computation or communication delay. State-of-
the-art DPI systems for encrypted traffic has high runtime
overhead and cannot process packets in real-time [2], [55]–
[57]. For example, BlindBox requires minutes for every new
end-to-end connection [55]. Embark enables a cloud provider
(e.g., Amazon EC2) to outsource DPI processing, which incurs
communication delay [56].

Fortunately, as discussed in Secs. IV and V, the proposed al-
gorithms ROLC-NC, ROLC-C, ROLC-NC-D, and ROLC-C-D

12

all can accommodate both malicious flow generators and
feedback delay, while providing performance guarantee in
terms of sub-linear regret bounds. Next, we present further
experimental details and results when these algorithms are
applied to online network flow classification.

B. Trace-Driven Experiments

1) Data Trace: To apply the proposed algorithms to online
network flow classification, we use packet traces from [58] and
[59]. All packets in the trace dataset are TCP packets, and each
TCP connection corresponds to a flow. The dataset contains
377,526 flows in total. In each round of an experiment, a
randomly selected flow from this set is sent to the classifier.
The record of each flow contains a variety of characteristic
features. We consider 100 standard features including the
minimum, mean, maximum, and standard deviation of packet
lengths and packet inter-arrival times, number of packets and
bytes, and the duration of the network connection. They are
features numbered 3-9, 195-208, 10-30, 153-194, 210-215, 31-
40 in [36].3

Each flow belongs to 12 application types: www, mail, ftp-
control, ftp-pasv, attack, p2p, database, ftp-data, multimedia,
services, interactive, and games. We map these application
types into four different QoS labels roughly based on the
application’s delay requirement. The label assignment is as
follows. k = 1: multimedia, interactive, games, and ftp-
control; k = 2: attack, www, and p2p; k = 3: database, ftp-
data, and services; k = 4: mail and ftp-pasv. Thus, the lower
k is, the more sensitive to delay the corresponding flow is.

2) Performance Metrics and Benchmarks: We take the
classification accuracy as our primary metric, which is more
useful than the regret in practice. In addition, since the class
distribution is imbalanced in the dataset, we also take the F1

score as a second performance metric [51], [60].
We compare the proposed algorithms with two offline

benchmarks as follows. We first train a static classification
model by minimizing its cumulative cost

∑T
t=1 Cc(A,yt,xt),

assuming knowledge of the true features and true labels
of all flows for t = 1, 2, · · · , T . The optimizer we use is
Sequential Least Squares Programming (SLSQP) [61]. Then,
the two benchmarks are the performance metrics obtained by
this classification model under two different test datasets as
follows.

• Offline: Performance obtained with test dataset
(x̂′t,yt),∀t, which contains the observed flow features
(manipulated version if the flow comes from a malicious
generator) of the same sequence of flows presented to
the online algorithms, except that the manipulated flow
features x̂′t best respond to the above offline classification
model.

• Offline-Norm: Performance obtained with test dataset
(xt,yt),∀t, the normal flows containing unmanipulated
original features.

3These features are chosen since they can be manipulated by the flow
generators in practice.

0 15k 30k 45k 60k 75k 90k
Round

0

10

20

C
os

t

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
or

 F
1

Sc
or

e

ROLC-NC Cost
ROLC-NC Acc
ROLC-NC F1

(a) HL, ξ = 10

0 15k 30k 45k 60k 75k 90k
Round

0

5

10

15

C
os

t

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y
or

 F
1

Sc
or

e

ROLC-NC Cost
ROLC-NC Acc
ROLC-NC F1

(b) CEL, ξ = 10

Fig. 1: Learning process of ROLC-NC with ξ = 10.

0 15k 30k 45k 60k 75k 90k
Round

0

10

20

30

40

C
os

t

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y
or

 F
1

Sc
or

e

ROLC-NC Cost
ROLC-C Cost
ROLC-NC Acc
ROLC-C Acc
ROLC-NC F1
ROLC-C F1

(a) HL, ξ = 0

0 15k 30k 45k 60k 75k 90k
Round

0

5

10

15

C
os

t

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y
or

 F
1

Sc
or

e

ROLC-NC Cost
ROLC-C Cost
ROLC-NC Acc
ROLC-C Acc
ROLC-NC F1
ROLC-C F1

(b) CEL, ξ = 0

Fig. 2: Learning process of ROLC-NC and ROLC-C with ξ =
0.

3) Experiment Setting: The loss function of the classifier is
general in this work (see Sec. III). In our experiments, we use
two common loss functions, Hinge Loss (HL) and Categorical
Cross-Entropy Loss (CEL) defined as follows [51]:
• HL: Lc(ŷ,y) =

∑
k 6=k∗ max(0, 1 + ŷ(k)− ŷ(k∗)), where

k∗ is the true QoS level;
• CEL: Lc(ŷ,y) = − log eŷ

T y∑
k e

ŷ(k) .

In each experiment, the proposed algorithms are run using
either HL or CEL for T = 100, 000 rounds, which is sufficient
for them to go into the steady state. Over the T rounds,
a fraction κ (resp. 1 − κ) of rounds are randomly assigned
as normal (resp. malicious) rounds. In each round, a flow is
uniformly randomly chosen from the data trace. We evalu-
ate the performance of the proposed algorithms in different
settings by varying the value of key parameters around the
default setting (κ, τ, γc, γg,b) = (0.5, 10, 0.1, 0.8, [1, 2, 4, 8]).
The comparison benchmarks are calculated based on the same
test data as those of the online algorithms. All experiments are
run on a machine with two Intel(R) Xeon(R) CPU E5-2650
v4 2.20GHz with 32GB memory and 1.8TB hard drive.

4) Accuracy and F1 Score over Time: We first evaluate the
performance of ROLC-NC and ROLC-C in terms of the cost
of each round, the accuracy, and the F1 score, over a sliding
window of size 2000 rounds during the learning process. For
the first 2000 rounds, the performance metrics are calculated
over all arrived flows. Fig. 1 shows the learning process of
ROLC-NC when the delay for a malicious flow generator to
detect the classification model is ξ = 10. Fig. 2 shows the
learning process of ROLC-NC and ROLC-C when ξ = 0.4

We observe that, in all experiments, the cost value decreases
quickly at the beginning and converges to its steady state after
15k (resp. 30k) rounds for ROLC-NC using HL (resp. CEL)

4Recall that ROLC-NC is designed for ξ > 0 but it can also be applied to
the case when ξ = 0, while ROLC-C is used only when ξ = 0.

13

0 15k 30k 45k 60k 75k 90k
Round

0

10

20

30
Co

st

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC-D Cost
ROLC-NC-D Acc
ROLC-NC-D F1

(a) HL, ξ = 10

0 15k30k45k60k75k90k
Round

0

5

10

15

Co
st

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC-D Cost
ROLC-NC-D Acc
ROLC-NC-D F1

(b) CEL, ξ = 10

Fig. 3: Learning process of ROLC-NC-D and ROLC-C-D with
ξ = 10.

0 15k 30k 45k 60k 75k 90k
Round

0

10

20

30

40

Co
st

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC-D Cost
ROLC-C-D Cost
ROLC-NC-D Acc
ROLC-C-D Acc
ROLC-NC-D F1
ROLC-C-D F1

(a) HL, ξ = 0

0 15k 30k 45k 60k 75k 90k
Round

2

4

6

8

Co
st

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC-D Cost
ROLC-C-D Cost
ROLC-NC-D Acc
ROLC-C-D Acc
ROLC-NC-D F1
ROLC-C-D F1

(b) CEL, ξ = 0

Fig. 4: Learning process of ROLC-NC-D and ROLC-C-D with
ξ = 0.

and after 15k rounds for ROLC-C for both HL and CEL. The
accuracy and F1 score at convergence are both greater than
0.9. We also find that both algorithms learn faster and have
higher accuracy and F1 score using HL than using CEL. After
45k rounds, ROLC-NC using HL achieves 0.91 accuracy and
0.91 F1 score when ξ = 10, and ROLC-C using HL achieves
0.93 accuracy and 0.93 F1 score when ξ = 0.

When ξ = 0, we can further compare the performance
of ROLC-NC and ROLC-C. Fig. 2 shows that, ROLC-C
converges faster than ROLC-NC does, and performs slightly
better than ROLC-NC in classification accuracy and F1 score.
This is because ROLC-C uses the real cost function C(m)

c in
a malicious round to update the model, while ROLC-NC does
not. This, as well as similar results presented in Figs. 5 and
7, suggests that ROLC-C can be a better choice in the case
when the flow generators are clairvoyant.

We then evaluate the performance of ROLC-NC-D and
ROLC-C-D when the feedback delay is dynamic. We
keep the default parameter setting described previously and
choose the delay τt in each round t uniformly randomly
from {0, 1, · · · , 20}. Fig. 3 shows the learning process of
ROLC-NC-D when ξ = 10. Fig. 4 shows the learning process
of ROLC-NC-D and ROLC-C-D when ξ = 0. We observe
that, both ROLC-NC-D and ROLC-C-D learn faster and have
higher accuracy and F1 score using HL than using CEL.
ROLC-NC-D using HL (resp. CEL) achieves 0.88 (resp. 0.84)
accuracy and F1 score in all experiments. When ξ = 0,
ROLC-C-D using HL (resp. CEL) achieves 0.93 (resp. 0.91)
accuracy and F1 score. ROLC-NC-D (resp. ROLC-C-D) take
longer time to converge than ROLC-NC (resp. ROLC-C) does,
which may be caused by the dynamic delay.

We also evaluate the convergence time for these algorithms
to reach steady state in the learning process. We find that,
with our machine, the computation time for each round is

0 10 50 100 200 500
Delay of Feedback τ

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC Acc
ROLC-NC F1
ROLC-C Acc
ROLC-C F1
Offline Acc
Offline F1
Offline-Norm Acc
Offline-Norm F1

(a) HL

0 10 50 100 200 500
Delay of Feedback τ

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC Acc
ROLC-NC F1
ROLC-C Acc
ROLC-C F1
Offline Acc
Offline F1
Offline-Norm Acc
Offline-Norm F1

(b) CEL

Fig. 5: Impact of static delay τ .

10 25 50 100 250
Average of Delay of Feedback τt

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC-D Acc
ROLC-NC-D F1
ROLC-C-D Acc
ROLC-C-D F1
Offline Acc
Offline F1
Offline-Norm Acc
Offline-Norm F1

(a) HL

10 25 50 100 250
Average of Delay of Feedback τt

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC-D Acc
ROLC-NC-D F1
ROLC-C-D Acc
ROLC-C-D F1
Offline Acc
Offline F1
Offline-Norm Acc
Offline-Norm F1

(b) CEL

Fig. 6: Impact of dynamic delay τt.

less than 10 milliseconds, and thus the average convergence
time is between 75 and 150 seconds. To further reduce this
time in practical implementation, one may use more powerful
computing hardware and/or fewer features, e.g., only features
from the initial packets of a flow [39].

5) Impact of Feedback Delay: We further evaluate the im-
pact of the feedback delay τ on the performances of ROLC-NC
and ROLC-C in steady state and present the results in Fig. 5.
We calculate the accuracy and F1 score by averaging over
2000 rounds in steady state. Keeping the default parameter
setting described previously and ξ=0, we vary τ from 0 to
500. For each data point in the figure, we take the average
of 10 repeated experiments, where we fix the sequences of
the arriving flows {(xt,yt)}Tt=1 and indicators {ot}Tt=1 while
varying the random initialization of the algorithms (Line 1 of
Algorithms 1 and 2).

Fig. 5 presents the accuracy and F1 score of ROLC-NC,
ROLC-C, and the offline benchmarks. Note that the offline
benchmarks are not affected by τ . When using HL (Fig. 5(a)),
both ROLC-NC and ROLC-C have stable performance when
τ ≤ 100, and ROLC-C achieves 0.92 accuracy and F1

score on average, which is only 0.01 lower than those of
Offline-Norm, while ROLC-NC achieves 0.90 accuracy
and F1 score on average. When the delay τ becomes longer,
both ROLC-NC and ROLC-C yield lower accuracy and F1

score. When τ ≥ 200, ROLC-NC performs slightly better
than ROLC-C. When using CEL (Fig. 5(b)), ROLC-NC and
ROLC-C both perform worse than when using HL. However,
in this case, ROLC-NC and ROLC-C are less sensitive to the
parameter τ , achieving above 0.88 accuracy and F1 score even
when τ is large. We note that, although not shown in this
figure, a larger τ incurs a longer convergence time for both
algorithms, which is expected for online learning.

We also evaluate the impact of the dynamic delay τt
on the performances of ROLC-NC-D and ROLC-C-D in
steady state. The results are presented in Fig. 6. Keeping

14

0.05 0.1 0.2 0.4 0.8 1.6
Weight of Manipulation Cost γg

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy
 o

r F
1 S

co
re

ROLC-NC Acc
ROLC-NC F1
ROLC-C Acc
ROLC-C F1
Offline Acc
Offline F1
Offline-Norm Acc
Offline-Norm F1

(a) HL

0.05 0.1 0.2 0.4 0.8 1.6
Weight of Manipulation Cost γg

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC Acc
ROLC-NC F1
ROLC-C Acc
ROLC-C F1
Offline Acc
Offline F1
Offline-Norm Acc
Offline-Norm F1

(b) CEL

Fig. 7: Impact of weight of manipulation cost γg , with static
feedback delay.

0.05 0.1 0.2 0.4 0.8 1.6
Weight of Manipulation Cost γg

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC-D Acc
ROLC-NC-D F1
ROLC-C-D Acc
ROLC-C-D F1
Offline Acc
Offline F1
Offline-Norm Acc
Offline-Norm F1

(a) HL

0.05 0.1 0.2 0.4 0.8 1.6
Weight of Manipulation Cost γg

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 o
r F

1 S
co

re

ROLC-NC-D Acc
ROLC-NC-D F1
ROLC-C-D Acc
ROLC-C-D F1
Offline Acc
Offline F1
Offline-Norm Acc
Offline-Norm F1

(b) CEL

Fig. 8: Impact of weight of manipulation cost γg , with dynamic
feedback delay.

the default parameter setting described previously and ξ =
0, we set τt to be chosen uniformly randomly from the
sets {0, · · · , 20}, {0, · · · , 50}, {0, · · · , 100}, {0, · · · , 200}, and
{0, · · · , 500}. In Fig. 6, each x-axis label represents the mean
of the corresponding set. In most cases, ROLC-C-D performs
better than ROLC-NC-D. Similar to the results in Fig. 5,
ROLC-NC-D and ROLC-C-D both perform better when using
HL.

6) Impact of Manipulation Cost Weight γg: We vary the
value of γg to study its impact on the performance of
ROLC-NC, ROLC-C, ROLC-NC-D, and ROLC-C-D. We use
the default parameter setting with ξ = 0. Figs. 7 and 8 present
the accuracy and F1 score of the proposed algorithms and the
offline benchmarks. Note that Offline-Norm is not affected
by γg as expected. With either HL or CEL, the proposed
algorithms and Offline all yield higher accuracy and F1

score when the manipulation cost γg increases. This is because
a larger γg encourages the malicious flow generators to stay
closer to the original features. However, when γg ≤ 0.4, the
accuracy and F1 score of Offline becomes flat, because
Offline performs so poorly that it can hardly classify any
manipulated flow correctly.

VII. CONCLUSION

In this work, we address the problem of robust online
learning against malicious manipulation. The data features
may be manipulated by malicious generators to best respond to
the classification models committed by the classifier. Practical
issues such as delayed feedback (for the classifier) and delayed
observation of the classification model (for malicious data gen-
erators) are captured in the problem. We propose four online
classification algorithms ROLC-NC, ROLC-C, ROLC-NC-D,
and ROLC-C-D, for different scenarios where the data gen-
erators are non-clairvoyant or clairvoyant, and the feedback

delay is static or dynamic. Our theoretical analysis shows that
all proposed algorithms have a sub-linear regret bound when
the classifier’s cost function is convex. We further evaluate
the performance of the proposed algorithms in network flow
classification via experiments using real-world data traces. We
observe that the proposed algorithms are effective, in terms
of steady-state accuracy and the F1 score, and they compare
favorably with an optimal static offline classification strategy
under different testing scenarios.

For possible future research, one interesting question is
whether classification accuracy can be improved by a more
complex non-linear classifier (e.g., a neural network). Due to
the challenge of non-convex online optimization, to achieve
similar performance guarantee under malicious flow genera-
tors, different techniques rather than online convex optimiza-
tion may be desired. Another avenue for future research in
robust network flow classification is to account for how the
flows features are extracted in the cost of feature manipulation.
This may lead to an interesting new problem in jointly
optimizing feature exaction and robust online classification.

REFERENCES

[1] Y. Li, B. Liang, and A. Tizghadam, “Robust online learning against
malicious manipulation with application to network flow classification,”
to appear in Proc. of IEEE INFOCOM, 2021.

[2] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification:
an overview,” IEEE Communications Magazine, vol. 57, no. 5, pp. 76–
81, 2019.

[3] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust network
traffic classification,” IEEE/ACM Transactions on Networking, vol. 23,
no. 4, pp. 1257–1270, 2015.

[4] T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and con-
tinuous machine-learning-based classification for interactive IP traffic,”
IEEE/ACM Transactions on Networking, vol. 20, no. 6, pp. 1880–1894,
2012.

[5] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Tunnel hunter:
Detecting application-layer tunnels with statistical fingerprinting,” Com-
puter Networks, vol. 53, no. 1, pp. 81–97, 2009.

[6] M. Lopez-Martin, B. Carro, J. Lloret, S. Egea, and A. Sanchez-
Esguevillas, “Deep learning model for multimedia quality of experience
prediction based on network flow packets,” IEEE Communications
Magazine, vol. 56, no. 9, pp. 110–117, 2018.

[7] Y. Li, B. Liang, and A. Tizghadam, “Robust network flow classification
against malicious feature manipulation,” in Proc. of IEEE ICC, 2020.

[8] S. Pontarelli, M. Bonola, and G. Bianchi, “Smashing SDN ‘built-in’
actions: programmable data plane packet manipulation in hardware,” in
Proc. of IEEE NetSoft, 2017.

[9] M. Gadelrab, A. A. El Kalam, and Y. Deswarte, “Manipulation of
network traffic traces for security evaluation,” in Proc. of IEEE AINA.

[10] M. Meitinger, R. Ohlendorf, T. Wild, and A. Herkersdorf, “A pro-
grammable stream processing engine for packet manipulation in network
processors,” in Proc. of IEEE ISVLSI, 2007.

[11] D. J. Miller, Z. Xiang, and G. Kesidis, “Adversarial learning in statistical
classification: a comprehensive review of defenses against attacks,” arXiv
preprint arXiv:1904.06292, 2019.

[12] B. Biggio and F. Roli, “Wild patterns: ten years after the rise of
adversarial machine learning,” in Proc. of ACM CCS, 2018.

[13] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends in Machine Learning, vol. 4, no. 2, pp. 107–
194, 2011.

[14] M. Abramson, “Toward adversarial online learning and the science of
deceptive machines,” in Proc. of AAAI Fall Symposium Series, 2015.

[15] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can
machine learning be secure?” in Proc. of ACM AsiaCCS, 2006.

[16] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proc. of ICML, 2003.

[17] D. J. Miller, Z. Xiang, and G. Kesidis, “Adversarial learning targeting
deep neural network classification: a comprehensive review of defenses
against attacks,” Proceedings of the IEEE, vol. 108, no. 3, pp. 402–433,
2020.

15

[18] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar,
“Adversarial machine learning,” in Proc. of ACM AISec, 2011.

[19] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in Proc. of USENIX
Security, 2016.

[20] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning at
test time,” in Proc. of ECMLPKDD, 2013.

[21] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in Proc. of
ICLR, 2014.

[22] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games for
adversarial learning problems,” Journal of Machine Learning Research,
vol. 13, no. 1, pp. 2617–2654, 2012.

[23] J. Lin, C. Gan, and S. Han, “Defensive quantization: when efficiency
meets robustness,” in Proc. of ICLR, 2019.

[24] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proc. of ACM AsiaCCS, 2017.

[25] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be more
secure! a case study on android malware detection,” IEEE Transactions
on Dependable and Secure Computing, vol. 16, no. 4, pp. 711–724,
2017.

[26] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Proc. of IEEE S&P, 2016.

[27] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
bypassing ten detection methods,” in Proc. of ACM AISec, 2017.

[28] M. Kloft and P. Laskov, “Online anomaly detection under adversarial
impact,” in Proc. of AISTATS, 2010.

[29] T. S. Sethi and M. Kantardzic, “Handling adversarial concept drift in
streaming data,” Expert Systems with Applications, vol. 97, pp. 18–40,
2018.

[30] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. of NIPS, 2014.

[31] P. Grnarova, K. Y. Levy, A. Lucchi, T. Hofmann, and A. Krause, “An
online learning approach to generative adversarial networks,” in Proc. of
ICLR, 2018.

[32] A. Resler and Y. Mansour, “Adversarial online learning with noise,” in
Proc. of ICML, 2019.

[33] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and A. V. Vasilakos, “An effective
network traffic classification method with unknown flow detection,”
IEEE Transactions on Network and Service Management, vol. 10, no. 2,
pp. 133–147, 2013.

[34] J. Zhang, F. Li, F. Ye, and H. Wu, “Autonomous unknown-application
filtering and labeling for DL-based traffic classifier update,” in Proc. of
IEEE INFOCOM, 2020.

[35] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Computing, vol. 24, no. 3, pp. 1999–2012, 2020.

[36] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 33, no. 1, 2005, pp. 50–60.

[37] B. Anderson and D. McGrew, “Machine learning for encrypted malware
traffic classification: accounting for noisy labels and non-stationarity,”
in Proc. of ACM SIGKDD, 2017.

[38] A. Este, F. Gringoli, and L. Salgarelli, “Support vector machines for tcp
traffic classification,” Computer Networks, vol. 53, no. 14, pp. 2476–
2490, 2009.

[39] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian,
“Traffic classification on the fly,” ACM SIGCOMM Computer Commu-
nication Review, vol. 36, no. 2, pp. 23–26, 2006.

[40] S. Rezaei and X. Liu, “How to achieve high classification accuracy with
just a few labels: A semi-supervised approach using sampled packets,”
in Proc. of ICDM, 2019.

[41] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “FS-NET: A flow
sequence network for encrypted traffic classification,” in Proc. of IEEE
INFOCOM, 2019.

[42] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution neural
networks,” in Proc. of IEEE ISI, 2017.

[43] J. Erman, M. Arlitt, and A. Mahanti, “Traffic classification using
clustering algorithms,” in Proc. of ACM SIGCOMM MineNet, 2006.

[44] B. Hullár, S. Laki, and A. Gyorgy, “Early identification of peer-to-peer
traffic,” in Proc. of IEEE ICC, 2011.

[45] K. L. Dias, M. A. Pongelupe, W. M. Caminhas, and L. de Errico,
“An innovative approach for real-time network traffic classification,”
Computer Networks, vol. 158, pp. 143–157, 2019.

[46] J. Yan, X. Yun, Z. Wu, H. Luo, S. Zhang, S. Jin, and Z. Zhang, “Online
traffic classification based on co-training method,” in Proc. of IEEE
PDCAT, 2012.

[47] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z.-L. Zhang, “A
modular machine learning system for flow-level traffic classification in
large networks,” ACM Transactions on Knowledge Discovery from Data,
vol. 6, no. 1, pp. 1–34, 2012.

[48] B. Wang, J. Zhang, Z. Zhang, W. Luo, and D. Xia, “Robust traffic
classification with mislabelled training samples,” in Proc. of IEEE
ICPADS, 2015.

[49] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Of-
fline/realtime traffic classification using semi-supervised learning,” Per-
formance Evaluation, vol. 64, no. 9-12, pp. 1194–1213, 2007.

[50] Y. Wang, Y. Xiang, and S.-Z. Yu, “An automatic application signature
construction system for unknown traffic,” Concurrency and Computa-
tion: Practice and Experience, vol. 22, no. 13, pp. 1927–1944, 2010.

[51] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from
Data. AMLBook New York, NY, USA, 2012.

[52] I. Kononenko and M. Kukar, Machine Learning and Data Mining.
Horwood Publishing, 2007.

[53] C. S. Miao, L. Meng, C. Q. Yuan, X. W. Wang, and G. R. Chang,
“Traffic classification combining flow correlation and ensemble classi-
fier,” International Journal of Wireless and Mobile Computing, vol. 6,
no. 6, pp. 556–563, 2013.

[54] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. 7, pp. 2121–2159, 2011.

[55] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: deep packet
inspection over encrypted traffic,” in Proc. of ACM SIGCOMM, 2015.

[56] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
securely outsourcing middleboxes to the cloud,” in Proc. of USENIX
NSDI, 2016.

[57] S. Canard, A. Diop, N. Kheir, M. Paindavoine, and M. Sabt, “BlindIDS:
market-compliant and privacy-friendly intrusion detection system over
encrypted traffic,” in Proc. of ACM AsiaCCS, 2017.

[58] “Nprobe: scalable network monitoring architecture,” https://www.cl.cam.
ac.uk/research/srg/netos/projects/archive/nprobe/.

[59] A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-
based classification,” https://www.cl.cam.ac.uk/∼awm22/publication/
moore2005discriminators.pdf, Tech. Rep. RR-05-13.

[60] “Compute the F1 score,” https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.f1 score.html.

[61] J. Nocedal and S. Wright, Numerical Optimization. Springer Science
& Business Media, 2006.

Yupeng Li received his Ph.D. degree in Computer
Science from The University of Hong Kong. He
was a post-doctoral researcher at the University of
Toronto. He is currently an Assistant Professor at
Hong Kong Baptist University. His research interests
are in general areas of network science and, in
particular, algorithmic decision making and machine
learning problems, which arise in networked systems
such as information networks and ride-sharing plat-
forms. He is also excited about interdisciplinary re-
search that applies algorithmic techniques to edging

problems. He has published papers in prestigious venues such as IEEE INFO-
COM, ACM MobiHoc, IEEE Journal on Selected Areas in Communications,
and IEEE/ACM Transactions on Networking. He is a member of IEEE and
ACM.

16

Ben Liang received honors-simultaneous B.Sc.
(valedictorian) and M.Sc. degrees in Electrical En-
gineering from Polytechnic University (now the en-
gineering school of New York University) in 1997
and the Ph.D. degree in Electrical Engineering with a
minor in Computer Science from Cornell University
in 2001. He was a visiting lecturer and post-doctoral
research associate at Cornell University in the 2001
- 2002 academic year. He joined the Department of
Electrical and Computer Engineering at the Univer-
sity of Toronto in 2002, where he is now Professor

and L. Lau Chair in Electrical and Computer Engineering. His current research
interests are in networked systems and mobile communications. He is an
associate editor for the IEEE Transactions on Mobile Computing and has
served on the editorial boards of the IEEE Transactions on Communications,
the IEEE Transactions on Wireless Communications, and the Wiley Security
and Communication Networks. He regularly serves on the organizational and
technical committees of a number of conferences. He is a Fellow of IEEE
and a member of ACM and Tau Beta Pi.

Ali Tizghadam is the Principal Technology Archi-
tect at TELUS Communications. He is responsible
for strategizing network softwarization and leading
the development of enabler ecosystem around it
in TELUS. Presently, Ali has led the design and
implementation of an open platform leveraging most
recent advances in Big Data, SDN, NFV and AI to
enable TELUS to move towards building its self-
driving networks via instantiation of intent-based
closed-loop automated jobs across the cloudified
network.

In the academic side, Ali has designed a graduate course – Service Provider
Networks – to bridge the gap between understanding of networks in academic
area and service provider’s domain. He is currently teaching this course in
the Department of Electrical and Computer Engineering at the University
of Toronto (UofT). Moreover, he is a senior researcher at UofT focusing
on smart city and SDN applications. Ali received his M.A.Sc. and Ph.D. in
electrical and computer engineering from the University of Tehran (1994)
and University of Toronto (2009), respectively. His research interest span
Intent-based networking, End-to-End Multi-layer orchestration, smart city
applications and applications of AI in networking.

